
Outbound Authentication for Programmable Secure Coprocessors

S.W. Smith∗

Department of Computer Science/Institute for Security and Technology Studies
Dartmouth College

Hanover, NH USA 03755
sws@cs.dartmouth.edu

Technical Report TR2001-401

March 2001

Abstract

A programmable secure coprocessor platform can help solve many security problems in distributed computing.
These solutions usually require that coprocessor applications be able to participate as full-fledged parties in dis-
tributed cryptographic protocols. Thus, to fully enable these solutions, a generic platform must not only provide
programmability, maintenance, and configuration in the hostile field—it must also provide outbound authentication
for the entities that result. A particular application on a particular untampered device must be able to prove who it is
to a party on the other side of the Internet.

To be effective, a secure outbound authentication service must closely mesh with the overall security architecture.
Our initial architecture only sketched a rough design for this service, and did not complete it. This paper presents
our research and development experience in refining and implementing this design, to provide PKI-based outbound
authentication for the IBM 4758 Model 2 secure coprocessor platform.

1 Introduction

How does one secure computation that takes place remotely—particularly when someone with direct access to that
remote machine may benefit from compromising that computation? This issue lies at the heart of many current e-
commerce, rights management, and PKI issues.

To address this problem, research (e.g., [9, 13, 14]) has long explored the potential of secure coprocessors: high-
assurance hardware devices that can be trusted to carry out computation unmolested by an adversary with direct
physical access. For example:

• An adversary can subvert rights management on a complex dataset by receiving the dataset and then not follow-
ing the policy; secure coprocessors enable solutions by receiving the dataset encapsulated with the policy, and
only revealing data items in accordance with the policy.

• An adversary can subvert decentralized e-cash simply by increasing a register. However, secure coprocessors
enable solutions: the register lives insider a trusted box, which modifies the value only as part of a transaction
with another trusted box.

Many other applications—including auctions [6], e-commerce co-servers [10], and mobile agents [15]—can also ben-
efit from the high-assurance neutral environment that secure coprocessors provide.

One necessary step for achieving this potential is building high-assurance, programmable secure coprocessor plat-
forms. Such work usually focuses on establishing and maintaining physical security, and on how the device can

∗This paper reports design and development work performed when the author was on the research staff of IBM Watson.

1



authenticate code-loads and other commands that come from the outside world. However, using secure coprocessors
to secure distributed computation also requires outbound authentication (OA): the ability of coprocessor applications
be able to authenticate themselves to remote parties. (Code-downloading loses much of its effect if one cannot easily
authenticate the entity that results!)

Merely configuring the coprocessor platform as the appropriate entity—a rights box, a wallet, an auction marