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Abstract

How do we build distributed systems that are secure? Cryptographic techniques can be used
to secure the communications between physically separated systems, but this is not enough:
we must be able to guarantee the privacy of the cryptographic keys and the integrity of
the cryptographic functions, in addition to the integrity of the security kernel and access
control databases we have on the machines. Physical security is a central assumption
upon which secure distributed systems are built; without this foundation even the best
cryptosystem or the most secure kernel will crumble. In this thesis, I address the distributed
security problem by proposing the addition of a small, physically secure hardware module,
a secure coprocessor, to standard workstations and PCs. My central axiom is that secure
coprocessors are able to maintain the privacy of the data they process.

This thesis attacks the distributed security problem from multiple sides. First, I an-
alyze the security properties of existing system components, both at the hardware and
software level. Second, I demonstrate how physical security requirements may be iso-
lated to the secure coprocessor, and showed how security properties may be bootstrapped
using cryptographic techniques from this central nucleus of security within a combined
hardware/software architecture. Such isolation has practical advantages: the nucleus of
security-relevant modules provide additional separation of concern between functional re-
quirements and security requirement, and the security modules are more centralized and
their properties more easily scrutinized. Third, I demonstrate the feasibility of the secure co-
processor approach, and report on my implementation of this combined architecture on top
of prototype hardware. Fourth, I design, analyze, implement, and measure performance of
cryptographic protocols with super-exponential security for zero-knowledge authentication
and key exchange. These protocols are suitable for use in security critical environments.
Last, I show how secure coprocessors may be used in a fault-tolerant manner while still
maintaining their strong privacy guarantees.
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Chapter 1

Introduction and Motivation

Is privacy the first roadkill on the Information Superhighway? 1 Will super-
highwaymen way lay new settlers to this electronic frontier?

While these questions may be too steeped in metaphor, they raise very real concerns.
The National Information Infrastructure (NII) [32] grand vision would have remote com-
puters working harmoniously together, communicating via an “electronic superhighway,”
providing new informational goods and services for all.

Unfortunately, many promising NII applications demand difficult-to-achieve distributed
security properties. Electronic commerce applications such as electronic stock brokerage,
pay-per-use, and metered services have strict requirements for authorization and confi-
dentiality — providing trustworthy authorization requires user authentication; providing
confidentiality and privacy of communications requires end-to-end encryption. As a result
of the need for encryption and authentication, our systems must be able to maintain the
secrecy of the keys used for encrypting communications, the secrecy of the user-supplied
authentication data (e.g., passwords), and the integrity of the authentication database against
which the user-supplied authentication data is checked. Furthermore, hand in hand with
the need for privacy is the need for system integrity: without the integrity of the system
software that mediates access to protected objects or the integrity of the access control
database, no system can provide any sort of privacy guarantee.

Can strong privacy and integrity properties be achieved on real, distributed systems?
The most common computing environments today on college campuses and workplaces

are open computer clusters and workstations in offices, all connected by networks. Physical
security is rarely realizable in these environments: neither computer clusters nor offices
are secure against casual intruders,2 let alone the determined expert. Even if office locks
were safe, the physical media for our local networks are often but a ceiling tile away —
any hacker who knows her raw bits can figure out how to tap into a local network using a
PC. To make matters worse, for many security applications we must be able to protect our
systems against the occasional untrustworthy user as well as intruders from the outside.

1The source of this quote is unclear; one paraphrased version appeared in print, as “If privacy isn’t already
the first roadkill along the information superhighway, then it’s about to be” [55], and other variants of this
have appeared in diverse locations.
2The knowledge of how to pick locks is widespread; many well-trained engineers can pick office locks [96].
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Standard textbook treatments of computer security assert that physical security is a
necessary precondition to achieving overall system security. While this may have been a
requirement that was readily realizable for yesterday’s computer centers with their large
mainframes, it is clearly not a realistic expectation for today’s PCs and workstations: their
physical hardware is easily accessible by both authorized users and malicious attackers
alike. With complete physical access, the adversaries can mount various attacks: they can
copy the hard disk’s contents for offline analysis; replace critical system programs with
trojan horse versions; replace various hardware components to bypass logical safeguards,
etc.

By making the processing power of workstations widely and easily available, we have
made the entire system hardware accessible to interlopers. Without a foundation of physical
security to build on, logical security guarantees crumble. How can we remedy this?

Researchers have realized the vulnerability of network wires and other communication
media. They have brought tools from cryptography to bear on the problem of insecure
communication networks, leading to a variety of key exchange and authentication protocols
[25, 27, 30, 59, 67, 78, 80, 93, 98] for use with end-to-end encryption, providing privacy
for network communications. Others have noted the vulnerability of workstations and their
disk storage to physical attacks, and have developed a variety of secret sharing algorithms
for protecting data from isolated attacks [39, 75, 86]. Tools from the field of consensus
protocols can be applied as well. Unfortunately, all of these techniques, while powerful,
still assume some measure of physical security, a property unavailable on conventional
workstations and PCs. The gap between reality and the physical security assumption must
be closed before these techniques can be implemented in a believable fashion.

Can we provide the necessary physical security to PCs and workstations without crip-
pling their accessibility? Can real, secure electronic commerce applications be built in a
networked, distributed computing environment? I argue that the answer to these questions
is yes, and I have built a software/hardware system called Dyad that demonstrates my ideas.

In this thesis, I analyze the distributed security problem not just from the traditional
cryptographic protocol viewpoint but also from the viewpoint of a hardware/software sys-
tem designer. I address the need for physical security and show how we can obtain
overall system security by bootstrapping from a limited amount of physical security that
is achievable for workstation/PC platforms — by incorporating a secure coprocessor in a
tamper-resistant module. This secure coprocessor may be realized as a circuit board on the
system bus, a PCMCIA3 card, or an integrated chip; in my Dyad system, it is realized by
the Citadel prototype from IBM, a board-level secure coprocessor system.

I analyze the natural security properties inherent in secure coprocessor enhanced com-
puters, and demonstrate how security guarantees can be strengthened by bootstrapping
security using cryptographic techniques. Building on this analysis, I develop a combined
software/hardware system architecture, providing a firm foundation upon which applica-
tions with stringent security requirements can be built. I describe the design of the Citadel

3Personal Computer Memory Card International Association

2



prototype secure coprocessor hardware, the Mach [2] kernel port running on top of it, the
resultant system integration with the host platform, the security applications running on top
of the secure coprocessor, and new, highly secure cryptographic protocols for key exchange
and zero-knowledge authentication.4

By attacking the distributed security problem from all sides, I show that it is eminently
feasible to build highly secure distributed systems, with bootstrapped security properties
derived from physical security.

The next chapter discusses in detail what is meant by the term secure coprocessor and
the basic security properties that secure coprocessors must possess. Chapter 3 outlines
five applications that are impossible without the security properties provided by secure
coprocessors. Chapter 4 describes the combined hardware/software system architecture of
a secure coprocessor-enhanced host. I consider the basic operational requirements induced
by the demands of security applications and then describe the actual system architecture as
implemented in the Dyad secure coprocessor system prototype. Chapter 5 describes my
new cryptographic protocols, and gives an in-depth analysis of their cryptographic strength.
Chapter 6 addresses the security issues present when initializing a secure coprocessor, and
presents techniques to make a secure coprocessor system fault tolerant. Additionally,
I demonstrate techniques where proactive fault diagnostics may allow some classes of
hardware faults to be detected and permit the replacement of a malfunctioning secure
coprocessor. Chapter 7 shows how both the secure coprocessor hardware and system
software may be verified, and examines the consequences of system privacy breaches.
Chapter 8 gives performance figures for the cryptographic algorithms, the overhead incurred
by crypto-paging, and the raw DMA transfer times for our prototype system. In chapter 9,
I propose challenges for future developers of secure coprocessors.

4Some of this research was joint work: the design of Dyad, the secure applications, and the new protocols
was done with Doug Tygar of CMU. The basic secure coprocessor model was developed with White, Palmer,
and Tygar. The Citadel system was designed by Steve Weingart, Steve White, and Elaine Palmer of IBM; I
debugged Citadel and redesigned parts of it.
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Chapter 2

Secure Coprocessor Model

A secure coprocessor is a hardware module containing (1) a CPU, (2) bootstrap ROM,
and (3) secure non-volatile memory. This hardware module is physically shielded from
penetration, and the I/O interface to the module is the only way to access the internal state
of the module. (Examples of packaging technology are discussed later in section 2.3.) This
hardware module can store cryptographic keys without risk of release. More generally, the
CPU can perform arbitrary computations (under control of the operating system); thus the
hardware module, when added to a computer, becomes a true coprocessor. Often, the secure
coprocessor will contain special purpose hardware in addition to the CPU and memory; for
example, high speed encryption/decryption hardware may be used.

Secure coprocessors must be packaged so that physical attempts to gain access to the
internal state of the coprocessor will result in resetting the state of the secure coprocessor
(i.e., erasure of the secure non-volatile memory contents and CPU registers). An intruder
might be able to break into a secure coprocessor and see how it is constructed; the intruder
cannot, however, learn or change the internal state of the secure coprocessor except through
normal I/O channels or by forcibly resetting the entire secure coprocessor. The guarantees
about the privacy and integrity of the secure non-volatile memory provide the foundations
needed to build distributed security systems.

With a firm security foundation available in the form of a secure coprocessor, greater
security can be achieved for the host computer.

2.1. Physical Assumptions for Security

All security systems rely on a nucleus of assumptions. For example, it is often assumed that
encryption systems are resistant to cryptanalysis. Similarly, I take as axiomatic that secure
coprocessors provide private and tamper-proof memory and processing. These assumptions
may be falsified: for example, attackers may exhaustively search cryptographic key spaces.
Similarly, it may be possible to falsify my physical security axiom by expending enormous
resources (possibly feasible for very large corporations or government agencies). I rely
on a physical work-factor argument to justify my axiom, similar in spirit to intractability
assumptions of cryptography. My secure coprocessor model does not depend on the partic-
ular technology used to satisfy the work-factor assumption. Just as cryptographic schemes
may be scaled or changed to increase the resources required to penetrate a cryptographic
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system, current security packaging techniques may be scaled or changed to increase the
work-factor necessary to successfully bypass the secure coprocessor protections.

Chapter 3 shows how to build secure subsystems running partially on a secure copro-
cessor.

2.2. Limitations of Model

Confining all computation within secure coprocessors would ideally suit our security needs,
but in reality we cannot — and should not — convert all of our processors into secure
coprocessors. There are two main reasons: first, the inherent limitations of physical security
techniques for packaging circuits; and second, the need to keep the system maintainable.
Fortunately, as we shall see in chapter 3, we do not need to physically shield the entire
computer. It suffices to physically protect only a portion of the computer.

If the secure coprocessor is sealed in epoxy or a similar material, heat dissipation require-
ments limit us to one or two printed circuit boards. Future developments may eventually
relax this and allow us to make more of the solid-state components of a multiprocessor
workstation physically secure, perhaps an entire card cage; however, the security problems
of external mass storage and networks will in all likelihood remain constant.

While it may be possible to secure package an entire multiprocessor, it is likely to be
impractical and is unnecessary besides. If we can obtain similar functionalities by placing
the security concerns within a single coprocessor, we can avoid the cost and maintenance
problems of making multiple processors and all memory secure.

Easy maintenance requires modular design. Once a hardware module is encapsulated
in a physically secure package, disassembling the module to fix or replace some compo-
nent will probably be impossible. Wholesale board swapping is a standard maintenance /
hardware debugging technique, but defective boards are normally returned for repairs; with
physical encapsulation, this will no longer be possible, thus driving up costs. Moreover,
packaging considerations and the extra hardware development time imply that secure co-
processor’s technology may lag behind the host system’s technology — perhaps by one
generation. The right balance between physically shielded and unshielded components
depends on the class of intended applications. For many applications, only a small portion
of the system must be protected.

What about system-level recovery after a hardware fault? If secrets are kept only within
a single secure coprocessor, having to replace a faulty unit with a different one due to a will
lead to data loss. After we replace a broken coprocessor with a good one, will we be able
to continue running our applications? Section 6.4 gives techniques for periodic checkup
testing and fault tolerant operation of secure coprocessors.

6



2.3. Potential Platforms

Several physically secure processors exist. This section describes some of these plat-
forms, giving the types of attacks these systems resist, and system limitations arising from
packaging technology.

The �ABYSS [103] and Citadel [105] systems employ board-level protection. The
systems include a standard microprocessor (Citadel uses an Intel 80386), some non-volatile
(battery backed) RAM, and special sensing circuitry to detect intrusion into a protective
casing around the circuit board. Additionally, Citadel includes fast (approximately 30
MBytes/sec) DES encryption hardware. The security circuitry erases non-volatile memory
before attackers can penetrate far enough to disable the sensors or read memory contents.

Physical security mechanisms must protect against many types of physical attacks.
In the �ABYSS and Citadel systems, it is assumed that intruders must be able to probe
through a straight hole of at least one millimeter in diameter. to penetrate the system (probe
pin voltages, destroy sensing circuitry, etc). To prevent direct intrusion, these systems
incorporate sensors consisting of fine (40 gauge) nichrome wire and low power sensing
circuits powered by a long-lived battery. The wires are loosely but densely wrapped in
many layers around the circuit board and the entire assembly is then dipped in epoxy. The
loose and dense wrapping makes the exact position of the wires in the epoxy unpredictable
to an adversary. The sensing electronics detect open circuits or short circuits in the wires
and erase non-volatile memory if intrusion is attempted. Physical intrusion by mechanical
means (e.g., drilling) cannot penetrate the epoxy without breaking one of these wires.

Another attack is to dissolve the epoxy with solvents to expose the sensor wires. To
block this attack, the epoxy is designed to be chemically “harder” than the sensor wires.
Solvents will destroy at least one of the wires — and thus create an open-circuit — before
the intruder can bypass the potting material and access the circuit board.

Yet another attack uses low temperatures. Semiconductor memories retain state at very
low temperatures even without power, so an attacker could freeze the secure coprocessor
to disable the battery and then extract memory contents. The systems contain temperature
sensors which trigger erasure of secrets before the temperature drops below the critical
level. (The system must have enough thermal mass to prevent rapid freezing — by being
dipped into liquid nitrogen or helium, for example — and this places some limitations on
the minimum size of the system. This has important implications for secure smartcard
designers.)

The next step in sophistication is the high-powered laser attack. The idea is to use a
high powered (ultraviolet) laser to cut through the epoxy and disable the sensing circuitry
before it has a chance to react. To protect against such an attack, alumina or silica is added,
causing the epoxy to absorb ultraviolet light. The generated heat creates mechanical stress,
causing the sensing wires to break.

Instead of the board-level approach, physical security can be provided for smaller,
chip-level packages. Clipper and Capstone, the NSA’s proposed DES replacements [4, 99,
100] are special purpose encryption chips. These integrated circuit chips are reportedly
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designed to destroy key information (and perhaps other important encryption parameters
— the encryption algorithm, Skipjack, is supposed to be secret as well) when attempts are
made to open the integrated circuit chips’ packaging. Similarly, the iPower [58] encryption
chip by National Semiconductor has tamper detection machinery which causes chemicals
to be released to erase secure data. The quality of protection and the types of attacks which
these system can withstand have not been published.

Smartcards are another approach to physically secure coprocessing [54]. A smartcard
is a portable, super-small microcomputer. Sensing circuitry is less critical for many ap-
plications (e.g., authentication, storage of the user’s cryptographic keys), since physical
security is maintained by the virtue of its portability. Users carry their smartcards with
them at all times and provide the necessary physical security. Authentication techniques
for smartcards have been widely studied [1, 54]. Additionally, newer smartcard designs
such as some GEMPlus or Mondex cards [35] feature limited physical security protection,
providing a true (simple) secure coprocessor.

The technology envelope defined by these platforms and their implementation parame-
ters constrains the limits of secure coprocessor algorithms. As the computation power and
physical protection mechanisms for mobile computers and smartcards evolve, this envelope
will grow.

2.4. Security Partitions

System components of networked hosts may be classified by their vulnerabilities to various
attacks and placed within “native” security partitions. These natural security partitions
contain system components that provide common security guarantees. Secure coprocessors
add a new system component with fewer inherent vulnerabilities and create a new security
partition; cryptographic techniques reduce some of these vulnerabilities and enhance secu-
rity. For example, using a secure coprocessor to boot a system and ensure that the correct
operating system is running provides privacy and integrity guarantees on memory not oth-
erwise possible. Public workstations can employ secure coprocessors and cryptography to
guarantee the privacy of disk storage and provide integrity checks.

Table 2.1 shows the vulnerabilities of various types of memory when no cryptographic
techniques are used. Memory within a secure coprocessor is protected against physical
access. With the proper protection mechanisms, data stored within a secure coprocessor
can be neither read nor tampered with. A working secure coprocessor can ensure that
the operating system was booted correctly (see section 3.1) and that the host RAM is
protected against unauthorized logical access.5 It is not, however, well protected against
physical access — we can connect logic analyzers to the memory bus and listen passively

5I assume that the operating system provides protected address spaces. Paging is performed on either a remote
disk via encrypted network communication (see section 4.1.3 below) or a local disk which is immune to all
but physical attacks. To protect against physical attacks for the latter case, we may need to encrypt the data
anyway or ensure that we can erase the paging data from the disk before shutting down.
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Subsystem Vulnerabilities
Availability Integrity/Privacy

Secure Coprocessor None None
Host RAM Online Physical Online Physical

Access Access
Secondary Store Offline Physical Offline Physical

Access Access
Network Online Remote Online Remote Access
(communication) Access Offline Analysis

Table 2.1 Subsystem Vulnerabilities Without Cryptographic Techniques

to memory traffic, or use an in-circuit emulator to replace the host processor and force the
host to periodically disclose the host system’s RAM contents. Furthermore, it is possible
to use multi-ported memory to remotely monitor RAM. (While it may be impractical to do
this in a way invisible to users, this line of attack can not be entirely ruled out.) Secondary
storage may be more easily attacked than RAM since the data can be modified offline; to do
this, however, an attacker must gain physical access to the disk. Network communication
is completely vulnerable to online eavesdropping and offline analysis, as well as online
message tampering. Since networks are used for remote communication, it is clear that
these attacks may be performed remotely.

Subsystem Vulnerabilities
Availability Integrity/Privacy

Secure Coprocessor None None
Host RAM Online Physical Host Processor

Access Data
Secondary Store Offline Physical None

Access
Network Online Remote None
(communication) Access

Table 2.2 Subsystem Vulnerabilities With Cryptographic Techniques

As table 2.2 illustrates, encryption can strengthen privacy guarantees. Data modifica-
tion vulnerabilities still exist; however, tampering can be detected by using cryptographic
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checksums as long as the checksum values are stored in tamper-proof memory. Note that
the privacy level is a function of the subsystem component using the data. If host RAM
data is processed by the host CPU, moving the data to the secure coprocessor for encryption
is either useless or prohibitively expensive [29, 61] — the data must appear in plaintext
form to the host CPU and is vulnerable to online attacks. However, if the host RAM data is
serving as backing store for secure coprocessor data pages (see section 4.1.3), encryption is
appropriate. Similarly, encrypting the secondary store via the host CPU protects that data
against offline privacy loss but not online attacks, whereas encrypting that data within the
secure coprocessor protects that data against online privacy attacks as well, as long as that
data need not ever appear in plaintext form in the host memory.

For example, if we wish to send and read encrypted electronic mail, encryption and
decryption can be performed by the host processor since the data must reside within both
hosts for the sender to compose it and for the receiver to read it. But, the exchange of the
encryption key used for the message should involve secure coprocessor computation: key
exchange should use secrets that must remain within the secure coprocessor. 6

2.5. Machine-User Authentication

How can we authenticate users to machines and vice versa? One solution is smartcards (see
section 2.3) with zero knowledge protocols (see secton 5.1.2).

Another way to verify the presense of a secure coprocessor is to ask a third-party entity
— such as a physically sealed third-party computer — to check the machine’s identity for
the user. This service can also be provided by normal network servers machines such as
file servers. Remote services must be difficult to emulate by attackers. Users will notice
the absence of these services to detect that something is amiss. This necessarily implies
that these remote services must be available before the users authenticate to the system.

The secure coprocessor must be present for the remote services to work correctly.
Evidence that these services work can be conveyed to the user through a secure display
that is part of the secure coprocessor. If no such display is available, care must be taken to
verify that the connection to the remote, trusted third-party server is not being simulated by
an attacker. To circumvent this attack, we must be able to reboot the workstation and rely
on the local secure coprocessor to perform host system integrity checks.

Unlike authentication protocols reliant on central authentication servers [81, 80, 93],
this machine-user authentication happens once, at boot time or session start time. Users
may be confident that the workstation contains an authentic secure coprocessor if access
to any normal remote service can be obtained. To successfully authenticate to obtain the
service, attackers must either break the authentication protocol, break the physical security

6This is true even if public key cryptography is used. Public key encryption requires no secrets and may
be performed in the host; signing the message, however, requires the use of secret values and thus must be
performed within the secure coprocessor.
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in the secure coprocessor, or bypass the physical security around the remote server. If the
remote service is sufficiently complex, attackers will not be able to emulate it.

2.6. Previous Work

The secure coprocessor system model is much more sophisticated and comprehensive than
that found in previous work. It fully examines the natural security boundaries between sub-
systems in computers and how cryptographic techniques may be used to boost the security
within these subsystems. The systems of Best [8] and Kent [46] only considered the use
of encryption for copy-protection, and employed physical protection for the main CPU and
primary memory. White and Comerford [104] were the first to consider the use of a security
coprocessor, but their system were targeted for copy-protection and for providing crypto-
graphic services to the host. New to the secure coprocessor model is security bootstrapping
and crypto-paging, important techniques for building secure distributed systems.
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Chapter 3

Applications

Because secure coprocessors can process secrets as well as store them, they can do much
more than just keep secrets confidential. I describe how to use secure coprocessors to
realize exemplar secure applications: (1) host integrity verification, (2) tamper-proof audit
trails, (3) copy protection, (4) electronic currency, and (5) secure postage meters. None of
these are possible on physically exposed systems. These applications are discussed briefly
below.

3.1. Host Integrity Check

Trojan horse software dates back to the 1960s, if not earlier. Bogus login programs are
among most common, though games and fake utilities were (and are) also widely used to
set up back doors as well. Computer viruses exacerbate the problem of host integrity —
the system may easily be inadvertently corrupted during normal use.

In the rest of this section, I discuss how secure coprocessors addresses this problem,
discuss a few alternative solutions, and point out their drawbacks.

3.1.1. Host Integrity with Secure Coprocessors

Providing trust in the integrity of a computer’s system software is not so difficult if we can
trust the integrity of the execution of a single program: we can bootstrap our trust in the
integrity of host software.7 If we are able to run a single trusted program on the system, we
can use that program to verify the integrity of the rest of the system.

Getting that first trusted program running is fraught with problems, even if we ignore
management and operational difficulties, especially for machines in open clusters or un-
locked offices. Running an initial trusted program becomes feasible when we add a secure
coprocessor — the secure coprocessor runs only trusted, unmodified software, and this
software uses cryptographic techniques to verify the integrity of the host software resident
on the host’s disks.

7Bootstrapping security with secure coprocessors is completely different from the security kernels found
in the Trusted Computer Base (TCB) [101] approach: secure coprocessors use cryptographic techniques to
ensure the integrity of the rest of the system, and security kernels in a TCBs simply assume that the file store
returns trustworthy data.
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To verify integrity, a secure coprocessor maintains a tamper-proof database (kept in
secure non-volatile memory) containing a list of the host’s system programs along with their
cryptographic checksums. Cryptographic checksum functions are applied to executable file.
The checksums are unforgeable: given a file F and the cryptographic checksum function
crypto cksm(), creating a program F0 such that

F 6= F0 and crypto cksm(F) = crypto cksm(F0)

is computationally intractable. The size of the output of a one-way hash function is small
relative to the input; for example, the MD5 hash function’s output is 128 bits [77].

Host integrity checking is different for the cases of stand-alone workstations and net-
worked workstations with access to distributed services such as AFS [91] or Athena [5].
While publicly accessible stand-alone workstations have fewer avenues of attack, there are
also fewer options for countering attacks. I concurrently examine both cases:

Performing the necessary integrity checks with a secure coprocessor can solve the host
integrity problem. Because of privacy and integrity guarantees on secure coprocessor
memory and processing, we can have confidence in results from a secure coprocessor that
checks the integrity of the host’s state at boot-up. If the secure coprocessor is first to gain
control of the system when the system is reset, it can decide whether to allow the host CPU
to boot after checking the disk-resident bootstrap program, operating system kernel, and all
system utilities for tampering.

The cryptographic checksums of system images must be stored in the secure coproces-
sor’s secure non-volatile memory and be protected against modification (and sometimes,
depending on the cryptographic checksum algorithm chosen, against exposure). Of course,
tables of cryptographic checksums can be paged out to host memory or disk after first
checksumming and encrypting them within the secure coprocessor; this can be handled as
an extension to normal virtual memory paging (see section 4.1.3. The secure coprocessor
can detect any modifications to the system objects and can check the integrity of the external
storage.

Along with integrity, secure coprocessors offer privacy; this property allows the use
of both keyed (such as Rivest’s MD5 [77], Merkle’s Snefru [56], Jueneman’s Message
Authentication Code (MAC) [44], and IBM’s Manipulation Detection Code (MDC) [41])
and keyless (such as chained DES [102], and Karp and Rabin’s family of fingerprint
functions [45]) cryptographic checksum functions. All cryptographic checksum functions
require integrity protection of the cryptographic checksums; keyed checksum functions
additionally require privacy protection of a key.

There are no published strong intractability arguments for major keyless cryptographic
checksum functions; their design appeared to be based on ad hoc methods. Keyed cryp-
tographic checksum functions require certain information to be kept secret. In the keyless
case, chained DES keeps encryption keys (which select particular encryption functions)
secret; Karp-Rabin fingerprint functions use a secret key to select a particular hash func-
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tion from a family of hash functions based on irreducible polynomials8 over Z2[x], i.e.,
f k 2 F = ff i : p(x) 7! p(x) mod irredi(x)g. The resulting residue polynomial is the hash
result. If the key polynomial is unknown by the adversary, then given input q(x), there is
no procedure for finding q0(x) where

q0(x) 6= q(x); where f k(q) = f k(q0)

except by chance. The security of Karp-Rabin is equivalent to probability of two random
inputs being mapped to the same residue, which is well understood [45, 68]. Chained DES
is not as well understood as the Karp-Rabin functions, since very little is known about the
group structure of the permutation group induced by DES encryptions.

Secure coprocessors can keep keys secret and hence can implement keyed cryptographic
checksums. The Karp-Rabin fingerprint functions are particularly attractive, since they
have strong theoretical underpinnings (see section 5.2.5), they are very fast and easy to
implement9, and they may be scaled for different levels of security (by using a higher
degree irreducible polynomial as the modulus).

Secure coprocessors simplify the system upgrade problem. This is important when there
are large numbers of machines on a network: systems can be securely upgraded remotely
through the network, since the security of communication between secure coprocessors is
guaranteed. Furthermore, system images are encrypted while being transferred over the
network and while resident on secondary storage. This provides us with the ability to keep
proprietary code protected against most attacks. As section 3.3 notes, we can run (portions
of) the proprietary software only within the secure coprocessor, allowing vendors to have
execute-only semantics — proprietary software need never appear in plaintext outside of a
secure coprocessor.

Section 4.1.1 examines the details of host integrity check as it relates to secure co-
processor architectural requirements, and section 4.1.5 and chapter 6 discuss how system
upgrades are handled by a secure coprocessor. Also relevant is the problem of how the user
can know if a secure coprocessor is properly running in a system; section 2.5 discusses this.

3.1.2. Absolute Limits

So far, we have limited the attackers to using their physical access to corrupt the software
of the host computer. Is the host integrity problem insoluble if we allow trojan horse
hardware? Clearly, sufficiently sophisticated hardware emulation can fool both users and
any integrity checks. There is no completely reliable way for the secure coprocessor to
detect if an attacker replaced a disk controller with a “double-entry” controller providing
expected data during system integrity verification but returning trojan horse data (system
programs) for execution. Similarly, it is hard to detect if the host CPU is substituted with a

8A polynomial is said to be irreducible if it cannot be factored into polynomials of lower degree in the ring of
polynomials, in this case, Z2[x].
9Thus the implementation is likely to be correct.
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“double-entry” CPU which fails to correctly run specific pieces of code in the OS protection
system. To raise the stakes, we can have the secure coprocessor do behavior and timing
checks at random intervals. This makes such “double-entry” hardware emulation difficult
and forces the hardware hackers to build more perfect trojan horse hardware.

3.1.3. Previous Work

Other approaches have been tried without a physical basis for security. This section de-
scribes these approaches and their shortcomings.

Authorized Programs

The host integrity problem can be partially ameliorated by guaranteeing that all programs
have been inspected and approved by a trusted authority (e.g., a local system administrator
or computer vendor), but this is an incomplete solution. Guarantees about the integrity
of source code are not enough [95] — we also need to trust the compilers, editors, and
other tools we use to manipulate the code. Even if having the trusted authority inspect the
program’s object code is practical, there is no guarantee that the disassembler is not also
corrupted and hiding all evidence of corruption.10

If the object code is built from inspected source code in a clean environment and that
object code is securely installed into the workstations, we still have little reason to trust
the machines. Some guarantee must be provided that the software has not been modified
after installation — after all, we do not know who has had access to the machine since the
trusted-software installation, and the once clean software may have been corrupted.

With computers getting smaller (and more portable) and workstations often physically
accessible in public computer clusters, attackers can easily bypass any logical safeguards
to corrupt the programs on a computer’s disks. Perhaps a trojan horse program has been
inserted since the last time the host was inspected — how can a user tell if the operating
system kernel is correct? It is not sufficient to have central authorities that guarantee the
original copy or inspect the host’s software periodically. The integrity of the kernel image
and system utilities stored on disk must be verified each time the computer is used.

Diskless Workstations

In the case of networked “diskless” workstations, integrity verification would appear to be
confined to the trusted file servers implementing a distributed file system. Any paging to
implement virtual memory would go across the network to a trusted server with disk storage
[28, 79, 108].

What are the difficulties with this trusted file server model? First, non-publicly readable
files must be encrypted before being transferred over the network. This implies the ability

10This would be similar to the techniques used by “stealth” viruses on PCs, which intercept system I/O
requests and return original, unmodified data to hide the existence of the virus [23].
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to use secret keys to decrypt these files, and keeping such keys secret in publicly accessible
workstations is impossible.

A more serious problem is that the workstations must be able to authenticate the identity
of the trusted file servers (the host-to-host authentication problem). Since workstations
cannot keep secrets, we cannot use shared secrets to encrypt and authenticate data between
the workstation and the file servers. The best that we can do is to have the file servers
digitally sign the kernel image when we boot over the network — but then we must be able
to store the public keys of the trusted file servers. With exposed workstations, there is no
safe place to store this type of integrity information. Attackers can always modify the file
servers’ public keys (and network addresses) stored on the workstation, so it contacts false
servers. Obtaining public keys from some external key server only pushes the problem one
level deeper — the workstation would need to authenticate the identity of the key server,
and attackers need only to modify the stored public key of the key server.

If we page virtual memory over the network (which cannot reasonably be assumed to be
secure), the problem only becomes worse. Nothing guarantees the privacy or integrity of the
virtual memory as it is transferred over the network. If the data is transferred in plaintext, an
attacker can simply record network packets to break privacy and modify/substitute network
traffic to destroy integrity. Without the ability to keep secrets, encryption is useless for
protecting the computer’s memory — attackers can obtain the encryption keys by physical
means and destroy privacy and integrity as before.

Secure Boot Media

Several researchers have argued for using a secure-boot floppy containing system integrity
verification code to bring machines up. This is essentially the approach taken in Tripwire
[47] and similar systems.11 Consider the assumptions involved here.

First, we must assume the host hardware has not been compromised. If the host hardware
is compromised (see section 3.1.2), the “secure” boot floppy can be ignored or even modified
when it is used. (Secure coprocessors, on the other hand, cannot be bypassed, especially
since users will want their machine’s secure coprocessor to authenticate its identity.) Next,
we must fit our boot code, integrity checking code, and cryptographic checksum database
onto one or two diskettes, and this code must be reasonably fast — this is a pragmatic
concern, since the integrity checking procedure needs to be easy and fast so users are
willing to do it every time they start using a machine.

Secure-boot floppies are widely used on home computers for virus detection. Why isn’t
this approach appropriate for host integrity checking? Virus scanners and host integrity
checkers have similar integrity requirements — they require a clean environment. Unlike
integrity checks that detect any modifications made to files, virus scanners typically scan
for occurrences of suspect code fragments within files. The fragments appearing on the
list of suspect code fragments are drawn from samples observed in common viruses. It is

11Because Tripwire checked modifications to system files while running on the host kernel, it is vulnerable to
“stealth” attacks on the kernel
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presumed that these code fragments will not occur in “normal” code.12 The integrity of the
code fragment list must be protected, just like the database of cryptographic checksums.
Virus scanners (and general integrity checkers) can bootstrap trust by first verifying that
a core set of system programs are infection-free (unmodified), and have those programs
perform faster, more advanced scanning (full integrity checks) or run-time virus detection
(protection OS kernel).

Although virus scanning and host integrity checking have much in common, there are
some crucial differences. Virus scanners cannot detect modifications to system software
— they only detect previously identified viruses. Moreover, virus scanners’ lists of suspect
code fragments are independent of machines’ software configurations: to update a list
one adds new suspect code fragments as new viruses are identified. An integrity checker,
however, must maintain an exact list of the system programs that it should check, along
with their cryptographic checksums. The integrity of this list is paramount to the correct
operation of the integrity checker, since attackers (including viruses) can otherwise easily
corrupt the cryptographic checksum database along with the target program to hide the
attack.13 Version control becomes a headache as system software is updated.

Only trusted users are allowed access to the master boot floppy and untrusted users
must get a (new) copy of the boot floppy from trusted operators each time a machine is
rebooted from an unknown state. Users cannot have access to the master boot floppy since
it must not be altered. Read-only floppies do not help, since we assume that there may be
untrustworthy users. Careless use (i.e., reuse) of boot floppies becomes another channel of
attack — boot floppies can easily be made into viral vectors.

Like diskless workstations, boot floppies cannot keep secrets. Encryption does not
help, since the workstation or PC must be able to decrypt them, and workstations cannot
keep secrets (encryption keys) either. The only way to assure integrity without completely
reloading the system software is to check it by computing cryptographic checksums on
system images. This is essentially the same procedure used by secure coprocessors, except
that instead of providing integritywithin a piece of secure hardware we use trusted operators.

Requiring users to obtain a fresh copy of the integrity check software and data each time
they need to reboot a new machine is cumbersome. If different machines have different
software releases, then each machine will have a different secure boot floppy. Management
will be difficult, especially if we wish to revoke usage of programs found to be buggy by
eliminating their cryptographic checksum from the database to force an update.

Furthermore, using a centralized database of all the software for all versions of that
software on the various machines will be a operational nightmare. Any centralized database
could become a central point of attack. Destruction of this database would disable all secure
bootstraps.

12Thus, virus scanners will have false positive results, when these code fragments are found inside of a
virus-free program.
13There are PC-based integrity checkers which append simple checksums to the executable files to deter
attacks; of course, this sort of “integrity check” is easily bypassed.
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Both secure coprocessors and secure boot floppies can be fooled by a sufficiently
faithful system emulation using a “double-entry” disk to circumvent integrity checks (see
section 3.1.2), but secure coprocessors allow us to employ more powerful integrity check
techniques.

3.2. Audit Trails

Audit trails must be kept secure to perform system accounting and provide data for intrusion
detection. The availability of auditing and accounting logs cannot be guaranteed (since the
entire machine, including the secure coprocessor, may be destroyed). The logs, however,
can be made tamper evident. This is important for detecting intrusions. Experience shows
that skilled attackers will attempt to forge system logs to eliminate evidence of penetration
(see [94] for an interesting case study). The privacy and integrity of the system accounting
logs and audit trails can be guaranteed simply by holding them inside the secure coprocessor.
However, it is awkward to have to keep all logs inside the secure coprocessor since they
can grow very large and resources within the secure coprocessor are likely to be tight.
Fortunately, it is also unnecessary.

To provide secure logging, the secure coprocessor crypto-seals the data against tamper-
ing by using a cryptographic checksum function, before storing the data on the file system.
The sealing operation must be performed within the secure coprocessor, since all keys used
in this operation must be kept secret. By later verifying these cryptographic checksums
we make tampering of log data evident, since the probability that an attacker can forge
logging data to match the original data’s checksums is astronomically low. This technique
reduces the secure coprocessor storage requirement to memory sufficient to store necessary
cryptographic keys and checksums, typically several words per page of logged memory. If
the space requirement for the keys and checksums is still too large, they can be similarly
written out to secondary storage after being encrypted and checksummed by master keys.

Additional cryptographic techniques can protect the logs. Cryptographic checksums
provide the basic tamper detection and are sufficient if only integrity is needed. If account-
ing and auditing logs may contain sensitive information, privacy can be provided using
encryption. If redundancy is also desired, techniques such as secure quorum consensus
[39] and secret sharing [86] may be used to distribute the data over the network to several
machines without greatly expanding the space requirements.

3.3. Copy Protection

Software is often charged on a per-CPU, per-site, or per-use basis. Software licenses usually
prohibit making copies for use on unlicensed machines. This injunction against copying
is technically unenforceable without a secure coprocessor. If the user can execute code
on a physically accessible workstation, the user can also read that code. Even if attackers
cannot read the workstation memory while it is running, we are implicitly depending on
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the assumption that the workstation was booted correctly — verifying this property, as
discussed above, requires the use of a secure coprocessor.

3.3.1. Copy Protection with Secure Coprocessors

Secure coprocessors can protect executables from being copied and illegally used. The
proprietary code to be protected — or at least some critical portion of it — is distributed
and stored in encrypted form, so copying without the code decryption key is futile,14 and
this protected code runs only inside the secure coprocessor. Either public key or private
key cryptography may be used to encrypt protected software. If private key cryptography
is used, key management is still handled by public key cryptography. In particular, when a
user pays for the use of a program, he sends the certificate of his secure coprocessor public
key to the software vendor. This certificate is digitally signed by a key management center
and is prima facie evidence that the public key is valid. The corresponding private key is
stored only within the secure non-volatile memory of the secure coprocessor; thus, only the
secure coprocessor will have full access to the proprietary software. Figure 3.1 diagrams
this process.

What if the code size is larger than the memory capacity of the secure coprocessor?
We have two alternatives: we can crypto-page or we can split the code into protected and
unprotected segments.

Section 4.1.3 discusses crypto-paging in greater detail, but the basic idea is to encrypt
and decrypt virtual memory contents as they are copied between secure memory and external
storage. When we run out of memory space on the coprocessor, we encrypt the data before
it is flushed to unsecure external storage, maintaining privacy. Since good encryption chips
are fast, we can encrypt and decrypt on the fly with little performance penalty.

Splitting the code is an alternative to crypto-paging. We can divide the code into a
security-critical section and an unprotected section. The security-critical section is en-
crypted and runs only on the secure coprocessor. The unprotected section runs concurrently
on the host. An adversary can copy the unprotected section, but if the division is done
well, he or she will not be able to run the code without the secure portion. In �ABYSS
[104], White and Comerford show how such a partitioning should be done to maximize the
difficulty of reverse engineering the secure portion of the application.15

14Allowing the encrypted form of the code to be copied means that we can back up the workstation against
disk failures. Even giving attackers access to the backup tapes will not release any of the proprietary code.
(Note that our encryption function should be resistant to known-plaintext attacks, since executable binaries
typically have standardized formats.) A more interesting question arises if the secure coprocessor may fail.
Section 6.4 discusses this further.
15I also examined a real application, gnu-emacs 19.22 [92], to show how it could be partitioned to run partially
within a secure coprocessor. The X Windows display code and the basic key-press main loop should remain
within the host for performance. Most of the emacs lisp interpreter (e.g., bytecode.c, callint.c,
eval.c, lread.c, marker.c, etc) could be moved into the secure coprocessor and accessed as remote
procedures. Any manipulation of host-side data — text buffer manipulation, lisp object traversal — required
during remote procedure calls can be provided by a simple read-write interface (with caching) between the
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Figure 3.1 Copy-Protected Software Distribution
The software retailer encrypts the copy-protected software with a random key. This key
is encrypted using the public key of the secure coprocessor within the destination host, so
only the secure coprocessor may decrypt and run the copy-protected software. The software
retailer knows that the public key of the secure coprocessor is good, because it is digitally
signed with the public key of the secure coprocessor distributor.
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Whether the proprietary code is split or not, the secure coprocessor runs a small security
kernel. It provides the basic support necessary to communicate with the host or the host’s
I/O devices. With separate address spaces and a few communication primitives, the com-
plexity of a security kernel can be kept low, providing greater assurance that a particular
implementation is correct.

3.3.2. Previous Work

A more primitive version of the copy protection application for secure coprocessors ap-
peared in [46, 104]; a secure-CPU approach using oblivious memory references (i.e., appar-
ently random patterns of memory accesses) giving a poly-logarithmic slow down, appears
in [29] and [61]. The secure coprocessor approach improves on these approaches by en-
abling the protection of large applications, permitting fault-tolerant operation (see section
6.4), and when coupled with the electronic currency application described in section 3.4,
allowing novel methods of charging for use.

3.4. Electronic Currency

I have shown how to keep licensed proprietary software encrypted and allow only execute
access. A natural application is to allow charging on a pay-per-use or metered basis. In
addition to controlling access to the software according to the terms of a license, some
mechanism must perform cost accounting, whether it tracks the number of times a program
has run or tracks dollars in a user’s account. More generally, this accounting software
provides an electronic currency abstraction. Correctly implementing electronic currency
requires that account data be protected against tampering — if we cannot guarantee integrity,
attackers might be able to create electronic money at will. Privacy, while perhaps less
important here, is a property that users expect for their bank balance and wallet contents;
similarly, electronic money account balances should also be private.

3.4.1. Electronic Money Models

Several models can be adopted for handling electronic funds. Any implementation of these
models should follow the standard transactional model, i.e., to group together operations in
a transaction having these three properties [33, 34]:

coprocessor and the host, with interpreter-private data such as catch/throw frames residing entirely within the
secure coprocessor. Garbage collection does become a problem, since the garbage collector must be able to
determine if a Lisp object is accessible from the call stack, a portion of which is inside the coprocessor. If we
chose to hide the actions of the evaluator and keep the stack within the secure coprocessor hidden, this would
require that the garbage collector code (Fgarbage collect and its utilities) be moved within the secure
coprocessor as well.
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1. Failure atomicity. If a transaction’s work is interrupted by a failure, any partially
completed results will be undone.

2. Permanence. If a transaction completes successfully, the result of its work will never
be lost, except due to a catastrophic failure.

3. Serializability. Concurrent transactions may occur, but the results must be the same
as if they executed serially. This means that temporary inconsistencies that occur
inside a transaction are never visible to other transactions.

These transactional properties are requirements for the safe operation of any database, and
they are absolutely necessary for any electronic money system.

In the following, I discuss various electronic money models, their security properties,
and how they can be implemented using present day technology. (I have built an electronic
currency system on top of Dyad.)

The first electronic money model is based on the cash analogy. In this mode, electronic
cash has similar properties to cash:

1. Exchanges of cash can be effectively anonymous.

2. Cash cannot be created or destroyed except by national treasuries.

3. Cash transfers require no online central authority.

(Note that these properties are actually stronger than that provided by real currency — serial
numbers can be recorded to trace transactions. Similarly, currency can be destroyed.)

The second electronic money model is based on the credit cards/checks analogy.
Electronic funds are not transferred directly; rather, promises of payment, cryptographically
signed to prove authenticity, are transferred instead. A straightforward implementation of
the credit card model fails to exhibit any of the three properties above. However, by apply-
ing cryptographic techniques, anonymity can be achieved in a cashier’s check-like scheme
(e.g., Chaum’s DigiCash model [16], which lacks transactional properties such as failure
atomicity — see section 3.4.2), but the latter two requirements (conservation of cash and
no online central authority) remain insurmountable. Electronic checks must be signed and
validated at central authorities (banks), and checks/credit payments en route “create” tem-
porary money. Furthermore, potential reuse of cryptographically signed checks requires
that the recipient must be able to validate the check with the central authority prior to
committing to a transaction.

The third electronic money model is based on the bank rendezvous analogy. This
model uses a centralized authority to authenticate all transactions and is poorly suited to
large distributed applications. The bank is the sole arbiter of account balance information
and can implement the access controls needed to ensure privacy and integrity of the data.
Electronic Funds Transfer (EFT) services use this model — there are no access restrictions
on deposits into accounts, so only the person who controls the source account needs to be
authenticated.
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I examine these models one by one.
With electronic currency, integrity of accounting data is crucial. We can establish a

secure communication channel between two secure coprocessors by using a key exchange
cryptographic protocol (see section 5) and thus use cryptography to maintain privacy when
transferring funds. To ensure that electronic money is conserved (neither created nor
destroyed), the transfer of funds should be failure atomic, i.e., the transaction must terminate
in such a way as to either fail completely or fully succeed — transfer transactions cannot
terminate with the source balance decremented without having incremented the destination
balance or vice versa. By running a transaction protocol such as two-phase commit [11,
22, 106] on top of the secure channel, secure coprocessors can transfer electronic funds
from one account to another in a safe manner, providing privacy and ensuring that money
is conserved. Most transaction protocols need stable storage for transaction logging to
enable the system to roll back when a transaction aborts. On large transaction systems this
typically has meant mirrored disks with uninterruptible power supplies. With the simple
transactions needed for electronic currency, the per-transaction log typically is not that large,
and the log can be truncated after transactions commit and further communications show
all relevant parties have acknowledged the transaction. Because each secure coprocessor
handles only a few users, small amounts of stable storage can satisfy logging needs. Because
secure coprocessors have secure non-volatile memory, we only need to reserve some of this
memory for logging. The log, accounting data, and controlling code are all protected from
modification by the secure coprocessor, so account data are safe from all attacks; their only
threats are bugs and catastrophic failures. Of course, the system should be designed so that
users should have little or no incentive to destroy secure coprocessors that they can access.
This is natural when one’s own balances are stored on a secure coprocessor, much like the
cash in one’s wallets.

If the secure coprocessor has insufficient memory to hold account data for all the users,
the code and accounting database may be written to host memory or disk after obtaining
a cryptographic checksum (see discussion of crypto-sealing in section 4.1.3). For the
accounting data, encryption may alternatively be employed since privacy is usually also
desired.

Note that this type of decentralized electronic currency is not appropriate for smartcards
unless they can be made physically secure from attacks by their owners. Smartcards
are only quasi-physically secure in that their privacy guarantees stem solely from their
portability. Secrets may be stored within smartcards because their users can provide the
physical security necessary. Malicious users, however, can violate smartcard integrity and
insert false data.16

Secure coprocessor mediated electronic currency transfer is analogous to rights transfer
(not to be confused with rights copying) in a capability-based protection system [107].

16Newer smartcards such as GEMPlus or Mondex cards [35] feature limited physical security protection,
though the types of attacks these cards can withstand have not been published.
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Using the electronic money — e.g., spending it when running a pay-per-use program — is
analogous to the revocation of a capability.

What about the other models for handling electronic funds? With the credit card/check
analogy, the authenticity of the promise of payment must be established. When the computer
cannot keep secrets for users, there can be no authentication because nothing uniquely
identifies users. Even if we assume that users can enter their passwords into a workstation
without fear of their password being compromised, we are still faced with the problem of
providing privacy and integrity guarantees for network communication. We have similar
problems as in host-to-host authentication in that cryptographic keys need to be somehow
exchanged. If communications are in plaintext, attackers may simply record a transfer of a
promise of payment and replay it to temporarily create cash. While security systems such
as Kerberos [93], if properly implemented [6], can help to authenticate entities and create
session keys, they use a centralized server and have problems similar to those in the bank
rendezvous model. While we can implement the credit card/check model using secure
coprocessors, the inherent weaknesses of this model keep us from taking full advantage
of the security properties provided by secure coprocessors; if we use the full power of
the secure coprocessor model to properly authenticate users and verify their ability to pay
(perhaps by locking funds into escrow), the resulting system would be equivalent to the
cash model.

With the bank rendezvous model, a “bank” server supervises the transfer of funds. While
it is easy to enforce the access controls on account data, this suffers from problems with
non-scalability, loss of anonymity, and easy denial of service from excessive centralization.

Because every transaction must contact the bank server, access to the bank service will
be a performance bottleneck. Banks do not scale well to large user bases. When a bank
system grows from a single computer to several machines, distributed transaction systems
techniques must be brought to bear in any case, so this model has no real advantage over
the use of secure coprocessors in ease of implementation. Furthermore, if a bank’s host
becomes inaccessible, either maliciously or as a result of normal hardware failures, no agent
can make use of any bank transfers. This model does not exhibit graceful degradation with
system failures.

The model of electronic cash managed on a secure coprocessor not only can provide
the properties of (1) anonymity, (2) conservation, and (3) decentralization, but it also
degrades gracefully when secure coprocessors fail. Note that secure coprocessor data
may be saved onto disk and backed up after being properly encrypted, and so even the
immediately affected users of a failed secure coprocessor should be able to recover their
balances. The security administrators who initialize the secure coprocessor software will
presumably have access to the decryption keys for this purpose. Careful procedural security
must be used here, both for protection of the decryption key and for checking for double
spending, since dishonest users might attempt to back up their secure coprocessor data,
spend electronic money, and then intentionally destroy their coprocessor in the hopes of
using their electronic currency twice. Fortunately, by using multiple secure coprocessors
(see section 6.4), full secure fault tolerance may be achieved. The degree of redundancy and
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the frequency of backups depend on the reliability guarantees desired; in reliable systems,
secure coprocessors may continually run self-tests when idle and warn of impending failures
(in addition to periodic maintenance checkups and replication). Section 6.3 discusses how
such self-tests may be done while retaining all security properties.

The trusted electronic currency manager running in the secure coprocessor uses dis-
tributed transactions to transfer money and other electronic tokens. Transaction messages
are encrypted by the secure coprocessor’s basic communication layer, providing privacy
and integrity of communications. Traffic analysis is beyond the scope of this work and is
not addressed.

Electronic tokens are created and destroyed by a few trusted programs. For pay-per-use
applications, the token is created by the vendor’s sales program and destroyed by executing
the application — the exact time of destruction of the token is a vendor design decision,
since runs of application programs are not, in general, transactional in nature.

Because certain privileged applications may create or destroy tokens, each token type
has a pair of access control lists for token creation and token destruction. These access
control lists may contain zero-knowledge authentication identities [36] or application IDs:
trusted applications may run on physically secure hardware (e.g., in a guarded machine
room), or in a secure coprocessor. In the former case, they should have access to the cor-
responding zero-knowledge authenticators and should be able to establish a secure channel
with other electronic currency servers to create and destroy tokens; in the latter case, the
program runs (partially) in a secure coprocessor, and its program text is protected from
modification.

Zero-knowledge authenticators (section 5.1.4) running in the secure coprocessor per-
mit the use of more powerful server machines, sidestepping limits (e.g., communication
bandwidth or CPU speeds) imposed on secure coprocessor design by the need for secure
packaging. These server machines must be deployed within a physically secure facility
and special methods must be used to ensure security [101]. Server machines installed in
a secure facility, could be secure as a normal secure coprocessor; however, they need not
run the secure coprocessor kernel, nor would they have access to all secret keys normally
installed into a secure coprocessor.

3.4.2. Previous Work

An alternative to the secure coprocessor managed electronic currency is Chaum’s DigiCash
protocol [12, 16]. In such systems, anonymity is paramount, and cryptographic techniques
are used to preserve the secrecy of the users’ identities. No physically secure hardware is
used, except in the observers refinement to prevent double spending of electronic money
(rather than detecting it after the fact).17

17The observers model employs a physically secure hardware module to detect and prevent double spending.
Chaum’s protocol limits information flow to the observer, so that the user need not trust it to maintain privacy;
however, it must be trusted to not destroy money. Secure coprocessors achieve the same goals with greater
flexibility.
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Chaum-style electronic currency schemes are characterized by two key protocols. The
first is a blind signature protocol between a user and a central bank. During a withdrawal,
the user obtains a cryptographically signed check that is probabilistically proven to contain
an encoding of the user’s identity. The user keeps the values used in constructing the check
secret; they are used later in the spending protocol.

The second protocol is a randomized interactive protocol between a user and a merchant.
The user sends the blind-signed check to the merchant and interactively proves that the check
was constructed appropriately out of the secret values and reveals some, but not all, of those
secrets. The merchant “deposits” to the central bank the blind-signed number and the
protocol log as proof of payment. This interactive spending protocol has a flavor similar
to zero-knowledge protocols in that the answers to the merchant’s queries, if answered
for both values of the random coin flips, reveal the user’s identity. When double spending
occurs, the central bank gets two logs for the same check, and from this identifies the double
spender.

There are a number of problems with this approach. First, any system that provides
complete anonymity is currently illegal in the United States, since any monetary transfer
exceeding $10,000 must be reported to the government [19], employee payments must be
reported similarly for tax purposes [18], stock transfers must be reported to the Securities
and Exchange Commission, etc. Second, in a real internetworked environment, network
addresses are required to establish and maintain a communication channel, barring the
use of trusted anonymous forwarders — and such forwarding agents are still subject to
traffic analysis. Providing real anonymity in the high level protocol is useless without
taking network realities into account. Third, Chaum’s cryptographic protocols do not
handle failures, and any systems based on them cannot simultaneously have transactional
properties and also maintain anonymity and security. A transaction abort in the blind
signature protocol either leaves the user with a debited account and no electronic check or
a free check. A transaction abort in the spending protocol either permits the user to falsify
electronic cash if the random coin flips are reused when the transaction is reattempted
(e.g., the network partition heals), or reveals identifying information to the merchant if new
random coin flips are generated when the transaction is reattempted.

Clearly, to provide a realistic distributed electronic currency system, transactional
properties must be provided. Unfortunately, the safety provided by transactions and the
anonymity provided by cryptographic techniques appear to be inherently at odds with each
other, and the tradeoffs made by Chaum-style electronic cash systems for anonymity instead
of safety are inappropriate for real systems.

Another electronic money system is the Internet Billing Server [88]. This system
implements the credit card model of electronic currency. A central server acts as a credit
provider for users who can place a spending limit on each authorized transaction, and it
provides billing services to the service providers. No anonymity is achieved: the central
server has a complete record of every user’s purchases and the records for the current billing
period is sent to users as part of their bill. Some scaling may be achieved through replication,
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but in this case providing hard credit limits require either distributed transactions, or every
user must be assigned to a particular server, making the system non-fault tolerant.

Other approaches include anonymous credit cards [52] or anonymous message for-
warders to protect against traffic analysis, at the cost of adding centralized servers back to
the system.

3.5. Secure Postage

While cryptographic methods have long been associated with mail (dating back to the use
by Julius Caesar described in his book The Gallic Wars [15]), they have generally been used
to protect the contents of a message, or in rare cases, the address on an envelope (protecting
against traffic analysis). In this section, we examine the use of cryptographic techniques to
protect the stamp on an envelope.

The US Postal Service, with almost 40,000 autonomous post office facilities, handles
an aggregate total of over 165 billion pieces of mail annually [84]. Most mail is metered
or printed. (Figure 3.2 shows an example of a postage meter indicia.) Traditional postage
meters must be presented to a branch post office to be loaded with postage. The postage
credit is stored in a register sealed in the machine. As each letter is stamped, the amount is
deducted from the machine’s credit register. Postal meters are subject to at least four types
of attack: (1) the postage meter recorded credit may be tampered with, allowing the user
to steal postage; (2) the postage meter stamp may be forged or copied; (3) a valid postage
meter may be used by an unauthorized person; and (4) a postage meter may be stolen.18

With modern facilities for barcoding machine readable digital information, it would be
easy to replace old-fashioned human readable indicia by indicia which are either entirely or
partially machine readable. These indicia could encode a digitally signed message which

Figure 3.2 Postage Meter Indicia
Today’s metered letters have a simple imprint that can be easily forged.

1882,000 franking machines in the U. S. are currently reported as lost or stolen [85].
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would guarantee authenticity. If this digital information included unique data about the
letter (such as the date mailed, zip codes of the originator and recipient, etc.), the digitally
signed stamp could protect against forged or copied stamps. A rough outline of how such
a system might work was detailed by Pastor [63].

Unfortunately, a digitally signed stamp may be vulnerable to additional types of attack:

1. If cryptographic systems are misused, the system may be directly attacked.

2. Even if cryptographic techniques are used correctly, if the adversary has physical
access to the postage meter, he may be able to tamper with the credit register.

3. Even if the credit is tamper-proof, a postage meter may be opened and examined
to discover cryptographic keys, allowing the adversary to build new bogus postage
meters.

4. The protection scheme may depend on a highly available network connecting post
office facilities in a large distributed database. Since 40,000 autonomous post office
facilities exist, such a network would suffer from frequent failures and partitions, cre-
ating windows of vulnerability (with 165 billion pieces of mail each year, a database
to check the validity of digitally signed metered stamps appears infeasible.)

I outline a protocol for protecting electronic meter stamps, and demonstrate that the use
of a secure coprocessor can address all of the above concerns. With the use of cryptography
and secure coprocessors, both postage meters and their indicia can be made fully secure
and tamper-proof.

3.5.1. Cryptographic Stamps

A cryptographic postage stamp is an indicia that can demonstrate to the postal authorities
that postage has been paid. Unlike the usual stamps purchased at a post office, these are
printed by a conventional output device, such as a laser printer, directly onto an envelope
or a package. Because such printed indicia can be copied, cryptographic and procedural
techniques must be employed to minimize the probability of forgery.

We use cryptography to provide a crucial property: the stamp depends on the address.
A malicious user may copy a cryptographic stamp, but any attempts to modify it or the
envelope address will be detected. To achieve this goal, we encrypt (or cryptographically
checksum) as part of the stamp information relevant to the delivery of the particular piece
of mail — e.g., the return address and the destination address, the postage amount, and
class of mail, etc, as well as other identifying information, such as the serial number of
the postage meter, a serial number for the stamp, and the date/time (a timestamp). The
information, including the cryptographic signature or checksum, is put into a barcode. The
barcode must be easily printable by commodity or after-market laser printers, it must be
easily scanned and re-digitized at a post office, and it must have sufficient information
density to encode all the bits of the stamp on the envelope within a reasonable amount of
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space. Appropriate technologies include Code49 [62], Code16K [43], and PDF417 [42, 65,
66]. Symbol Technologies’ PDF417, in particular, is capable of encoding at a density of
400 bytes per square inch, which is sufficient for the size of cryptographic stamps needed
to provide the necessary security in the foreseeable future. Figure 3.3 shows the amount of
information that can be encoded.

Six lines of 40 full ASCII characters for each address, four bytes each for hierarchical
authorization number, the postage meter serial number, the stamp sequence number, the
postage/class, and the time, totals to under 500 bytes of data. (Using PDF417, 500 bytes
takes 1.24 square inches.)

The cryptographic signature within the indicia prevents many forms of replay attacks.
Malicious users will not find it useful to copy the stamps, since the cryptographic signature
prevents them from modifying the stamp to change the destination addresses, etc, so the
copied stamps may only be used to send more mail to the same destination address. If
duplicate detection is used (see below) then even this threat vanishes. The timestamps and
serial numbers also limit the scope of the attack by restricting the lifetime of copies and
permitting law enforcement to trace the source of the attack.

Because cryptographic stamps also includes source information, the postage meter serial
number, and the return address, duplicated stamps can also be detected in a distributed
manner. Replays are detected by logging recent, unexpired indicia from processed mail.
If the post office finds a piece of mail with a duplicate stamp, they will know that some
form of forgery has occurred. We will examine the practicality of replay detection later in
section 3.5.2.

While databases at regional offices can deter replay attacks, we need some way to
protect the cryptographic keys within the postage meters as well — attackers who gain

Figure 3.3 PDF417 encoding of Abraham Lincoln’s Gettysburg Address
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access to the keys can use them to fraudulently sign cryptographic stamps. To prevent
malicious users from accessing cryptographic keys requires physically protected memory
and secure processing of the cryptographic keys. (If a machine does not perform secret
computations using cryptographic keys, an adversary can place logic analyzer probes to
observe address/data buses and obtain key values. Alternatively, the adversary may replace
the memory subsystem with dual ported memory, and just read the keys as they are used.)
Even password protected, physically secure memory (such as that that provided by some
dongles used with PC software) is insufficient — the software must contain the passwords
required to access that protected memory, and if attackers don’t know how to disassemble
the software to obtain the passwords, they can read it off of the wires of the parallel port as
the software sends the passwords to enable access.

Private processing of cryptographic keys is a necessary condition for cryptography.
Not only is this a necessary requirement to run real cryptographic protocols, it is also a
necessary requirement for keeping track of the credit amount remaining in a electronic
postage meter register. Protected computation is also required to establish secure chan-
nels of communication for remote (telephone or network) credit update — the electronic
postage meter must communicate with the post office when the user buys more postage,
and cryptographic protocols must be run over the communication lines to prevent foul play.
Secure communication channels require cryptography, and we need a safe place to keep
cryptographic keys and to perform secure computation.

To achieve private, tamper-proof computation, a processor with secure non-volatile
memory for key storage, and perhaps some normal RAM as scratch space (to hold interme-
diates in the calculations) must also be made physically secure. These properties are easily
provided by secure coprocessors.

3.5.2. Software Postage Meters

By using secure coprocessors in a PC-based system, we can build secure postage meter
software. A PC-based electronic postage meter system would include a secure coprocessor,
a PC (the coprocessor host), a laser printer, a modem, and optionally an optical character
recognition (OCR) scanner and/or a network interface. Like ordinary postage meters, our
PC-based postage meter system would operate in an office environment as a shared resource,
much like laser printers.

The basic idea is simple: the software obtains the destination and return addresses and
the weight and delivery class from the user — either directly from the word processor
running on the user’s PC19, by reading directly from the envelope and using OCR software,
or by direct keyboard input — and requests a cryptographic stamp from the secure co-
processor. The secure coprocessor decrements its credit register, and generates a digitally
signed message containing the value of the stamp, all of the addressing information, the

19The word processing software can even provide good weight estimates since it knows the number of pages
in the letter.
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date, the ID of the secure coprocessor, and other serial numbers. This message (a bit vector)
is sent to the PC, which encodes it and prints a machine readable indicia on the laser printer
Advanced 2-D bar coding technology such as PDF417 mentioned in section 3.5.1 may be
employed.

Postage Meter Currency Model

Postage credits held within an electronic postage meter are simpler than general electronic
currency because of their restricted usage. Postage credits must be purchased from a post
office, and credits can only buy one type of item: cryptographic stamps (or be transferred
to another electronic postage meter).

We can take advantage of these restrictions to the currency model to achieve solutions
simpler than those considered in section 3.4. Furthermore, because pieces of mail produced
by a particular secure coprocessor are likely to be mailed in the same locality, the replay
detection can be done with much lower overhead than otherwise, as described below.

Reloading a Meter

Only post offices may reload postage meters. Unlike their older mechanical brethren,
electronic postage meter equipment need not be carried to the local post office when the
amount of credit inside runs low — the local post office can simply provide a phone number
to “recharge” electronic postage meters by modem, paying by credit card numbers or direct
electronic funds transfer. The USPS meter authenticates the secure coprocessor and uploads
funds. Meters’ communications must be protected by cryptography; otherwise a malicious
user may record the control signals used to update credit balances and replay that message.
Encryption also protect businesses’ credit card or EFT account numbers from being used
by malicious eavesdroppers.

Detecting Replays

With a kilobyte of data per stamp, it would seem at first that replay detection is infeasible
because of size of the database required. However, we can exploit the distributed nature of
mail delivery and sorting.

The US Postal Service sorts mail twice. First, mail is sorted by destination zip code at a
site near the source. Then, the mail is delivered (in large batches) to a site associated with
the destination zip code, where the mail is again sorted, this time by carrier route. Every
piece of mail destined for the same address passes through the same secondary sorting site,
making it a natural place for detecting replays.

Detecting replays locally is feasible with today’s technology. Using the 1992 figures of
165 billion pieces of mail per year handled at 600 regional sorting sites, with the simplifying
assumption that the volume of mail is evenly distributed among these regional offices, we
can obtain an estimate of the storage resources required. Assuming that cryptographic
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stamps expire six months after printing,20 an average regional office will see approximately
130,000,000 stamps out of a national total of 80,000,000,000 stamps. If we store one
kilobyte of information per stamp (doubling the above estimate) and assume that the entire
current mail volume uses cryptographic stamps, this would require only 130 gigabytes of
disk storage per facility for logging, well within the capacity of a single disk array system.
The stamps database can be viewed as a sparse boolean matrix indexed in one dimension
by postage meter serial number and in the second dimension by stamp sequence number
for that postage meter. Hashing this matrix into a 256 megabyte hashtable results in a 6%
chance of collision.

To make replay detection even easier, we exploit the physical locality property: pieces
of mail stamped by a single postage meter are likely to enter the mail processing system at
the same primary sorting site. Therefore, cryptographic stamps from the same postage meter
are very likely to be canceled at the same regional office, and we can detect replays there.
If any cryptographically stamped piece of mail is sent from a different mail cancellation
site, network connections can be used for real-time remote access of cancellation databases,
or batch processing media such as computer tapes may be used. In the case of real-time
cancellation, the network bandwidth required depends on the probability of the occurrence
of such multi-cancellation-site processing, and on how quickly we need to detect replays.
The canceled stamps database at each regional office need not be large — each postage
meter can simply write a counter value in its stamps. We need only fast access to a bit
vector of recently used, unexpired stamp counter values. These bit vectors are indexed
by the postage meter’s serial number and can be compressed by run-length encoding or
other techniques. Only when a replay is detected might we need access to the full routing
information.

The average figure of 130,000,000 stamps tracked by a regional office can now be
represented as a dense bit vector, since only local postage meters need to be tracked. A fast
bit-vector representation would require 1300 megabits of storage plus indexing overheads,
or just 17 megabytes plus overhead — an amount of storage that can easily fit into an
average PC. While additional space may be required for indexing to improve throughput
and for replicated stable storage, the amount of memory required is quite small.

20The U. S. Postal Service claims to deliver more than 90% of all first class mail in three days, and more than
99% in seven days. Six months would appear to be a generous bound for mail delivery.
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Chapter 4

System Architecture

I have implemented Dyad, a prototype secure coprocessor system. The Dyad architecture
is based on operational requirements arising from the security applications in chapter 3.
However, the hardware modules on which Dyad is built present additional limitations on
the actual implementation. This chapter starts off with Dyad’s abstract system architecture
based on the operational requirements of a security system during system initialization
and during normal, steady state operation. Next, I detail the capabilities of our hardware
platform, and describe the architecture of the actual implementation.

4.1. Abstract System Architecture

Chapter 3’s security applications place requirements and constraints on system structure.
From these application requirements I arrive at an operational view of how secure copro-
cessor systems should be organized.

4.1.1. Operational Requirements

I begin by examining how a secure coprocessor interacts with the host during system boot
and then proceed with a description of system services that a secure coprocessor provide to
the host operating system and user software.

To be sure that a system is securely booted, the bootstrap process must involve secure
hardware. Depending on the host hardware (e.g., whether a secure coprocessor could halt
the boot process in case of an anomaly) we may need secure boot ROM. Either the system’s
address space is configured so the secure coprocessor provides the boot vector and the boot
code directly; or the boot ROM is a piece of secure hardware. In either case, a secure
coprocessor verifies system software (operating system kernel, system related user-level
software) by checking the softwares’ signatures against known values. To check that the
version of the software present in external, unsecure, non-volatile store (disk) is the same
as that installed by a trusted party. Note that this interaction has the same problems faced
by two hosts communicating via a unsecure network: if an attacker can completely emulate
the interaction that the secure coprocessor has with a normal host system, it is impossible
for the secure coprocessor to detect this. With secure coprocessor/host interaction, we
can make very few assumptions about the host (it can not keep cryptographic keys). The
best that we can do is to assume that the cost of completely emulating the host at boot
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time is prohibitively expensive. (Section 3.1.2 discusses the theoretical limitations to this
approach.)

The secure coprocessor ensures that the system securely boots; after booting, a secure
coprocessor aids the host operating system by providing security functions. A secure
coprocessor does not enforce the host system’s security policy — this is the job of the host
operating system. Since we know from the secure boot procedure that a correct operating
system is running, we may rely on the host to enforce policy. When the host system is up
and running, a secure coprocessor provides various security services to the host operating
system:

� integrity verification of any stored data (by secure checksums);

� data encryption to boost storage media natural security (see section 2.4); and

� encrypted communication channels (key exchange, authentication, private key en-
cryption, etc).21

4.1.2. Secure Coprocessor Architecture

The boot procedure described above made assumptions about secure coprocessor capabili-
ties. Let us refine the requirements for secure coprocessor software and hardware.

To verify that the system software is the correct version, the secure coprocessor must
have secure memory to store checksums or other data. If keyless cryptography check-
sums such as MD5 [77], multi-round Snefru [56], or IBM’s MDC [41] are one-way hash
functions, then the only requirement is that the memory be protected from unauthorized
writes. Otherwise, we must use keyed cryptographic checksums such as Karp and Rabin’s
technique of fingerprinting (see [45] and section 5.1.5). The latter approach requires that
memory also be protected against read access, since both the hash value and the key must
be secret. Similarly, cryptographic operations such as authentication, key exchange, and
secret key encryption all require secrets to be kept. Thus a secure coprocessor must have
memory inaccessible by all entities except the secure coprocessor itself — enough pri-
vate non-volatile memory to store the secrets, plus private (possibly volatile) memory for
intermediate calculations in running protocols.

How much private non-volatile and volatile scratch memory is enough? How fast must
the secure coprocessor be to have good performance with cryptographic algorithms? There
are a number of architectural tradeoffs for a secure coprocessor, the crucial dimensions
being processor speed and memory size. They together determine the class of cryptographic
algorithms that are practical.

21Presumably remote hosts will also contain a secure coprocessor, though everything will work fine as long
as remote hosts follow the appropriate protocols. The final design must take into consideration the possibility
of remote hosts without secure coprocessors.

36



4.1.3. Crypto-paging and Sealing

Crypto-paging is another technique for trading off memory for speed. A secure coprocessor
encrypts its virtual memory contents before paging it out to the host’s physical memory
(and perhaps eventually to an external disk), ensuring privacy. We need only enough
private memory for an encryption key and a data cache, plus enough memory to perform
the encryption if no encryption hardware is present. To ensure integrity, virtual memory
contents may be crypto-sealed by computing cryptographic checksums prior to paging out
and verifying them when paging in.

Crypto-paging and sealing are analogous to paging of physical pages to virtual memory
on disk, except for different cost coefficients. Well-known analysis techniques can be
used to tune such a system [49, 108]. The cost variance will likely lead to new tradeoffs:
computing cryptographic checksums is faster to calculate than encryption, so providing
integrity alone is less expensive than providing privacy as well. On the other hand, if the
computation can reside entirely on a secure coprocessor, both privacy and integrity can be
provided for free.

Crypto-paging is a special case of a more general speed/memory trade off for secure
coprocessors. I observed in [97, 98] that Karp-Rabin fingerprinting can be sped up by
about 25% on an IBM RT/APC with a 256-fold table-size increase; when implemented in
assembler on an i386SX the speedup is greater (about 80%; see chapter 8). Intermediate-
size tables yield intermediate speedups at a slightly higher increase in code size. Similar
tradeoffs can be found for software implementations of DES.

4.1.4. Secure Coprocessor Software

A small, simple security kernel is needed for the secure coprocessor. What makes Dyad’s
kernel different from other security kernels is the partitioned system structure.

Like normal workstation (host) kernels, the secure coprocessor kernel must provide
separate address space if vendor and user code is to be loaded into the secure coprocessor
— even if we implicitly trust vendor and user code, providing separate address spaces
helps isolate the effects of programming errors. Unlike the host’s kernel, many services
are not required: terminal, network, disk, and most other device drivers need not be part
of the secure coprocessor. Indeed, since both the network and disk drives are susceptible
to tampering, requiring their drivers to reside in the secure coprocessor’s kernel is overkill
— network and file system services from secure coprocessor tasks can be forwarded to
the host kernel for processing. Normal operating system daemons such as printer service,
electronic mail, etc. are entirely inappropriate in a secure coprocessor.

The only services that are crucial to the operation of the secure coprocessor are (1) secure
coprocessor resource management; (2) communications; (3) key management; and (4)
encryption services. Resource management includes task allocation and scheduling, virtual
memory allocation and paging, and allocation of communication ports. Communications
include both communication among secure coprocessor tasks and communication to host
tasks; it is by communicating with host system tasks that proxy services are obtained.
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Key management includes management of authentication secrets, cryptographic keys, and
system fingerprints of executables and data. With the limited number of services needed,
we can easily envision using a microkernel such as Mach 3.0 [31], the NT executive [20],
or QNX [40]. We only need to add a communications server and include a key management
service to manage secure non-volatile key memory. If the kernel is small, we have more
confidence that it can be debugged and verified. (In Dyad, we ported Mach 3.0 to run within
the Citadel secure coprocessor.)

4.1.5. Key Management

Key management is a core portion of the secure coprocessor software. Authentication, key
management, fingerprints, and encryption protect the integrity of the secure coprocessor
software and the secrecy of private data. The bootstrap loader, in ROM or in secure non-
volatile memory, controls the bootstrap process of the secure coprocessor itself. In the
same way that the host-side bootstrapping process verifies the host-side kernel and system
software, this loader verifies the secure coprocessor kernel before transferring control to it.

The system fingerprints needed for checking system integrity reside entirely in secure
non-volatile memory or are protected by encryption while in external storage. (Decryption
keys reside solely in secure non-volatile memory.) If the latter approach is chosen, new
private keys must be selected for every new release of system software22 to prevent replay
attacks where old, buggy, secure coprocessor software is reintroduced into the system.
Depending on the algorithm, storage of the fingerprint information requires only integrity or
both integrity and secrecy. For keyless cryptographic checksums (MD4, MDC, and Snefru),
integrity is sufficient; for keyed cryptographic checksums (Karp-Rabin fingerprint), both
integrity and secrecy are required.

Other protected data held in secure non-volatile memory include administrative au-
thentication information needed to update the secure coprocessor software. We assume
that a security administrator is authorized to upgrade secure coprocessor software. The
authentication data for the administrator can be updated along with the rest of the secure
coprocessor system software; in either case, the upgrade must appear transactional, that is, it
must have the properties of permanence, where results of completed transactions are never
lost; serializability, where there is a sequential, non-overlapping view of the transactions;
and failure atomicity, where transactions either complete or fail such that any partial results
are undone [26, 33, 34]. Non-volatile memory gives us permanence automatically; serializ-
ability, while important for multi-threaded applications, can be enforced by permitting only
a single upgrade operation at a time (this is an infrequent operation and does not require
concurrency); and the failure atomicity guarantee can be provided as long as the secure
non-volatile memory subsystem provides an atomic store operation. Update transactions
need not be distributed nor nested; this simplifies the implementation.

22One way is to use a cryptographically secure pseudo-random number generator [9, 10] with its internal state
entirely in secure non-volatile memory.
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4.2. Concrete System Architecture

My Dyad prototype secure coprocessor system is realized from several system components.
To a large extent, it satisfies the system hardware requirements induced by the abstract
architecture discussed in the previous section. At the highest level, the Dyad prototype is
a host workstation with special modifications that allows it to talk to a secure coprocessor,
and the secure coprocessor itself. The prototype host system hardware is a IBM PS/2 Model
80. The prototype secure coprocessor subsystem is a Citadel coprocessor board [105]. The
secure coprocessor is attached to the PS/2’s microchannel system bus via a Data Translation
adapter card. The interfaces between these hardware components and limitations of these
components influence or constrain some aspects of the system software architecture.

Both hardware subsytems run the CMU Mach 3.0 microkernel [31]: the host has special
device drivers to support communication with the coprocessor through the Data Translation
card, and the coprocessor kernel has special drivers and platform-specific assembly lan-
guage interface code in addition to the machine independent code. On the host side there
is additional software for providing interface support for the secure coprocessor.

The remainder of this section describes the hardware, the host-side system software,
the coprocessor-side system code, and the application interface.

4.2.1. System Hardware

The PS/2 host contains an Intel i386 CPU running at 16 MHz, 16 megabytes of RAM,
and a microchannel system bus. The Citadel coprocessor contains an Intel i386SX CPU,
also running at 16 MHz; one megabyte of “scratch” volatile RAM; 64 kilobytes of battery-
backed secure RAM; bootstrap EPROM with a simple monitor program; and 64 kilobytes of
second-stage bootstrap EEPROM; an IBM produced DES chip with a theoretical throughput
of 30 megabytes per second.23 All of this is privacy-protected by intrusion detection
hardware.

Because the Citadel coprocessor is prototype hardware, it has not been integrated into
a standard microchannel card. Instead, the coprocessor board is physically external to the
host and is logically attached to the host’s system bus via a Data Translation microchannel
interface card within the host. (See figure 4.1.) The Data Translation card contains the
bus drivers, microchannel protocol chips, and bidirectional “command” port I/O, plus some
simple logic for generating host-side interrupts. The microchannel chips handle arbitration
for two independent DMA channels which simultaneous input and output to the DES engine.

23The coprocessor board’s design limits the maximum throughput to 16 Mbyte/sec — an external hardware
state machine controls the DES chip’s operation, and a separate 32 MHz crystal independently clocks this
state machine. If the control software used zero time, this 16 Mbyte/sec figure would represent the maximum
attainable encryption throughput for the Citadel board.
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Figure 4.1 Dyad Prototype Hardware

DES Engine

The DES engine on the coprocessor board includes input and output FIFO buffer chips
for the DES chip I/O. Because the DES chip runs on a separate clock, these FIFOs permit
fast, asynchronous data transfer with hardware interlocks. The data source and sink for the
FIFOs may be programmed via multiplexors to be one of six sources/sinks: the host (via
DMA transfers), the coprocessor, and an external bus interface. The external bus interface is
unused in the present configuration; in the future, it may be connected to network interfaces
or disk controllers. Furthermore, the DES engine can be configured to work in “cipher
bypass” (CBP) mode, where data is routed around the DES chip. This permits the use
of the DMA channels to transfer bulk data between the coprocessor and the host without
encryption. Figure 4.2 shows the DES engine data paths.

The Citadel DES engine’s I/O multiplexors and the DES chip’s encryption/decryption
mode are configured via a control port accessible on the coprocessor bus. When the host is
the data source, the DES engine expects that the host has configured its DMA channel to
transfer data to the input FIFOs, and when the coprocessor system bus is the data source,
the coprocessor itself will write to the input FIFO via processor I/O instructions. Similarly,
when the host is the data sink, the DES engine expects the host will DMA-transfer data
from the output FIFOs to its memory; when the coprocessor is the sink, processor I/O
instructions are used to read out data from the output FIFO.

The Data Translation card provides two 16-bit wide DMA channels, giving simultane-
ous access to the input and output ends of the hardware DES engine, thus allowing the host
to request host-memory to host-memory DES encryption/decryption operations. This form
of “filter” I/O operation does not fit the usual Unix/Mach style read/write model; we will
see below that the driver software handles this as a special case.
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Figure 4.2 DES Engine Data Paths
The DES engine runs asynchronously; the input and output FIFOs allow the data sources
and sinks to move data quickly without needing to poll or spend too much time processing
interrupts. The cipher-bypass multiplexor allows the use of the buffers and DMA control
logic circuits without engaging the DES chip, allowing dual usage of the DMA hardware.
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Command Ports

The Citadel-side Dyad kernel uses the DES data path for bulk communication as well as
encryption; for lower bandwidth communication and controlling the DES engine data path,
the kernel uses bidirectional command ports provided by the Data Translation card.

The command ports are 16 bits wide and show up in the I/O address space of both the
host and the coprocessor; status bits in a separate status register show whether the current
word is unread, and interrupts may be generated as a result of certain state transitions of
the command ports. On the host side, individually maskable interrupts may be generated
whenever a new value is written to the host from the coprocessor, telling the host to read
that value; or whenever the previous value from the host to the coprocessor was read
by the coprocessor, telling the host that it may write the next value. Unfortunately, on
the coprocessor side only one interrupt for command port I/O exists — the coprocessor
receives a (maskable) interrupt when a new value arrives on the port, but is not informed
when it may send the next value to the host. As we will see in section 4.2.3, this causes
some problems with performance in the Dyad kernel implementation.

Hardware Limitations

There are several Citadel hardware design limitations which degrade system performance.
Because the command port does not generate an interrupt when data may be sent from the
Citadel to the host, the command port throughput is lower than it would be otherwise. The
coprocessor kernel software polls a status register occasionally to send data to the host, and
this polling frequency limits the bandwidth. Furthermore, the use of the command port
is used to send control messages for setting up the DES/DMA data path for high speed
transfers. This adds extra latency to these transfers.

The data path between the IBM designed DES chip and the I/O FIFOs are 16-bit-wide
words. Unfortunately, because of a design error in the DES chip, the 16-bit units within a
block of ciphertext/cleartext must be provided to the chip in reverse order. To work around
this in hardware, extra “byte flipper” latches are included to reverse words within blocks.
There is very little penalty in terms of throughput; however, it does add extra latency to
every transfer, since 6 extra bytes of data must be written to the input FIFOs in order to
flush out the previous block of data. This cannot always be done by extending the sizes of
the transfers, since overflowing input buffers in an DMA transfer causes system faults when
transferring at the end of physical memory. For DMA transfers, since the DMA controller
needs to be reset/released at the end of the transfer in any case, the extra 6 bytes are written
via software at the DMA completion interrupt.

The DMA completion interrupt occurs when the DMA controller transfers the requested
number of words. Unfortunately, the DMA controller cannot always be reset at this time,
since for host-to-coprocessor transfers this means only that the input FIFO to the DES
engine is full, and resetting the DMA controller at this point would confuse the DES engine.
Similarly, the coprocessor must initialize its DES engine before the host can program the
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DMA controller. Both the DES-engine-completion event and the DES-engine-initialization
event cause a status bit to change, and the host must poll the status register to detect this.

Another design flaw in the IBM DES chip causes alternate decryptions to output garbage.
The driver software compensates by performing a dummy decryption of a small, internal
buffer after every normal decryption. This imposes extra latency overhead. Some of the
overhead of the dummy decryption is hidden from host-side applications by performing it
after the real decryption, since the host-side DMA transfer for the real decryption will com-
plete by this point and the dummy decryption may overlap with host-side driver execution
(releasing DMA channel etc).

Yet another limitation is not a design flaw per se: the Data Translation card interface
does not provide the coprocessor with the ability to become a “bus master” on the host’s
system bus — i.e., the coprocessor may not take over the microchannel, driving the address
lines and read/write memory. Furthermore, the system bus interface provided by this
card does not provide ABIOS device boot ROM space, which contains code that the host
processor runs at host boot-up. Because the coprocessor cannot control the host system
to perform host integrity checks, this prohibits the prototype system’s coprocessor from
performing secure bootstrap of the host and from periodically checking the behavioral of
the host system. This should be repaired in a revised version of the board.

These hardware idiosyncrasies force some extra complexity in coprocessor kernel soft-
ware, and make it impossible (currently) to implement secure bootstrapping of the host.
Fortunately, most of this extra complexity only imposes a slight overall performance degra-
dation in the system software, though the DMA transfer rates are much lower than they
could be otherwise.

4.2.2. Host Kernel

The system software on the host contains only one Dyad-specific module: the driver
needed to use the Data Translation card to talk to the Citadel board. The host kernel driver
is separated into two parts: two low-level drivers in the Mach microkernel and a higher-
level driver in the Unix server. The low-level drivers handle interrupts and simple device
data transfers to the command port and the DMA channels; the high-level driver provides
an integrated view of the coprocessor as a Unix device, emulating an older driver that I
wrote for the Mach 2.5 integrated kernel. Figure 4.3 shows the structure of the host-side
system.

Microkernel Drivers

The microkernel drivers handle low-level data transfer, with separate drivers for the com-
mand port and DMA. The command port I/O is viewed as a serial device, since every 16-bit
word being transferred is usually accompanied by an interrupt. The DMA I/O is viewed as
a block transfer device, since large chunks of data are transferred at a time.
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Figure 4.3 Host Software Architecture

Command Port The two microkernel drivers are not independent — the command port
driver provides hooks for the DMA driver’s internal use; the command port is used by
the DMA driver to synchronize DMA transfers with the coprocessor. When the DMA
driver needs to use the command port, it checks that all other pending data queued for
the coprocessor has been sent prior to taking it over. If new I/O requests arrive while the
command port driver is being used by the DMA driver, they are enqueued separately in the
command port driver until the DMA driver is done, so that any messages sent by the DMA
driver will not be interrupted.

Because of the interactions between the DMA driver and the command port driver, com-
mand port device operations must guarantee that a successful return from the device remote
procedure call really means that the data was transferred. Unlike serial line drivers currently
in Mach 3.0, my port I/O driver does not simply enqueue data from device write()
requests into a circular buffer, return immediately with D SUCCESS, and send the data
later; rather, it keeps the write requests in queues and generates a reply message only after
the data has been actually sent to the coprocessor. Similarly, data from the coprocessor are
read only if there have been device read() requests have been enqueued, and when
the DMA driver takes over the command port, the DMA driver may jump this read queue
to obtain replies. Typically, the Unix server will have only one device read() request
pending at any given time for the command port.

DMA driver The microkernel DMA driver translates device I/O requests into DMA
transfers to or from the coprocessor DES engine. The DES hardware is integral to every
DMA transfer, and must be programmed by the coprocessor with the appropriate transfer
count, DES chip mode, and data source or sink. Prior to a transfer, the DMA driver uses the
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command port to inform the coprocessor of the size and type of the transfer. The encryption
key and initial vector used for DES operations are also set by the coprocessor, and it is
assumed that the host processor has arranged with the coprocessor to use the appropriate
key and initialization vector.

Associated with the driver is state which is set by calling device set status().
This state determines whether the driver should be operating in “filter” mode and whether
the driver expects that the DES engine within the coprocessor will perform an encryption
DMA transfer or a decryption transfer. This driver state must be consistent with the state
of the coprocessor kernel.

The type of DMA transfer with the DES engine depends on whether or not a DMA
driver read/write operation is in filter mode. The DES engine’s I/O FIFOs may be configured
to both source and sink data via the DMA transfers. In non-filter mode the driver simply
translatesdevice write() operations into DMA transfers from the supplied data buffer
to the DES engine’s input FIFO, with the coprocessor bus as the data sink. Similarly,
device read() operations are translated into DMA transfers from the DES engine’s
output FIFO, with the coprocessor writing to the DES engine’s input.

When the DMA driver is in filter mode, device write() and device read()
operations must come in identically-sized pairs. The DMA driver assumes that the copro-
cessor will program the DES engine’s input and output FIFOs to use DMA transfers to or
from the host, and on a device write() operation the driver will internally allocate
an I/O buffer to hold the filter result. These I/O buffers are then enqueued in the driver,
with the data being transferred into the result of the matching device read() operation
when it comes along.

Whether a DMA transfer results in an encryption or a decryption by the DES engine is
important to the DMA driver because the DES engine performs encryption/decryption in
Ciphertext Block Chaining (CBC) mode [57]: the previous block of ciphertext is fed back
into the DES chip as part of the encryption/decryption operation. Since out-of-line data in
Mach IPC messages are remapped pages of virtual memory, the DMA driver has no control
over their location in the physical address space, and these pages are likely to be physically
non-contiguous. Because DMA transfers operate on wired-down physical buffers (virtual
memory marked as nonpageable), the DMA driver typically cannot DMA-transfer more
than one physical page at a time. This implies that the driver must check, on a new transfer,
that the last block of ciphertext from the previous transfer is available to the coprocessor to
maintain the CBC feedback.

While there are three transfer modes (encrypt, decrypt, crypto-bypass) and multiple data
sources and sinks (host or coprocessor), only some of these require special action. These
are the cases where the host DMA driver has possession of the last block of cipher text (1)
when the operation is a non-filter device read() and the DES mode is encryption, (2)
when the operation is a non-filter device write() and the DES mode is decryption,
and (3) the operation is an filter (paired device write() and device read()) and
the DES mode is either encryption or decryption.
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At first glance it may appear that it would be possible to simplify the problem of non-
physically-contiguous pages by running multiple DMA transfers to the DES engine without
informing the DES engine that the encryption (or decryption) transfer will be performed in
pieces. Unfortunately, this doesn’t work, since the DMA controller on the host relies on
the peripheral to generate a DMA completion interrupt, and the Citadel interface generates
DMA completion based on the DES engine’s count register reaching zero. If we tried to
program the DES engine with the full size of the I/O request but performed smaller, partial
DMA transfers, the host would not know when a DMA transfer is completed except by
polling the host-side DMA controller’s transfer count register.

Because user data buffers must be partitioned into DMA transfers of physically con-
tiguous pages, the DMA driver also sends a DMA start control message (via the command
port) to the coprocessor kernel specifying the size of each of the current transfer. This
control message is sent after the DMA driver has initialized the host-side DMA controller;
when the coprocessor receives a DMA start message, it then initializes the DES engine,
which causes the DMA transfer to proceed.

Unix Server Driver

Like most Unix server drivers, the Unix server driver for communicating with the secure
coprocessor is simpler than the microkernel driver. The Unix server driver for coprocessor
communication provides a more integrated view of the coprocessor than do the microkernel-
level drivers. It achieves this by using both of the underlying Mach devices via standard
Mach device remote procedure call primitives.

Unix level system calls open(), close(), read(), write(), and ioctl()
are translated by the Unix server driver into equivalent Mach driver device open(),
device close(),device read(),device write(),device set status(),
and device get status() remote procedure calls. The read() and write() sys-
tem calls are translated intodevice read() anddevice write() to the DMA driver
in the microkernel for bulk data transfer. The Unix server driver provide special ioctl()
requests to send short control messages via the command port; these are translated to the
appropriate device messages to the Mach-level coprocessor command port driver. These
control messages are used to negotiate the type and contents of bulk DMA data transfers,
for low level control operations with the EPROM boot monitor, and for emulation of a
console device for the coprocessor kernel.

Coprocessor Interface

I wrote a user-level program, cit, to run on the host to download the coprocessor micro-
kernel into the coprocessor, provide a simple emulated console display, and provide mass
storage access for the coprocessor kernel once it boots up. The program uses the Unix
driver to communicate via the command port to the EPROM-resident monitor, and thus
perform simple diagnostics and download code.
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The cit program also provides the functionality of the display half of a console driver
— it maintains and updates a memory map of the console display contents and passes
keyboard input through the command port to the microkernel running on the coprocessor.
At the same time, it uses the DMA driver to provide a simulated disk drive to the coprocessor
microkernel, with DMA control I/O being multiplexed with the console I/O (and the lower
level, automatic DMA control I/O) multiplexed over the command port I/O channel.

Any host-side user-level process that wishes to use the coprocessor’s DES engine must
request those services using interprocess communication with cit. In turn, citwill make
the appropriate requests (via the command port) to the coprocessor kernel to configure the
DES engine appropriately.

4.2.3. Coprocessor Kernel

The coprocessor runs a Mach 3.0 microkernel that is downloaded by cit. The basic Mach
3.0 kernel for the AT-bus i386 required significant changes to its low-level interface code,
in addition to new device drivers. This section outlines my changes.

Low Level Machine Interface

When Mach 3.0 is loaded into the Citadel coprocessor, the initial environment provided
to it by the bootstrap loader differs from that provided in standard i386 AT-bus systems.
In standard PC systems, the second level bootstrap loader switches the processor to 32-bit
code and data segments before transferring control to the kernel’s entry point, pstart,24

in addition to setting machine specific parameters such as conventional/extended memory
sizes. The coprocessor PROM monitor downloading the kernel runs with 16-bit data and
code segments, so I had to add new assembler-language code to switch the processor from
16-bit code/data segments to 32-bit segments at the kernel’s startup.

A more important difference in the low-level environment is that the interrupt subsystem
is completely different — the Citadel coprocessor does not include a peripheral interrupt
controller, and interrupt priorities are hard-wired into the system inside a programmable
logic device. Interrupts may be individually masked. The system provides seven interrupts:

1. clock (1 kHz),

2. command port input available,

3. DES done,

4. DES input FIFO full,

5. DES output FIFO empty,

6. DES input FIFO not full,

24The kernel expects to be using physical addresses at this point, thus the name.
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7. DES output FIFO not empty.

Note that there is no interrupt to indicate that the command port is writable (i.e., the
previous data element has been read by the host). The coprocessor kernel must poll a status
port to send data to the host; this testing is done at every interrupt (in interrupt.s), the
maximum additional latency is one millisecond per transferred character.

The DES input FIFO full and the DES output FIFO empty interrupts were intended
to allow high throughput coprocessor encryption: a thread could write into the DES input
FIFO at very high speeds, and switch to reading from the DES output FIFO when an input
FIFO full interrupt occurs; similarly, when an output FIFO empty interrupt occurs, the
thread may switch back to writing to the DES input FIFO.

Console

The microkernel console driver multiplexes its I/O with I/O from the DMA driver and a
serial-line-style communications driver com through the command port. The command
port I/O channel uses the lower 8 bits of the 16-bit wide port for the console and com
driver I/O; high order bits are set in special command words to switch the command port
channel between console and com driver modes. Low-level DMA negotiation data are sent
with special bit patterns in the high-order bytes, allowing them to interrupt the multiplexed
serial-line datastreams at any time without confusion.

The console subsystem does not provide a separate keyboard driver — the host-sidecit
program sends ASCII values to the coprocessor. Special escape sequences are provided to
signal the console driver for access to the kernel debugger.

Microkernel DES Engine Driver

The DES engine control code within the coprocessor microkernel is not directly accessible
as a driver. Instead, it is an internal device providing multiplexed services to the host
emulated disk driver (hd) and the DES services driver (ds).

Each DES request is packaged in a structure specifying the DMA transfer mode (if any
— a request may also be entirely local to the coprocessor), encryption key and initialization
vector, transfer size, etc. Encoded with each DMA request is also a client-id sent with a
DMA request descriptor to the host via the command port. The requests are read by cit
and acknowledged before initiating the DMA transfer.

Host Emulated Disk

The microkernel contains a host emulated disk driver (hd) which uses the DMA multiplex-
ing driver to transfer data blocks to/from the host. The entire disk image provided bycit in
the host is encrypted, and my code uses encryption/decryption DMA transfers to access it.
The default pager using this emulated disk suffices for providing coprocessor-based appli-
cations with truly private virtual memory. (Alternatively, crypto-paging could be performed
to a single encrypted partition, and the remainder of the disk could stay unencrypted.)
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The use of crypto-paging to protect the privacy of virtual memory can be inefficient if
the emulated disk block sizes are smaller than the size of a physical page on the host, since
the DMA negotiation and setup overhead would be incurred for partial page transfers. For
efficiency reasons, the emulated disk’s blocksize must be a multiple of the virtual memory
page size in the host. Currently, both the VM page size and the emulated disk block size
are 4 Kbytes.

A simple extension to the encrypted emulated disk would provide multiple disk images
on the host, permitting one or more of them to be used for data sharing with the host (but
not for simultaneous access). In a similar fashion, an emulated network interface may
be provided to the secure coprocessor, allowing the use of NFS [79] and other network
services. In the case of NFS, meta-data (directory information) would not be encrypted.

DES Service Interface

The DES engine interface ds provides another multiplexed service, the DES service driver
interface. The ds interface provides the coprocessor applications access to DES opera-
tions — including host-to-host filter mode operations performed on the behalf of host-side
applications.

Coprocessor-side applications typically make DES service requests to a crypto-server
(crypt srv) which is responsible for scheduling access to the DES engine for both the
coprocessor-side applications and the host-side applications that make requests through
cit. The crypt srv server runs inside the coprocessor, and is the sole client of the
ds driver. While the scheduling decisions and the simple protocols required to implement
them could be performed entirely within the drivers, having the crypto-server implement
scheduling policy outside of the kernels leads to gains in overall flexibility.

The ds driver provides device-level access to the DES engine, with each device
remote procedure call request being serially serviced The various modes of operation of
the DES engine are set via device set status() remote procedure call requests;
device read() and device write() remote procedure calls turn into DES opera-
tions involving local coprocessor-resident data. Another specialdevice set status()
remote procedure call initiates host-only filter operations.

Secure Memory Interface

Dyad’s model of secure coprocessors depends on the availability of privacy-protectedpersis-
tent memory. Such protected memory can hold encryption keys, since privacy is guaranteed
in a very strong sense. Similarly, cryptographic checksums are stored in protected memory
— integrity of data is well protected by the system, since only the coprocessor system
software may modify (or reveal) protected memory contents.

Hardware Secure Memory The Citadel coprocessor system provides 64 kilobytes of
battery-backed memory (secure RAM / non-volatile memory) protected by intrusion detec-
tion circuitry. The circuitry erases memory if any attempt at physical access is detected,
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ensuring the privacy of the memory contents. Additionally, 64 kilobytes of EEPROM is
available for persistent (but not necessarily private) storage. Since any attempt at pene-
tration results in erasure of critical keys required to load the coprocessor system software,
altering EEPROM contents results in catastrophic failure of the Dyad system.

EEPROM contents may be made private by encrypting the EEPROM contents with a
key kept in secure RAM.

Secure Memory Service The Dyad secure coprocessor kernel exports secure RAM
and EEPROM raw access to user applications by permitting applications to map these
memories into their address space via the mmap primitive on the iopl device.

We employ a special secure memory server sec ram to provide coprocessor appli-
cations with controlled access to secure RAM and EEPROM via a remote procedure call
interface allowing clients to read/write their own regions of secure memory. (Alternatively,
all coprocessor applications could directly map the secure memory into their own address
space.)

Encapsulating secure memory access using a special secure memory server means
that errors in the user-level applications within the secure coprocessor are unlikely to
corrupt secure memory contents of another application. Furthermore, my sec ram server
provides the system with the ability to dynamically allocate secure memory among various
coprocessor-side clients; memory compaction to reduce or eliminate fragmentation is also
feasible. Additionally, the memory server can implement the common code required to
make atomic block updates (16-bit word updates of the secure RAM are assumed to be
atomic, since the i386SX uses a 16-bit data bus to write to the secure RAM). Similarly, the
sec ram server can mask the complexity of the hardware EEPROM update protocol for
the user.25

The disadvantage of the sec ram approach is speed, since secure memory accesses
would run several hundred times slower than direct access, depending on the size of memory
accesses over which the remote procedure call overhead is amortized.

Cryptographic keys are kept in the secure memory by the sec ram server for the
various coprocessor applications. Note that applications must have unique IDs for allocating
and accessing secure memory from the sec ram server. These IDs are also persistent
quantities, since all runs of the same application should access the same data private to
the application. Because applications have no access to any persistent memory (other than
their own instructions) before contacting the sec ram server, and external non-encrypted
storage is vulnerable, there is a bootstrapping problem. We can solve this problem by
binding the secure memory access ID with the application at compile time, since coprocessor
application binaries are guaranteed their integrity by cryptographic checksum verification.

25Making EEPROM updates atomic is harder, since we do not have atomic writes. An entire sixty-four
byte page of the Xicor EEPROM used by Citadel must updated in a single step, and each page mode update
requires up to 10 mS for the write cycle to complete. Secure RAM can be used to provide a directory into the
EEPROM and preserve the appearance of atomic updates of the 64-byte pages.
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There is no need to protect the privacy of these ID values, since they only refer to secure
memory regions. A drawback is that static allocation of the IDs implies that external
ID granting authorities must exist. Because these IDs do not have to be contiguous, the
granting authorities may be distributed (much as physical Ethernet addresses are currently
allocated). This aspect of application installation ties in with system bootstrapping and
maintenance, discussed in chapter 6.
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Chapter 5

Cryptographic Algorithms/Protocols

This chapter discusses and analyzes the key algorithms used in Dyad.26 The notation used
is standard from number theory and algebra (groups, rings, and fields).

In addition to the zero-knowledge authentication and key exchange algorithms below,
Dyad uses public key signatures and public key encryption [78] (e.g., for copy-protected
software distribution). In lieu of the zero-knowledge authentication and key exchange
algorithm presented here, RSA or Diffie-Hellman key exchange [25] could be used instead.
RSA and Diffie-Hellman have weaker theoretical underpinnings; for example, RSA is
known to leak information (the Jacobi symbol) [51], and our zero-knowledge authentication
scheme provably does not. Similarly, in lieu of Karp-Rabin fingerprinting, other crypto-
graphic checksum algorithms such as Rivest’s MD5 [77], Merkle’s Snefru [56], Jueneman’s
Message Authentication Code (MAC) [44], IBM’s Manipulation Detection Code (MDC)
[41], or chained DES [102] could be used. Primes needed in the key exchange algorithm,
the authentication algorithm, and the two merged key exchange/authentication algorithms
may be generated using known probabilistic algorithms such as Rabin’s [70].

There are two main sections in this chapter. Section 5.1 describes all of the algorithms
in detail. A programmer should be able to reimplement the protocols from this part alone.
Section 5.2 revisits the algorithms and provides an analysis of their cryptographic properties.

5.1. Description of Algorithms

Before the description of my algorithms, I define some terms that will be used throughout
this section.

A number M is said to be a Blum modulus when M = P � Q, and P, Q are primes of the
form 4k + 3. Moduli of this form are said to have the Blum property. Blum moduli have
special number theoretic properties that I will use in my protocols.

A value is said to be a nonce value if it is randomly selected from a set S and is used
once in a run of a protocol. The nonce values that we will use are usually selected from a
ring Z�M, where M is a Blum modulus.27

26This chapter is a slightly revised version of my paper [98]. These algorithms first appeared in the Strongbox
system.
27Z�

n denotes integers modulo n relatively prime to n considered as a group with multiplication as the group
operator.
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5.1.1. Key Exchange

End-to-end encryption of communication channels is mandatory when channel security
is suspect. To do this efficiently, I use private-key encryption coupled with a public-key
encryption algorithm used for key exchange. I first describe the public-key algorithm.

What properties do we need in a public-key encryption algorithm? Certainly, we want
assurances that inverting the ciphertext without knowing the key is difficult. To show that
inverting the ciphertext is difficult, often we show that breaking a cryptosystem is equivalent
to solving some other problem that we believe to be hard. For example, Rabin showed
that his encryption algorithm is equivalent to factoring large composite numbers, which
number theorists believe to be intractable [67]. Unfortunately, Rabin’s system is brittle,
i.e., if the user’s program (or other hardware/software agents working on the user’s behalf)
can be made to decrypt ciphertext chosen by an attacker, it would be easy for the attacker to
subvert the system, divulging the secret keys. The RSA encryption algorithm [78], while
believed to be strong, has not been proven secure. Chor [17] showed that if an attacker
can guess a single bit of the plaintext when given the ciphertext with an accuracy of more
than 1=2 + �, then the attacker can invert the entire message. Depending on your point of
view, this could be interpreted to mean either that RSA is strong in that not a single bit of
the plaintext is leaked, or that RSA is weak in that all it takes is one chink in its armor to
break it. The public-key cryptosystem used in Dyad is based on the problem of deciding
quadratic residuosity, another well-known number theoretic problem that is believed to be
intractable.

When a connection is established between a client and a server, the two exchange
a secret, randomly generated DES key using a public key system. Because private key
encryption is much cheaper, we use the DES key to encrypt all other traffic between the
client and the server.

The public key system works as follows: All entities in the system publish via a white
pages server their moduli, fMig, where Mi is a Blum moduli. The factorization of Mi, of
course, is known only to the entity corresponding to Mi and is kept secret.

Observe that Blum moduli have the property that the multiplicative group Z�Mi
has �1

as a quadratic non-residue. To see this, let L(a; p) denote the Legendre symbol, which is
defined as

L(a;p) =

(
1 if a is a quadratic residue, i.e., if 9 x : x2 � a (mod p)
�1 otherwise

where p is prime and a 2 Z
�

p. Now, we are going to use two important identities involving
the Legendre symbol:28

L(�1;p) = �1(p�1)=2 (5:1)

L(m � n; p) = L(m; p) � L(n; p) (5:2)

28See [60] for a list of identities involving the Legendre symbol.
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When p = 4k + 3, from (5.1) we have L(�1;p) = �12k+1 = �1, so �1 is a quadratic
non-residue in Z�p. This suffices to show that �1 is a quadratic non-residue in Z�Mi

, since if
there is a root r such that r2 = �1 mod Mi, then (r mod p) must be a square root of �1 in
Z�p as well, where p is a prime factor of Mi.

The property that �1 is a quadratic non-residue makes it easy to randomly generate
random quadratic residues and non-residues: simply chose a random29 r 2 Z

�

Mi
and compute

r2 mod ZMi . If we want a quadratic residue, use r2 mod Mi; if we want a quadratic non-
residue, use �r2 mod Mi.

Therefore, given n = p � q where both p and q are primes of the form 4k + 3, it is easy to
generate random quadratic residues and quadratic non-residues. Next, note another property
of quadratic residues that will enable us to decode messages. The important property of
the Legendre symbol is that it can be efficiently computed using a algorithm similar to
the Euclidean gcd algorithm. Note that this likewise holds for the generalization of the
Legendre symbol, the Jacobi symbol, defined by J(n; m) =

Q
i L(n;pi) where m =

Q
i pi,

where the pi’s are the prime factors of m. The value of the Jacobi symbol can be efficiently
calculated without knowing the factorization of the numbers.

The following approach was described in [30]. Suppose a client wants to establish a
connection to the server corresponding to Mi. The client first randomly choses a DES key k,
which will be sent to the server using the public key system. The client then decomposes the
message into a sequence of single bits, b0; b1; . . . ; bm. Now, for each bit of the message bj,
the client computes xj � �1bjr2

j (mod Mi) where rj are random numbers (nonce values).
The receiver i can compute bj = L(xj; Pi) to decode the bit stream since he knows the
factorization of Mi. Note that while the Jacobi symbol, the generalization of the Legendre
symbol, can be quickly computed without knowing the factorization of Mi, it does not aid
the attacker. We see from

J(�r2; Mi) = J(�1;Mi)J(r2; Mi)
= J(�1;Pi)J(�1;Qi)J(r2; Mi)
= �1 � �1 � J(r2; Mi)
= J(r2; Mi)
= 1

that quadratic non-residues formed as residues modulo Mi of �r2 will also have 1 as the
value of the Jacobi symbol.30

29We can actually just chose r 2 ZMi and not bother to check that r 2 Z�

Mi
. If r 62 Z�

Mi
, this means that

GCD(Mi; r) 6= 1 and we’ve just found a factor of Mi. Since factoring is assumed to be difficult, this is an
highly improbable event.
30Some cryptographic protocols, such as RSA, leak information through the Jacobi symbol. In RSA, plaintext
and corresponding ciphertext always have the same value for their Jacobi symbols. To see this, consider the
Legendre symbol: if L(x; p) = 1, then there exists a residue r such that r2 = x mod p. But xe = (re)2 mod p,
so re is a quadratic residue of xe. If L(x; p) = �1, then L(xe

; p) = �1 as well, since e is odd. Because
J(x; pq) = L(x; p)L(x; q), J(x; pq) = J(xe

; pq) holds. This information leak can be significant in some applica-
tions where only a limited number of messages or message formats are used, since attackers can easily gather
statistical information on the distribution of messages.
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When the receiver has decoded the bit sequence bj and reconstructed the message mi,
he installs mi as the key for DES encryption of the communication channel. From this point
on, DES is used to encrypt all coprocessor managed remote procedure call traffic between
the client and the server.

5.1.2. Authentication

Whether or not communication channels are secure against eavesdropping or tampering,
some form of authentication is needed to verify the identity of the communicating parties.
Even if the physical network links are secure, we still need to use authentication: to look
up the communication ports of remote servers, we must ask a network name server on a
remote, untrusted machine. Since we make no assumptions about the trustworthiness of
the network name servers, even the identity of a remote host is suspect. In addition to
the existing network name service, the secure coprocessor uses a White Pages server that
maintains authentication information (in addition to key exchange moduli when applicable)
and is itself an authenticated agent — the White Pages services have digitally signed
authentication information associated with them, and so no directory lookup is required for
them. The digital signature is generated by a central, trusted authority. For the purposes
of this discussion, the role of the White Pages server is to serve as a repository of trusted
authentication puzzles. Authentication is based on having the authenticator prove that it
can solve the published puzzle without revealing the solution.

The best available protocols for authentication all rely on a crucial observation made
by Rabin [67]: if one can extract square roots modulo n where n = p � q, p and q primes,
then one can factor n. This theorem has led the way to practical zero-knowledge authenti-
cation protocols. Two important examples of practical zero-knowledge protocols include
an unpublished protocol first developed in 1987 by Rabin [74], and a protocol developed by
Feige, Fiat, and Shamir (the FFS protocol) [27]. Between the FFS and Rabin’s protocols,
Rabin’s method is much stronger because it provides a super-exponential security factor.
In contrast to Needham and Schroeder’s authentication protocol [59], both of these zero-
knowledge authentication protocols require no central authentication server and thus there
is no single point of failure that would cripple the entire system. The Dyad system uses a
modified version of Rabin’s authentication protocol. Like Rabin’s protocol, my protocol is
decentralized and has a super-exponential security factor.

What do we mean when we say the authentication is zero-knowledge? By this we mean
that the entire authentication session may be open — an eavesdropper may listen to the
entire authentication exchange, but will gain no information at all that would enable him to
later masquerade as the authenticator.

Let’s see how authentication works. After establishing a secure communication chan-
nel with the remote entity, an agent queries the white pages server for its corresponding
party’s authentication puzzle. Authentication puzzles are randomly generated when a new
authenticated entity is created and can be solved only by their owners, who know their
secret solutions. However, the remote entity does not exhibit a solution to its puzzle, but

56



rather is asked to show a solution to a randomized version of its puzzle. My puzzles are
again based on quadratic residuosity — this time not on deciding residuosity but on actually
finding square roots.

Whenever a new entity is created, an authentication puzzle/solution pair is created for it
in an initial, once-only preparatory step — the puzzle is published in the local White Pages
server, and the solution is given to the new task. The secure coprocessor creates a new
puzzle for every new user of that coprocessor, and the White Pages directory is provided
by the secure coprocessor which guarantees its integrity from tampering.

The authentication puzzle consists of a modulus Mi = pi � qi and the vector

~Vi = (vi;1; vi;2; . . . ; vi;n�1; vi;n)

where pi and qi are primes, and each vi;j is a quadratic residue in Z�Mi
. The authentication

modulus is distinct from the key exchange modulus; in the authentication algorithm, it is
not necessary for anyone to know the factors pi and qi, and in fact a single modulus can be
used for all authentication puzzles. The secret solution is the vector

~Si = (si;1; si;2; . . . ; si;n�1; si;n)

where si;j are roots of the equations x2
� 1=vi;j (mod Mi). Generating a new solu-

tion/puzzle pair is simple: we choose random si;j 2 ZMi to form the solution vector, and
then element-wise square and invert ~Si modulo Mi to form the puzzle ~V.

Suppose a challenger C wants to authenticate A’s identity. C first randomly choses a
boolean vector ~E 2 f0; 1gn:

~E = (e1; e2; . . . ; en�1; en)

where ~E � ~E =
j

n
2

k
, and � 2 Sn a permutation.31 We can represent � as a number ' from 0

to n! � 1 which represents elements of Sn under a canonical numbering.32

The pair (~E, �) is the challenge that C will use to query A. Now, C encodes ~E and ' as
follows:

~C = (c1; c2; . . . ; cn+dlog(n!)e)

where

ci =

(
�1ei t2

i mod Mpub if 1 � i � n
�1'i t2

i mod Mpub otherwise

where 'i denotes the ith bit of ' and ti are nonce values from Z
�
Mpub

, and Mpub is the Blum
modulus that is used by all entities in this initial round, i.e. Mpub = PpubQpub, where

31~E � ~E denotes the dot product of ~E with itself. Sn denotes the symmetric group of n elements.
32Note that this numbering provides a way to randomly choose �: since ' requires log(n!) bits to represent,
we can simply generate dlog(n!)e random bits and use it as a number from 0 to 2dlog(n!)e � 1. If the number
is greater than n! � 1, we try again. This procedure terminates in an expected two tries, so on average we
expend 2 dlog(n!)e random bits. Other approaches are given in [24, 48].
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Ppub � Qpub � 3 (mod 4). The values of Ppub and Qpub are secret and may be forgotten
after Mpub was generated.

C sends the encoded challenge ~C to A.
When A receives ~C, A computes the nonce vector

~R = (r1; r2; . . . ; rn�1; rn)

where rj are randomly chosen from Z
�
Mi

, and the vector

~X = (x1; x2; . . . ; xn�1; xn)

where xj � r2
j (mod Mi). The authenticator sends ~X, called the puzzle randomizer, to the

challenger C, keeping the value of ~R secret. As we will see in section 5.2.2, ~X is used to
randomize the puzzle in order to keep the solution from being revealed.

C responds to the puzzle randomizer with ~T = (t1; t2; . . . ; tn�1; tn) of nonce values used
to compute ~C. Using ~T, A reconstructs (~E; �).

In response to the decoded challenge, A replies with

~Y = (y1; y2; . . . ; yn�1; yn)

where yj � r�(j) � sej
i;j (mod Mi). ~Y is the response. To verify, the challenger checks that

8 j : x�(j) � y2
j � vej

i;j (mod Mi).

5.1.3. Merged Authentication and Secret Agreement

Instead of running key exchange and authentication as separate steps, I have a merged
protocol that performs secret agreement and authentication at the same time. The protocol
performs secret agreement rather than key exchange: after the protocol completes, both
parties will share a secret, but neither party in the protocol can control the final value of this
secret. This merged protocol has the advantage of eliminating a remote procedure call, but
requires that the authentication security parameter n (the puzzle size) be at least 2m, where
m is the number of bits in a session key. We do not use this protocol in our current version
of the system since we need a much weaker level of security than the n = 2m level. Our
merged protocol goes as follows:

As in the normal key exchange protocol, each entity i in the system calculates a Blum
modulus Mi = PiQi, with Pi and Qi primes of the form 4k + 3. Entity i keeps the values of Pi

and Qi secret and publishes Mi. Entity i also generates a random puzzle by first generating
the desired solution vector

~Si = (si;1; si;2; � � � ; si;n)

where the elements of ~Si are computed by si;j = z2
i;j, where zi;j is a random number from Z

�
Mi

.
Then, i publishes the puzzle vector

~Vi = (vi;1; vi;2; � � � ; vi;n)
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with vi;j = 1=s2
i;j. With both Mi and Vi are published, i is ready to authenticate and exchange

keys.
When the challenger C wishes to verify A’s identity and obtain a session key from A,

C first chooses a challenge (~E; �) as before, with ~E 2 f0; 1gn such that ~E � ~E =
j

n
2

k
, and

permutation � 2 Sn. Just as in the previous authentication protocol, C encodes ~E and �

~C = (c1; c2; . . . ; cn+dlog(n!)e)

where

cj =

(
�1ej t2

j mod Mpub if 1 � i � n
�1'j t2

j mod Mpub otherwise

where ' is the canonical numbering of � 2 Sn, 'j denotes the jth bit of ', tj is a nonce value
from Z

�
Mpub

, and Mpub is a Blum modulus. C sends A the encoded challenge ~C. Let ~T denote

the vector of nonce values used to generate ~C.
A computes a puzzle randomizer ~X by first computing a pre-randomizer ~R, which will

be used to transmit the key bits. A computes ~R

~R = (r1; r2; . . . ; rn�1; rn)

by randomly choosing the nonce vector

~W = (w1;w2; . . . ;wn�1;wn)

The values wj are chosen from Z
�
MaMc

, where Ma is the published modulus of A and Mc is
the published modulus of C. The value of ~R is obtained by setting rj = �1bj �w2

j mod ZMaMc ,
where bj is a random bit. Some of the these bits bj will form the secret transferred. Next, A
computes the puzzle randomizer ~X from ~R as before, setting xj = r2

j mod ZMaMc , and sends
~X to C.

Now, C reveals the challenge (~E; �) by sending A the vector ~T; in response, A sends ~Y
with

yj = r�(j) � sej
a;j mod (MaM1�ej

c )

To verify A’s identity, C checks that

8 j: x�(j) = y2
j vej

a;j mod Ma

There are
l

n
2

m
usable key bits transferred, and they correspond to those bj for which ej = 0.

To extract bj, C computes the Legendre symbol L(yj;Pc) to determine whether yj is a
quadratic residue. If yj is a quadratic residue, then bj = 0; otherwise, bj = 1.
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5.1.4. Practical Authentication and Secret Agreement

In this section, I present another protocol for simultaneous authentication and secret agree-
ment requiring two rounds of interaction but fewer random bits. Furthermore, the message
sizes are smaller, thus making this protocol more practical. This protocol strikes the best
balance between performance and security, and I have implemented it for Dyad.

Each agent A who wishes to participate in the protocol generates a modulus Ma with
secret prime factors Pa and Qa. Each agent also generates a vector of secret numbers

~Sa = (sa;1; sa;2; � � � ; sa;n)

where sa;i 2 Z
�
Ma

. From this ~Sa, A computes

~Va = (va;1; va;2; � � � ; va;n)

where va;i = 1=s4
a;i mod Ma. Published for all to use is a modulus Mpub; the two prime

factors of Mpub, Ppub and Qpub, are forgotten as in the previous protocol.
Now, suppose a challenger C wishes to verify the identity of an authenticatorA. Assume

the parties have published their moduli Mc and Ma, respectively, and that C’s puzzle vector
~V has also been published. First, C chooses a bit vector

~E = (e1; e2; � � � ; en)

where ~E � ~E =
j

n
2

k
, and a permutation � 2 Sn. The pair (~E; �) is the challenge that C will

use later in authentication. Let � =
�

n
b

n
2c

�
, the number of possible vectors ~E. Encode both

~E and � as numbers using mappings f : f~Eg $ Z� and g: Sn $ Zn!. Let E = g(�) � � + f (~E),
the combined encoding for the two parts of the challenge,33 and let C = E2 mod Mpub. The
value C is used to commit the value of C’s challenge to A, preventing C from changing it
after learning the puzzle randomizer. C sends C to A.

In response, A generates a puzzle randomizer by choosing

~R = (r1; r2; � � � ; rn)

where each ri is a nonce value chosen from ZMaMc . A creates the puzzle randomizer vector
~X from this by setting

~X = (x1; x2; � � � ; xn)

where xi = r4
i mod MaMc. A sends ~X to C. C will have to recover some of the values of ~R

in order for the protocol to work. These values will become the agreed upon secret used
as private keys. C will recover exactly those ri where ei = 0. There are exactly

l
n
2

m
such

values. Let those i such that ei = 0 be the set I.

33If jEj 6= jMpubj, extra random pad bits may be necessary.
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When C receives the puzzle randomizer, C replies by revealing the challenge by sending
E to A.

A verifies that this E encodes the challenge that corresponds to the challenge commit-
ment value C by checking that C = E2 mod Mpub. If the encoding is correct, C extracts the
challenge tuple (~E; �), and computes

~Y = (y1; y2; � � � ; yn)

where yi = r2
�(i)s

2ei
i mod Mei

a M1�ei
c .

Now A composes a special vector ~W. The ith entry of this vector will be the pair

(wi; hui(wi))

where i 2 I, ui = r�(i), wi is a nonce value, and hk is an element of a family F of cryptographic
hash functions. A sends ~Y and ~W to C.

C verifies that
8 i: y2

i vei
i = x�(i) mod Mei

a M1�ei
c

If each yi passes this test, C then examines the values of yi for which ei = 0: since

yi = r2
�(i) mod Mc

and C knows the factorization of Mc, C can extract the four square roots of yi mod Mc, one
of which was the original r�(i) chosen by C.34 To choose the proper root of yi, C uses the
ith element of ~W. C can try all four square roots of yi mod Mc and see which one gives
the value that matches the value sent by A. This assumes that F is immune from known
plaintext attacks. (One class of functions that could be used as F is a family of encryption
functions.)

5.1.5. Fingerprints

Next, I describe the Karp-Rabin fingerprinting algorithm, which is crucial to Dyad’s abil-
ity to detect attackers or security problems in the underlying system. The key idea is
this: associated with each file — in particular, every trusted program generated by trusted
editors/compilers/assemblers/linkers/etc. — is a fingerprint which, like a normal check-
sum, detects modifications to the data. Unlike normal checksums, however, fingerprints
are parameterized by an irreducible polynomial35 and the likelihood of an attacker forging a
fingerprint without knowing the irreducible polynomial is exponentially small in the degree
of the polynomial.

34Standard algorithms for modular square root computation are given in [3, 7].
35A polynomial p(x) 2 F[x] (F a field) is said to be irreducible if@f (x) 2 F[x]: f (x) j p(x);0 < deg f < deg p,
i.e., the only divisors are p and nonzero elements of F (the units of F[x]). This is analogous to primality for
integers.
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Dyad chooses random irreducible polynomials p from Z2[x] of degree 31 by the algo-
rithm due to Rabin [45, 68, 71].

Here is one way to visualize the fingerprinting operation: We take the irreducible
polynomial p(x), arrange the coefficients from left to right in decreasing order, i.e., with
the x31 term of p(x) at the leftmost position, and scan through the input bit stream from
left to right. If the bit in the input opposite the x31 term is set, we exclusive-or p(x) into
the bit stream. As we scan down the bit stream all coefficients to the left of the current
position of the x31 term of p(x) will be zeros. When we reach the end of the bit stream,
i.e., the x0 term of p(x) is opposite the last bit of the input stream, we will have computed
f (x) mod p(x) = '(f (x)).

5.2. Analysis of Algorithms

5.2.1. Key Exchange

The correspondence between the problem of deciding quadratic residuosity and the protocol
is direct. For a detailed analysis, see [30].

5.2.2. Authentication

What are the chances that a system breakerB could break the first (unmerged) authentication
scheme? As we stated before, we assume that the modulus Mi is sufficiently large so that
factoring it is impractical. Now, consider what B must do to pose as A.

Let us first look at a simpler authentication system to gain intuition. Let the puzzle and
the secret solution be v and s where v = 1=s2; let the puzzle randomizer be x = r2 (r known
only to the authenticator); let the challenge be e 2 f0; 1g; and let the response be y = r � se.
All calculations are done modulo M.

We claim that if B could slip through our authentication procedure with more than
probability 1

2, then B could extract the square roots and thus factor M, violating our basic
assumption. To wit, in order for B to reliably pass the authentication procedure, it must be
able to handle the case where e is either 1 or 0, and thus it would need to know both r and
r � s. This means that he would be able to compute the square root of v, which we know
from Rabin [67] is equivalent to factoring.

What must B do in the full version of the authentication? In order to pass the challenge,
B must know the value of ~E. In addition, B must know part of �. In particular, B does not
have to guess all of � but only those values selected by the 1 entries in ~E.

Thus, while���f(~E; �):~E 2 f0; 1gn; ~E � ~E =
j

n
2

k
; � 2 Sng

��� =
�

n
n=2

�
n!,

our the security factor (the inverse of the probability of breaking the system) is slightly
smaller. Our authentication system provides, for puzzles of n numbers, a probability of an
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attacker breaking the authentication system of

P = 1
( n

n=2)n!= n
2 !

= (n=2)!3

n!2

� ( 2�n
2 )

3
2 ( n

2e )
3n
2

(2�n)( n
e )

2n

=
p

2�n e
n
2

2
3
2 (n+1)n

n
2

=
p
� e

n
2

2
3
2 n+1n

n�1
2

(using the Stirling’s approximation of n! �
p

2�n
�

n
e

�n
) which shows that P is clearly super-

exponentially small. By using longer vectors or multiple vectors (iterating) the security
factor can be made arbitrarily high. Note that since the security factor is super-exponential
in n, the puzzle size, and only multiplicative when the protocol is iterated, increasing puzzle
size is usually preferable: If n0, the new size of the puzzle, is 2n, then the probability of
successfully breaking the system becomes

P0 �
p
� en

23n+1(2n)n� 1
2

=
p
�2n en

23n+1(2n)n

=
p

2�n en

2
3n
2 +12

3n
2 2nnn

= 2
p

2(�n)en

2
3n
2 +12

3n
2 +12n

p
�n nn

= P2

2n� 3
2
p
�n

On the other hand, if we simply run the protocol twice, we would only obtain P0 = P2.
Iterating does have one advantage: it makes the selection of the security factor (1=P) flex-
ible. Using iteration makes it easy for applications at different security levels to negotiate
the desired security of the connection.

How did we arrive at the expression for P? 1=P simply measures the number of
equiprobable random states visible to the attacker. First, note that

�
n

n=2

�
is the number of

different ~E where ~E � ~E =
j

n
2

k
(i.e., the number of 1 bits in ~E is

j
n
2

k
). The n!=(n � i)! term

gives the number of ways of chosing i objects from n without replacement, which is what
the projection, as specified by the on (i.e., 1) values in ~E, of the permutation � gives us.

Why do we restrict ~E to have
j

n
2

k
on bits? If j = ~E � ~E could be any value, then there

would be
Pn

k=0

�
n
k

�
n!

(n�k)! different states visible to B not all of which would be equiprobable

if ~E and � are chosen uniformly from f0; 1gn and Sn. In particular, it can be seen that
the state corresponding to j = 0 is most probable. This weakens the security factor of our
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algorithm. In the limit case where ~E is the zero vector, our algorithm no longer provides
super-exponential security.

Note that my protocol provides super-exponential security only if the moduli remain
unfactored. Since there is an exponential time algorithm for factoring, it is always possible
to break the system in the minimum of the time for factoring and the super-exponential
bound. Thus we can scale our protocol in a variety of ways.

The authentication protocol not only provides super-exponential security when the
moduli cannot be factored, but is also zero knowledge. The encoded challenge vector, ~C,
performs bit commitment [13, 14, 21, 72, 73], forcing C to choose the challenge values prior
to A choosing the puzzle randomizer. This means that ~E and � can not be a function of ~X,
and thus the challenger’s side of the protocol can be simulated by an entity that does not
have knowledge of any of the secrets. Any entity S can simulate both sides of the protocol
— S can choose random ~E, �, and, knowing their values, construct vectors ~X0 and ~Y0 that
will pass the verification step:

yj = r�(j); xj = r2
j if ej = 0

yj = r�(j); xj = r2
j � vi;��1(j) if ej = 1

Note that my model differs slightly from the usual model for zero knowledge interactive
proofs because both the prover and the verifier are assumed to be polynomial time (and
that factoring and quadratic residuosity are not in polynomial time); if the prover were
infinitely powerful, as in the usual model, the prover could simply factor the moduli used
in the bit commitment phase of our protocol. Other bit commitment protocols may be used
instead; e.g., we could use a protocol based on the discrete log problem [83] requiring more
multiplications but use fewer random bits.

5.2.3. Merged Authentication and Secret Agreement

Like the first authentication algorithm, the merged authentication and key exchange algo-
rithm reveals no information if factoring and deciding quadratic residuosity are intractable.

How does the merged algorithm differ from the original algorithm? I use MaMc as the
modulus for the nonce vectors, and I use quartic residues instead of quadratic residues for
the puzzle randomization vector ~X.

No information is leaked. An analysis similar to that done above establishes this fact.
When ej = 1, we know that

yj = r�(j) � sa;j mod Ma

= �1bj � w2
�(j) � z2

a;j mod Ma

= �1bj � (w�(j)zA;j)2 mod Ma

so yj looks like the square of a random number, possibly negated, in Z�Ma
. The challenger C

or an eavesdropper could have generated this without A’s help. (Note that the reason that
this value is computed modulo Ma is because sa;j is the residue modulo Ma of a random
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square; if we computed yj modulo MaMc, we would have no guarantees as to whether sa;j

would be a quadratic residue.)
When ej = 0, we have

yj = r�(j) mod MaMc

= �1bj � w2
�(j) mod MaMc

This is just the square of a random value, possibly negated, in ZMaMc . The challenger C or
any eavesdropper could have generated this withoutA’s help as well.

This proves that one atomic round of the authentication leaks no information. As
with the vanilla authentication, the vectors ~C and ~T provide bit commitment, forcing the
challenge (~E; �) to be independent of ~X, thus running the atomic rounds in parallel rather
than in serial has no impact on the proof of zero knowledge.

Might some system breaker B compromise the authentication? To do so, B must guess
the values of ~E and � just as in the vanilla authentication protocol. As before, the probability
of somebody breaking the authentication is super-exponentially small. (See section 5.2.2)

The bits of the session key (bj) are transferred only when ej = 0. When ej = 1, C cannot
determine the quadratic residuosity of the element yj since we assume that determining
quadratic residuosity is intractable without the factorization of Ma. When ej = 0, on the
other hand, C can easily determine the quadratic residuosity of yj by simply evaluating the
Legendre symbol L(yj;Pc).

5.2.4. Practical Authentication and Secret Agreement

Assuming that factoring is intractable, the third protocol (my “practical” protocol) is also
zero knowledge. In particular, breaking this protocol is equivalent to factoring: any system
breaker B who has a strategy that allows B to masquerade as A can trivially adapt the
strategy to factor the various moduli in the system.

Let us examine how this authentication/secret agreement protocol differs from the previ-
ous one. Instead of using the quadratic residuosity decision problem to do bit commitment,
this protocol uses the Rabin function, removing the requirement that the moduli have the
Blum property. Since neitherA nor C can factor, neither of them can extract the square root
of an arbitrary number mod Mpub. In particular, A has no way of getting the encoding E
from the commitment value C; the only way A finds out the value of C (and thus the value
of (�;~E)) is for C to reveal C. The challenge commitment works as before.

The analysis for the authentication properties are identical to that for the previous
protocols, so I omit that here. (See section 5.2.2.) What about the zero-knowledge property?

When ej = 1, we know that

yj = r2
�(j) � s2

a;j mod Ma

= (r�(j) � sa;j)
2 mod Ma

so yj looks like the square of a random number in Z�Ma
. The challenger C or an eavesdropper

could have generated this withoutA’s help. Note that the reason that this value is computed
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modulo Ma is because sa;j is the residue modulo Ma of a random square; if we computed
yj modulo MaMc, we would have no guarantees as to whether sa;j would be a quadratic
residue.

When ej = 0, we have

yj = r2
�(j) mod Mc

This is just the square of a random value in Z�Mc
. The challenger C or any eavesdropper

could have generate this without A’s help as well.
In both cases, a simulator S who pretends to be A and is able to control the coin flips

of C can easily produce a run of the protocol where the message traffic is indistinguishable
from that of an actual run. Since S can simulate the protocol without the secret known only
to A, the protocol is zero knowledge.

This protocol is much more efficient than the previous one, since it sends a factor of
jMcj more secret bits than the previous algorithm; this efficiency is somewhat offset by the
fact that root extraction must be performed by the receiver, and extracting square roots is
more expensive than computing the Legendre symbol.

5.2.5. Fingerprints

Before we analyze the performance of the fingerprint algorithm, we will fix some notation.
We let p (or p(x)) refer to an irreducible polynomial of degree m (where m is prime). We
use the symbol� to denote surjective mappings, and eF to denote the algebraic closure of
the field F.

How good is the fingerprint algorithm? Choosing random irreducible polynomials
is equivalent to chosing random homomorphisms ':Z2[x] � GF(2m), where the ker-
nel of ' is the ring generated by the irreducible polynomial p. To be precise, ' asso-
ciates the indeterminate x with u, a root of the irreducible polynomial in the field fZ2, i.e.,
':Z2[x] � Z2(u) �= GF(2m). There are exactly (2m � 2)=m such homomorphisms. To
compute the fingerprint of a file, consider the contents of the file as a large polynomial in
Z2[x]: take the data as a string of bits bn; bn�1; . . . ; b1; b0, and construct the polynomial
f (x) =

Pn
i=0 bixi. The fingerprint is exactly '(f (x)).

Now, f can have at most
j

n
m

k
divisors of degree m. Any two distinct polynomials f 1

and f 2 will have the same residue if f 1� f 2 � 0 mod p. The number of polynomial divisors
of f 1 � f 2 is at most n=m, so the probability that a random irreducible polynomial gives
the same residue for f 1 and f 2 is n=m

(2m�2)=m = n=(2m � 2). For a page of memory containing

4 kilobytes of data (n = 215, or 32 kilobits), and setting m to be 31, this probability is less
than 0.002%.

This 0.002% probability measures the odds that an adversary’s replacement 4 kilobyte
page of a file would have a residue that matches that of the original — because the adversary
has no knowledge of the particular homomorphism used, there is no better strategy than
guessing a polynomial (i.e., the data in the replacement page). The probability that the
adversary could guess the homomorphism is 31=(231� 2) or less than 0.0000015%, which
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is much less likely. Hence we can see that the fingerprint algorithm is an excellent choice
as a cryptographic checksum.

The naive implementation of this algorithm is quite fast, but it is possible to achieve
even faster algorithms by precomputation. Given a fixed p, and a set of small polynomials,
we construct a table T of residues of those polynomials. I initially describe the algorithm
for arbitrary sized p; afterwards, I describe optimizations specific to m = deg p = 31.

Let T be the table of residues of all polynomials of the form g(x) �xm, where g varies over
polynomials of degree less than k. In other words, T gives us the function '(g(x) � xdeg p)
where deg g(x) < k. Using T allows us to examine k bits at a time from the input stream
instead of one at a time. View f (x) now as

f (x) =
d n

keX
i=0

ai(x)xi�k

where deg ai(x) < k. The algorithm to compute the residue r(x) = f (x) mod p(x) becomes
the code shown in Figure 5.1.

r(x) = 0;
for (i =

l
n
k

m
; i � 0; --i) f

r0(x) = r(x) � xk + ai(x);
r(x) = r0(x) mod p(x);

g

Figure 5.1 Fingerprint residue calculation. The operation r0(x) mod p(x)
is performed by decomposing r0 into g(x) � xm + h(x), where deg g < k and
deg h < m, finding r00(x) = g(x)�xm mod p(x) from T, and setting r(x) = r00(x)+h(x).

If we fix the value m = deg p = 31, we can realize further size-specific optimizations.
We can represent p exactly in a 32-bit word. Furthermore, since word at a time operations
work on 32 bits at a time, by packing the coefficients as bits in a word we can perform
some basic operations on the polynomials as bit shifts and exclusive-ors: multiplication by
xk is a left-shift by k bits; addition or subtraction of two polynomials is just exclusive-or.
Of course, since we are dealing now with fixed-size machine registers, we must take care
not to overflow.

In Dyad, I have two versions of the fingerprinting code, one for k = 8 and the other for
k = 16, both of which use irreducible polynomials of degree 31. To read the input stream
a full 32-bit word at a time, I modified the algorithm slightly: instead of T being a table of
'(g(x) � xdeg p), T contains '(g(x) � x32); the code above is modified correspondingly. While
the residues '(g(x) � x32) require only 31 bits to represent, T is represented as a table of
machine words with 2k entries. The program can uniquely index into the table by evaluating
g(x) at the point x = 2 (this index is just the coefficient bits of g, which are already stored in
a machine word as an integer). If we run the code loop to perform this operation, we will
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get a 32-bit result, which represents a polynomial of degree at most 31. Hence the result of
the loop, r(x), is either the residue R(x) = f (x) mod p(x) or R(x) + p(x), and the following
simple computation fixes up the result:

'(f (x)) =

(
r(u) if deg r(x) < 31
(r� p)(u) otherwise

A particularly elegant implementation is achieved when we set k to be 8 or 16. The code in
Figure 5.2 illustrates the algorithm for k = 16.

fp_mem(a,nwords,p,table)
unsigned long *a, p, *table;
int nwords;
{

unsigned long r, rlo, rhi, a_i;
int i;

r = 0;
for = (i = 0; i < nwords; i+{}+) {

a_i = a[i];
rhi = r >> 16;
rlo = (r << 16) ^ (a_i >> 16);
r = rlo ^ table[rhi];
rhi = r >> 16;
rlo = (r << 16) ^ (a_i & ((1 << 16)-1));
r = rlo ^ table[rhi];

}
if (r >= 1 << 31) r ^= p;
return r;

}

Figure 5.2 Fingerprint calculation (C code).
This C code shows how using a precomputed table of partial residues can speed up fin-
gerprint calculations. Unlike the actual code within Dyad, it omits loop unrolling, forces
memory to be aligned, and may perform unnecessary memory references.

For the case where k = 16, initializing T will be time consuming if we use the simple
brute force method. Instead of calculating each of the 216 entries directly, we first compute
the table T0 for k = 8, size 256, and then T is bootstrapped from T0 in the obvious manner:
for each entry in T, we simply use its index g(x), decompose it into g(x) = ghi(x) � x8 + glo(x)
where deg ghi < 8 and deg glo < 8, and compute T0[T0

hi(ghi)� glo]� T0

lo(ghi) � x8 as the table
entry.

If a higher security level is required, multiple fingerprints can be taken on the same
data, or polynomials of higher degree may be used. The speedup techniques extend well to
handle deg p(x) = 61, the next prime36 close to a multiple of word size, though the number
of working registers required (if implemented on a 32-bit machine) doubles. Our current

36While the algorithm for finding irreducible polynomials does not require that the degree be prime, using
polynomials of prime degree makes counting irreducibles simpler.
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implementation is largely limited by the main memory bandwidth on the Citadel CPU’s bus
for reading the input data and the table size. Note that the table for k = 8 can easily fit in
most modern CPU memory caches. If we use main memory to store intermediate results,
performance dramatically degrades.
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Chapter 6

Bootstrap and Maintenance

On the face of it, securely initializing and bootstrapping a secure coprocessor’s system
software can be very simple: burn all the code into the embedded ROM so the coprocessor
will always run secure code. Unfortunately, this strategy is unrealistic.

Practical requirements complicate the secure initialization and bootstrap of secure soft-
ware running in a secure coprocessor:

� maintenance and revocation updates of the trusted software by the secure coprocessor
system software vendor (or a trusted authority);

� installation of optional software by local system administrators;

� efficiency of secure bootstrap; and

� security.

Two aspects of bootstrapping go hand in hand: secure bootstrapping, and bootstrapping
security. The former deals with verifying code integrity so untrusted code will not be
executed with any privileges37, and the latter deals with increasing security guarantees
provided by the system related to bootstrapping, using basic security properties of lower
system levels as a basis [97, 98].

The process of secure bootstrapping must provide means of proving the trustworthiness
and correct initialization of the final system to the end user. Additionally, depending on the
users’ degree of trust in the secure coprocessor hardware vendors / system software vendors,
we may need to prove to the user (or site security administrator) that the coprocessor
hardware (having passed through the system software vendor for initialization) is legitimate.
This chapter addresses bootstrapping; the next chapter addresses the verification of system
software and hardware.

Digital signatures and cryptographic checksums are basic tools we use to attack secure
initialization, bootstrapping, and maintenance. These tools are applied by each layer of
bootstrapping code to verify the integrity and authenticity of the next higher layer, ensuring
that only trusted code is booted.

37The secure coprocessor, when booted, runs a secure form of the Mach microkernel. If administered correctly,
untrusted user-level code may be loaded and run after booting.
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6.1. Simple Secure and Bootstrap

As a thought experiment, consider the simplest instantiation of secure bootstrapping: the
bootstrap ROM for the secure coprocessor contains digital signature checking code. At
boot time, this digital signature code verifies that the host-supplied kernel image is from
a trusted authority. The trusted authority’s public key may be kept in ROM rather than
secure RAM, since only integrity and not secrecy is required.38 The security kernel uses an
encrypted file system image supplied by the host to load system servers and applications
(the decryption key is kept in secure RAM). This preserves privacy and integrity guarantees
for the rest of the operating system and the applications, thus securely bootstrapping to a
fully running system.

There are several things wrong with the above scenario. it is inflexible: it allows only
centralized updates of system software and data; it requires (computationally expensive)
digital signature verification for the kernel; it does not permit revocation of old microkernel
images (which may have security bugs); and it does not permit resetting of the coprocessor.
Fortunately, by providing a layered security bootstrap, all these flaws can be fixed.

6.2. Flexible Secure Bootstrap and Maintenance

By necessity, secure bootstrapping starts with code embedded in the coprocessor’s ROM.
This code must be simple — because such embedded code cannot be fixed, its correctness
must be certain. This code must be public — an attacker can gain access to it by destroying
a secure coprocessor’s physical encapsulation. To allow more complex boot code to be
used, the boot process proceeds in stages, where the primary boot code in ROM loads in a
secondary boot loader from an external source.

Dyad assumes a write-only model of installing the secondary boot code. The secondary
boot code, along with any private data it needs, is stored in secure RAM after the secure
RAM is cleared. There is no need to trust secondary boot code since no secrets are stored
in the secure coprocessor at initialization time — furthermore, users wishing to perform
behavioral testing of the secure coprocessor hardware may load their own code at this point
to validate the hardware.

The secondary boot code loaded by a trusted secure coprocessor software vendor is
loaded with a secret allowing secondary boot code to authenticate its identity. This secret is
loaded at the same time as the secondary boot code, and is privacy protected: (1) the tamper
detection circuitry will erase the secure RAM if any physical intrusion is detected; (2) the
primary bootstrap loader will erase secure RAM prior to loading other secondary bootstrap
code; and (3) the secondary bootstrap code reveals not even partial information about its
authentication secret, since it uses a zero knowledge authentication. In addition to the
authentication secret, the secondary boot code is provided with cryptographic checksums

38The ROM in the coprocessor cannot provide secrecy, since an attacker can sacrifice a secure coprocessor to
discover ROM contents (which are likely to be uniform across all secure coprocessors.)
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of the coprocessor kernel and coprocessor system programs, permitting validation of the
next higher layer of code.

To limit the amount of secure RAM used, Dyad stores just the authentication secrets
and a cryptographic checksum of the secondary boot code, with actual secondary bootstrap
code being read from the host’s disk or other external memory at boot time.39

This method of initializing the secure coprocessor permits loading of both secure co-
processor vendor authentication data as well as verification data for secondary boot code,
yet prevents reinitialization from leaking sensitive data.

The primary boot code is permitted only two operations: installing the secondary
boot code along with its authentication secrets; and loading, validating, and running the
secondary boot.40 The secondary boot code authenticates its identity — and thus the identity
of the secure coprocessor software vendor — to the user. It also validates and boots the
secure coprocessor kernel.

Secondary boot code in secure RAM can permit multiple versions of secure coprocessor
kernels, since it can store several cryptographic checksums, each corresponding to a differ-
ent coprocessor kernel. This permits the system administrators to back out the coprocessor
kernel if bugs are ever discovered. Because these cryptographic checksums are kept in
secure RAM, the coprocessor kernel may update them as newer kernels are released.

6.3. Hardware-level Maintenance

So far, I have discussed only software maintenance. Because secure coprocessors contain
critical data, we need to also support hardware maintenance related functions. We may want
secure coprocessors to perform self-tests while otherwise idle, and generate warnings if any
transient errors are detected (e.g., correctable memory ECC errors, encryption hardware
self-test errors, etc), as well as permit periodic checkup maintenance testing requiring
suspension of the coprocessors’ normal operations.

Such maintenance access to the internals of a secure coprocessor, while only logical
and not physical, requires complete access to the secure coprocessor’s state. Self-tests
necessarily may require destructive writes to secure RAM; even though such self-tests are
vendor supplied, we would like to prevent self-test code from accessing private or integrity-
protected user data. This poses a dilemma: the secure coprocessor state seemingly cannot
be backed up, since this permits replay attacks for applications such as electronic currency.41

Secrets stored in secure RAM must remain private.
We can securely back up secure coprocessor state for maintenance testing and also

transfer the state of one secure coprocessor to a replacement secure coprocessor. The trick

39Alternatively, we can use tamper-protected EEPROM to store the secondary boot loader to optimize for
speed. See section 4.2.3 for a discussion of its security properties.
40If we store the secondary boot loader in protected EEPROM, we can omit the loading/validation steps.
41The attackers back up the state of their secure coprocessor, spend some electronic currency, and restore the
previous state. See section 3.4.
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is to use atomic transactions: state information is transactionally transferred from the source
secure coprocessor to a target secure coprocessor. Most of the secure RAM of source the
secure coprocessor is erased as a result of the transactional transfer. The only secure RAM
contents not erased are the unique authentication and public key. This is required if the
secure coprocessor is to be reused, since new code could not be loaded otherwise.

Dyad uses a simplified version of the traditional two-phase commit protocol [33, 53],
since only two parties are involved and the write locks can be implicit.42 The secure
coprocessor transfer commit protocol requires an acknowledgement message from the target
coprocessor after the source secure coprocessor (the transaction coordinator) sends the
“commit” (or “abort”) message, since the source secure coprocessor log (held in the secure
RAM) will be forcibly truncated as a result of the transfer.

Note that the target secure coprocessor does not have to actually store all the source state
information in its secure RAM: if all secure coprocessors have the same capacity, it will
not have enough secure RAM. Fortunately, the state information only needs to be logically
transferred to the target coprocessor — the target secure coprocessor can simply encrypt
the state data, write it to disk, and save just the key in its secure RAM. As a optimization,
the encryption and storage of the state data can be performed entirely by the source secure
coprocessor; only the key needs to be transactionally transferred to the back up secure
coprocessor.

After the state transfer is completed and secure RAM erased, testing may proceed.
The secondary bootstrap code may now load in whatever vendor-supplied self-test code is
needed, since this self-test code will not have any access to secret or integrity-protected user
data. When the testing is done, we can restart the secure coprocessor (or a new one) and
transactionally reload the original secure RAM state. Because state is always transferred
and never copied, such back ups are not subject to replay attacks, and the testing provides
users with assurance against hardware faults.

6.4. Tolerating Hardware Faults

At first glance, it would appear that by keeping secrets only in secure coprocessors, we face
the risk of losing those secrets when secure coprocessor has a hardware failure. Fortunately,
by applying a modified quorum consensus technique [37, 38], we can make a secure copro-
cessor system fault tolerant. We assume a failstop model [82].

An example of such a configuration would use three secure coprocessors in a group,
all of which maintain the same secure data. Every update transaction involves two of the
three with a secure timestamp [90, 89], so the secure data should remain identical between

42In the first phase, the transaction coordinator asks whether all entities involved in the transaction agrees
that they are able to commit and have logged the appropriate data to stable storage. After a party has
agreed that it is willing to commit, all values involved in the transaction are inaccessible until the coordinator
declares a “commit” or “abort.” The coordinator broadcasts “commit” or “abort” during the second phase,
and transactional modifications to values become permanent or vanish.
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transactions. Communication among the three coprocessors are encrypted. When a secure
coprocessor fails, a new one is added (replacing the broken one) by being initialized from
the most up-to-date of the remaining two secure coprocessors, simultaneously updating
the group’s group membership list. This update is performed transactionally, using a state
transfer mechanism like the method described in section 6.3. If two or more coprocessors
simultaneously fail, however, the data is unrecoverable. (Otherwise an attacker could
separate a working trio of secure coprocessors into three groups of isolated coprocessors
and use that to duplicate currency.) After regenerating to a triad of secure coprocessors,
the failed coprocessor will be shunned by the regenerated group if it becomes operational
again: attackers cannot create a new quorum by faking coprocessor failures.

In general, the number of failures F that can be tolerated can be made arbitrarily large
by using more secure coprocessors in a group. Let there be N secure coprocessors in a
group. Writes to secure data are considered successful if W secure coprocessors updates
their copy of the secure data, and reads from secure data are considered to have obtained
valid data only if R secure coprocessors in the group respond with (time stamped) data.
Dyad allows failure-recovery restores to new secure coprocessors to proceed only if there
are at least � working secure coprocessors, where F, R, N, W, and � satisfy the equations

R + W > N + F (6.1)

� >
N
2

(6.2)

� � R (6.3)

Equation 6.1 is the standard requirement for the number of readers and writers to overlap
(pigeon hole principle) from quorum consensus. Equation 6.2 requires that at least half of
the coprocessors are available for regenerating the missing (and presumed dead) members
of a group — preventing smaller partitions from being used to clone money or other access
capabilities. Equation 6.3 ensure that the subset of our secure coprocessor group from which
regenerate missing ones will contain at least one coprocessor containing the correct data,
which can be propagated to the other coprocessors as part of the recovery/regeneration
process, preserving the reader/writer overlap invariance for the regenerated coprocessor
group. As part of the regeneration transaction, group membership is updated to contain
only the secure coprocessors in the regeneration transaction.

This technique is a simple modification of quorum consensus for fault tolerance and
security under the secure coprocessor framework. By combining secret sharing [76, 86]
with quorum consensus [39], replication space requirements can be reduced.

Another approach would be to adapt striping to secure coprocessors, distributing data
and error correction bits among several secure coprocessors. (Also see information on
RAID [64].) This requires that every logical write to the secure data result in an atomic
set of writes to secure coprocessors within the group, with data transmission among secure
coprocessors encrypted. Recovery of data due to a failed secure coprocessor would op-
erate in the same fashion as in classic striped systems, with the replacement coprocessor
initialized via a transactional state transfer so it will possess the encryption keys necessary
to communicate with its peers.
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Using multiple secure coprocessors dramatically reduces the likelihood of critical data
being lost due to hardware failures. This enables the use of secure coprocessor technology
for large scale and high reliability applications. I also eliminate the possibility that a single
hardware failure would preclude properly licensed programs from running.
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Chapter 7

Verification and Potential Failures

Security critical systems are not just vulnerable to hardware-level attacks and simple hard-
ware faults; the delivered hardware might have been substituted with bogus, trojan-horse
hardware, and the system software may contain bugs. This chapter explains how users can
verify secure coprocessor hardware, and shows how the secure coprocessor system design
helps isolate the effects of software faults and check software. Additionally, this chapter
analyzes the consequences of potential failures in the system and identifies the degree of
trust that must be placed on hardware and system software vendors

7.1. Hardware Verification

The self-tests that I considered in section 6.3 are vendor-provided executables. Suppose
we wish to verify that the secure coprocessor or system software vendor is not supplying
us with bogus secure coprocessor hardware. Can some form of testing be performed?

By modifying the self-test procedure, we can perform limited statistical checking of
secure coprocessor hardware. To verify that the hardware originated from the proper
hardware vendor, the local system administrators or security officers may reset a fraction
of the secure coprocessors and load in hardware verification software in lieu of a secondary
bootstrap loader. This permits arbitrary secure coprocessor hardware testing code to be
loaded. While sophisticated bogus hardware could be made to operate identically to a real
secure coprocessor under most conditions, this software probing can, coupled with gross
hardware verification (e.g., verifying the X-ray image of the circuit board and other physical
controls), provide us with strong assurances that the secure secure coprocessor hardware is
genuine.

Note that this testing is quasi-destructive, since the authentication secrets stored by the
coprocessor system software vendor are lost. These coprocessors may, however, be returned
to the system software vendor to be reinitialized with a new set of authentication secrets.
Additional destructive testing of secure coprocessors may be performed on a spot-check
basis for greater assurances of the authenticity of the secure coprocessor hardware.
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7.2. System Software Verification

Having the secure coprocessor security kernel provide logical security (basic peer-to-peer
authentication, encrypted communication channels, and private address spaces) is central
to being able to run secure applications within a secure coprocessor. While any absolute
proof of correctness of security kernels is outside of the scope of this thesis and such proofs
will not be feasible for a long time (if ever), we must have some assurance of the security
of secure coprocessor system software.

In the Dyad system, the Mach 3.0 kernel runs in the secure coprocessor. It is a small
security kernel with capability-based interprocess communication, configured with only a
few device drivers necessary for communicating with the host system. Because the kernel
code is cryptographically fingerprinted by the system software vendor and not encrypted,
the code may be independently inspected. Though failstop bugs in the coprocessor kernel
would not permit disclosure of secrets, it remains to be shown whether the system design
can minimize the amount of damage caused by other kinds of kernel bugs.

The system design isolates security-critical portions of the coprocessor security kernel,
reduces the impact of bugs, and makes analysis easier.

I assume that the kernel provides private address spaces using the underlying virtual
memory hardware, a very stable technology. I also assume that the secure applications do
not intentionally reveal their own secrets, whether explicitly or through covert channels.
Furthermore, I assume that bugs in one part of the kernel do not have far-reaching effects,
e.g., permit user-level code to arbitrarily modify another part of the kernel.

Dyad uses security checkpoints to minimize the impact of bugs in the rest of the sys-
tem. These are the security critical portions of the kernel that must bear close inspection.
Fortunately, there are only a few modules controlling I/O between the host system and the
secure coprocessor (the port and DMA drivers) and access to the secure RAM (the iopl
interface for accessing the secure RAM and the sec ram server — see section 4.2.3).
These security-critical modules are well isolated, and provide an opportunity for carefully
controlling and checking data flow, simplifying the code inspection task.

The example of crypto-paging illustrates how testing is simplified. Instead of looking at
the code for the default pager, we simply make sure that encryption is turned on whenever
we use the DMA interface on the default pager’s behalf. Similarly, for access control
to the secure RAM, the iopl interface allows only a privileged client (the sec mem
server) to map in the secure RAM into the client’s address space, and the sec mem server
provides access control among the secure applications. The secure RAM’s physical address
range is not otherwise known to the kernel, and the virtual memory subsystem could not
accidentally provide access to it unless the memory mapping entries are copied from the
sec mem server’s address map. If we do not want to trust the virtual memory subsystem to
prevent unauthorized access, we could provide a trivial device driver performing physical
I/O only to the address range of the secure RAM with exclusive use by the sec mem
server. The sec mem server code, of course, must also be carefully scrutinized to only
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give access to appropriate portions of the secure RAM as part of the cryptographic loading
of a secure application’s code.

Because Dyad has simple secure memory interfaces and host interface, it is possible
to focus on the security properties of the code implementing these interfaces. Rigorously
checking this code decreases the likelihood that bugs in the Mach kernel could cause secret
data disclosure. While this does not replace rigorous correctness proofs of the kernel code,
we can increase our confidence that kernel bugs will not cause catastrophic disclosure of
secrets.

7.3. Failure Modes

An ideal distributed security system would never fail, but any serious design must take
failures into account. In this section, I discuss the potential failure modes of the Dyad
system and examine the risks involved.

I identify the potential sources of security breaches and consider their impacts. There
are several secrets crucial to the correct operation of the overall system and their disclosure
would have a severe impact on the system. Some of these reside only within software
manufacturers’ facilities, and others are also kept in secure coprocessors in the field.

The most critical secret in the system is the secure-coprocessor software private key.
This key is created at the system software manufacturing facilities and produces a digitally
signed certificate for every new coprocessor, each certifying the public key and authenti-
cation puzzle as belonging to a secure coprocessor identity created by that manufacturer.
The corresponding private key and secret authentication puzzle solution are loaded into the
secure memory as part of the system software installation, along with the certificate.

Disclosure of the system software manufacturer’s signature key permits attackers to
create fake secure coprocessors, and these unsecure coprocessors or software emulations
can totally compromise the system.

In a similar fashion, if attackers possess the secret key and authentication puzzle solution
of a secure coprocessor, they can obtain any application-specific secrets associated with
secure applications subsequently installed on that coprocessor.43 Furthermore, attackers
will also be able to expose secrets stored in other secure coprocessors they manage, since
they can use an unsecure coprocessor as a transactional state transfer target.

Coprocessor-specific secrets are only vulnerable to exposure between the time of gener-
ation and the time of installation; by my main axiom, it is impossible to to obtain secrets after
they are installed in a secure coprocessor. Additional security can optionally be obtained
by requiring authorization (perhaps from the system software vendor) before engaging in
transactional state transfers.

One particularly security sensitive application is electronic currency, and it is important
to discuss how disclosures of critical secrets will compromise the system. The critical

43If the attacker had logged the previous installation of secure applications, those application-specific secrets
(and the privacy of the texts of programs themselves) are also endangered.
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data is the electronic currency application authentication puzzle solution. Disclosure of
this information permits creation of electronic cash, if access to the secure channel be-
tween secure coprocessors can be achieved. Since having access to the individual secure
coprocessor secrets implies access to the application secrets, one method of increasing
the work required to attack the system is to have the electronic currency application use
secure channels provided by the secure coprocessor kernel (perhaps with doubly encrypting
using application-level keys as well). The kernel performs coprocessor-to-coprocessor key
exchange using the individual secure coprocessor secrets. This forces attackers to obtain
access to individual secure coprocessor secrets rather than just the application secrets.

Further application-specific limits can limit the amount of the damage. In the case
of electronic currency, the electronic currency application can limit the total amount of
electronic currency that may be stored within a secure coprocessor. This limitation reduces
the risk of losing money as a result of catastrophic hardware failure, and also reduces the
rate at which fake electronic currency may be introduced into the system if secrets are
compromised. Additional limits may be added to restrict the rate at which electronic funds
can be transferred, though this only serves as a tourniquet and cannot solve the problems
of compromised secret keys.

Similar problems occur if the underlying cryptographic system is broken. The in-
tractability of factoring large moduli is basic to both the authentication and public key
systems. If a modulus used in a cryptographic algorithm is factored, secrets would be
similarly revealed. This problem is endemic to cryptographic applications in general.

7.4. Previous Work

Previous work on system isolation include fences [69] which introduced the idea of using
cryptographic checks to find system errors. Trusted computing bases form an important
part of the “Orange Book” Trusted Computer System Evaluation Criteria [101]. Trusted
computing bases rely on a strict security boundary between the secure environment and
the unsecure environment — all the computer hardware and software, including the ter-
minals, are considered secure, and the users are not. The system software implements the
appropriate access control, often mandatory, to enforce policy.
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Chapter 8

Performance

This chapter discusses Dyad’s performance. First, I examine the implementations of my
authentication and fingerprinting algorithms. Next, I look at the overhead of crypto-paging
relative to simple paging.

8.1. Cryptographic Algorithms

This section gives timing figures for my implementation of the authentication algorithm
and fingerprinting algorithm described in chapter 5. Because the Citadel unit is a research
prototype and its processor will be updated to newer, faster RISC processor, my timing
figures are for several processors: an i386SX processor running at 16 MHz; an i486DX2/66
processor; a MIPS R3000 processor; a Power processor for an IBM RS6000/950; and pro-
jected figures for a 601 PowerPC. Table 8.1 shows running times for the basic authentication
algorithm and the processing rates for the fingerprint algorithm on these processors.

The Citadel processor requires 3.45 seconds to perform zero knowledge two-way au-
thentication (see section 5.1.4) to achieve a security factor of 3:18 � 1028, using a 150
decimal digit modulus.44 To perform the authentication, Citadel and the host processor
(which provides networking for the secure coprocessor) must exchange 4 messages. The
overhead for sending a message between Citadel and the host processor is approximately
0.96 S; much of this overhead should disappear if the device drivers in the host and in
the Citadel-side Dyad kernel did not need to poll hardware status. (See section 4.2.1
for a discussion of the source of this overhead.) We anticipate dramatic improvement in
authentication time in the next generation of the Dyad hardware base.

The fastest fingerprinting implementation (see section 5.1.5) running on the Citadel’s
i386SX fingerprints at 410 Kbytes/sec. This assembler-coded routine uses a 65536-entry
table (216) of precomputed partial residues. This code run at the maximum possible memory
bandwidth: for comparison, a tight assembler loop loading source memory into a register
reads memory at a rate of less than 1.1 Mbytes/sec on the Citadel, and the fingerprint table
look-up code reads two additional memory words per word of input data. Because the
i386SX has no on-chip cache and the Citadel board provides no external cache memory,

44Factoring such a modulus should require approximately 20000 MIPS-years of CPU time using contemporary
(May 1994) factoring techniques [50, 87].
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Algorithm i386SX MIPS R3000 i486DX2/66 RS6000/950 PowerPC 601
(16 MHz) (20 MHz) (66 MHz)

Authentication 3450 249 167 114 86.0 est.
(mS)
Fingerprint 0.410 1.14 1.42 3.99 2.70 est.
(MB/S)

Table 8.1 Cryptographic Algorithms Run Time

Because the Citadel prototype coprocessor is a research prototype, its processor, a i386SX
running at 16 MHz, is likely to be upgraded to a newer, faster processor when secure
coprocessors become commercial products. To obtain these run times for non-Citadel
processors, I ran the portable C-language implementations of these algorithms on test data
on commercially available PCs and workstations (a DECstation 5000/200, an Elite 486 PC,
and an IBM RS6000/950); the times for the PowerPC 601 is extrapolated from its SPECint
ratings.

some of the memory bandwidth is expended fetching instructions. A more space-efficient
assembler language implementation uses a much smaller 256-entry table and fingerprints
at 226 Kbytes/sec, or about 55% of the speed of the first implementation. On Citadel, the
most tightly tuned C language implementations of the fingerprint algorithm achieve only
224 Kbytes/sec and 204 Kbytes/sec for large and small tables respectively, largely because
of the inability of the compiler to avoid register spills into memory and to optimally use
(and in some cases, even generate) some i386 instructions.

(The residue table initialization algorithm is described in section 5.2.5. For the large
table, the time required is approximately 1.23 S; the time for the small table is negligible
(42 mS). Note that this is a one-time charge.)

My experiments recommend that the smaller assembler coded version be used for most
cases. The large table version is useful where the same irreducible polynomial is used
for a large amount of data (perhaps when checking disk contents); the small version wins
when the irreducible polynomial is changed often, or where there are tight real-memory
requirements (such as in the Citadel prototype). When cache memory is added to future
generations of Citadel, the smaller-table version will gain in performance relative to the
larger-table version because the table of partial residues should easily fit within the cache.

Smaller code size is desirable for security code. When the code is smaller, the system
is easier to verify and less likely to contain bugs. The key exchange routines consists of
80 lines of C code. The authentication routines consists of 75 lines of C code. Both the
key exchange and the authentication code are written on top of a library of routines for
calculating with arbitrarily large integers. The fingerprinting code consists of 211 lines of
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C code and 160 lines of i386 assembler. My total core routines are relatively small: 366
lines of C code and 160 lines of assembler.

8.2. Crypto-Paging

The overhead for crypto-paging is unmeasurable, since both crypto-paging and normal
paging activity go through the hardware DES machinery and DMA channels. Overhead
only incurs when the encryption keys are set. This happens every time a page is written out
to host memory, where a (small) encrypted system disk image resides.

Additionally, the host system imposes limits on the number of pages that can be trans-
ferred, since we cannot guarantee that the disk image will reside in physically contiguous
memory. This means that if paging was not encrypted, the number of bytes copied per
DMA transfer is most likely to be a single virtual memory page (4K) anyway, and the
currently high per-DMA-transfer overhead (0.96 S) cannot be amortized over many pages
of memory.
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Chapter 9

Conclusion and Future Work

The problem of providing security properties for widely distributed systems is a difficult
one that must be solved before applications with strong privacy and integrity demands, such
as electronic commerce applications, can be safely deployed. All cryptographic protocols
require secrets to be kept, and all access control software assume the ability to maintain the
integrity of the access control database. These assumptions must be satisfied in any serious
secure distributed system; providing these security properties in a rigorous and complete
way is impossible without some form of physically secure hardware.

In this thesis I have shown that it is possible to provide very strong security guarantees
without putting the entire computer in a locked room. By adding secure coprocessors to
normal workstations or PCs, overall security may be bootstrapped from a core set of security
properties guaranteed by secure coprocessor hardware. Cryptographic techniques to check
integrity and to protect privacy can provide much stronger system-level security guarantees
can be provided than were previously possible.

Furthermore, by applying transaction processing techniques to security, I built electronic
currency systems where money cannot be created or destroyed accidentally. By using
quorum consensus and transactions, I designed fault tolerant secure coprocessor systems.

I have analyzed the native security properties of various components of the soft-
ware/hardware system, and arranged them into a security hierarchy; furthermore, I used
cryptographic techniques to enhance security properties. This separation of the system
architectural components by their security properties permit secure-system designers to
reason realistically about what kinds of security properties are actually achievable.

The contributions of this thesis may be summarized as follows:

� end-to-end analysis of the security properties of the system components, both at the
hardware level and at the software level;

� design and analysis of combined hardware-software architecture for bootstrapping
security guarantees throughout the system, using cryptographic techniques at the
system component boundaries (including crypto-paging and crypto-sealing);

� demonstration of the feasibility of the architecture by constructing a working pro-
totype system, providing insights into system design issues that restrict the overall
system architecture;
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� design, analysis, implemention, and measurement of cryptographic protocols for
zero-knowledge authentication and key exchange, suitable for use in security critical
environments;

� demonstrating that secure coprocessors may be statistically checked against vendor
fraud;

� showing how secure coprocessors may be operated in a fault-tolerant manner; and

� designing solutions to exemplar electronic commerce applications, including building
an electronic currency application and analyzing how cryptographic stamps may be
used.

Secure coprocessors exist today and can solve many pressing distributed security prob-
lems, but there remains several challenges to be solved by future developers of secure
coprocessor technology. The need for a general, low-cost distributed transaction system
is apparent, and it remains to be shown that one can be built to run efficiently within the
secure coprocessor environment. Tools for automating the task of splitting applications
are need, and the issue of providing operating system support for split secure-coprocessor
applications remains to be fully explored. Most importantly, many secure applications
building on secure coprocessors remain to be discovered.
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knowledge. In Journal of Computer and System Sciences, pages 156–189, October
1988.

[15] Julius Cæsar. Cæsar’s Gallic Wars. Scott, Foresman and Company, 1935.

[16] David Chaum. Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM, 28(10):1030–1044, October 1985.

[17] Ben-Zion Chor. Two Issues in Public Key Cryptography: RSA Bit Security and a
New Knapsack Type System. MIT Press, 1986.

[18] U. S. Internal Revenue Code. Internal revenue code volume 1, 1993.

[19] U. S. Legal Code. 1989 Amendments to the Omnibus Crime Control and Safe Street
Act of 1968, Public Law 101-162. United States Legal Code, U. S. Government
Printing Office, 1989.

[20] Helen Custer. Inside Windows NT. Microsoft Press, Redmond, WA, 1993.

[21] I. Damgard. On the existence of bit commitment schemes and zero-knowledge
proofs. In Lecture Notes in Computer Science, volume 325. Springer-Verlag, 1985.

[22] C. J. Date. An Introduction to Database Systems Volume 2. Addison-Wesley, Reading,
MA, 1983.

[23] Peter J Denning. Computers Under Attack: Intruders, Worms, and Viruses. ACM
Press, New York, N.Y., 1990.

[24] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New York,
NY, 1986.

[25] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-26(6):644–654, November 1976.

[26] Jeffrey L. Eppinger, Lily B. Mummert, and Alfred Z. Spector. Camelot and Avalon:
A Distributed Transaction Facility. Morgan Kaufmann, 1991.

[27] Uriel Feige, Amos Fiat, and Adi Shamir. Zero knowledge proofs of identity. In
Proceedings of the 19th ACM Symposium on Theory of Computing, pages 210–217,
May 1987.

[28] Edward W Felton and John Zahorjan. Issues in the implementation of a remote
memory paging system. Technical Report 91-03-09, University of Washington,
1991.

88



[29] Oded Goldreich. Towards a theory of software protection and simulation by oblivious
RAMs. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, May 1987.

[30] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, 1982.

[31] David Golub, Randall Dean, Alessandro Forin, and Richard Rashid. Unix as an
application program. In Proceedings of the Summer 1990 USENIX Conference,
pages 87–95, June 1990.

[32] Vice President Al Gore. Speech at the National Press Club, December 1993.

[33] James N. Gray. A transaction model. Technical Report RJ2895, IBM Research
Laboratory, San Jose, California, August 1980.

[34] James N. Gray. The transaction concept: Virtues and limitations. In Proceedings of
the Very Large Database Conference, pages 144–154, September 1981.

[35] Louis Claude Guillou, Michel Ugon, , and Jean-Jacques Quisquater. The smart
card : A standardized security device dedicated to public cryptology. In Gustavus J
Simmons, editor, Contemporary cryptology : The science of information integrity.
IEEE Press, Piscataway, NJ, 1992.

[36] M. Herlihy and J. D. Tygar. Capabilities without a trusted kernel. In A. Avizienis and
J. Laprie, editors, Dependable Computing for Critical Applications. Springer-Verlag,
1991.

[37] Maurice P. Herlihy. General quorum consensus: A replication method for ab-
stract data types. Technical Report CMU-CS-84-164, Carnegie Mellon University,
December 1984.

[38] Maurice P. Herlihy. A quorum-consensus replication method for abstract data types.
ACM Transactions on Computer Systems, 4(1), February 1986.

[39] Maurice P. Herlihy and J. D. Tygar. How to make replicated data secure. In Advances
in Cryptology, CRYPTO-87. Springer-Verlag, August 1987. To appear in Journal of
Cryptology.

[40] Dan Hildebrand. An architectural overview of QNX. In Proceedings of the USENIX
Workshop of Micro-Kernels and Other Kernel Architectures, April 1992.

[41] IBM Corporation. Common Cryptographic Architecture: Cryptographic Application
Programming Interface Reference, SC40-1675-1 edition.

89



[42] Stuart Itkin and Josephine Martell. A PDF417 primer: A guide to understanding
second generation bar codes and portable data files. Technical Report Monograph 8,
Symbol Technologies, April 1992.

[43] A. Longacre Jr. Stacked bar code symbologies. Identification Journal, 11(1):12–14,
January/February 1989.

[44] R. R. Jueneman, S. M. Matyas, and C. H. Meyer. Message authentication codes.
IEEE Communications Magazine, 23(9):29–40, September 1985.

[45] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching
algorithms. Technical Report TR-31-81, Aiken Laboratory, Harvard University,
December 1981.

[46] Stephen Thomas Kent. Protecting Externally Supplied Software in Small Computers.
PhD thesis, Massachusetts Institute of Technology, September 1980.

[47] Gene H. Kim and Eugene H Spafford. The design and implementation of trip-
wire: A file system integrity checker. Technical Report CSD-TR-93-071, COAST
Laboratory, Department of Computer Science, Purdue University, 1993.

[48] Donald Ervin Knuth. The Art of Computer Programming, Volume 2. Addison-
Wesley, Reading, MA, 2 edition, 1968.

[49] Samuel J. Leffler, Marshall K. McKusick, Michael J. Karels, and John S. Quarterman.
The Design and Implementation of the 4.3 BSD UNIX Operating System. Addison-
Wesley, 1989.

[50] A. K. Lenstra, Jr. H. W. Lenstra, M. .S. Manasse, and J. M. Pollard. The number field
sieve. In Proceedings of the 22nd ACM Symposium on the Theory of Computing,
pages 564–572, 1990.

[51] R. Lipton. Personal communication.

[52] Steven Low, Nicholas F. Maxemchuk, and Sanjoy Paul. Anonymous credit cards.
Technical report, AT&T Bell Laboratories, 1993. Submitted to IEEE Symposium on
Security and Privacy, 1993.

[53] Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. Atomic
Transactions. Morgan Kaufmann, San Mateo, CA, 1994.

[54] J. McCrindle. Smart Cards. Springer Verlag, 1990.

[55] Brock N Meeks. The end of privacy. WIRED, 2(04):40–50, April 1994.

[56] R. Merkle. A software one-way function. Technical report, Xerox PARC, March
1990.

90



[57] C. Meyer and S. Matyas. Cryptography. Wiley, 1982.

[58] National Semiconductor, Inc. iPower chip technology press release, February 1994.

[59] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication
in large networks of computers. Communications of the ACM, 21(12):993–999,
December 1978. Also Xerox Research Report, CSL-78-4, Xerox Research Center,
Palo Alto, CA.

[60] Ivan N. Niven, Herbert S. Zuckerman, and Hugh L. Montgomery. An Introduction
to the Theory of Numbers. Wiley, New York, 5 edition, 1991.

[61] Rafail Ostrovsky. Efficient computation on oblivious RAMs. In Proceedings of the
Twenty Second Annual ACM Symposium on Theory of Computing, pages 514–523,
May 1990.

[62] R. C. Palmer. The Bar-Code Book. Helmers Publishing, 1989.
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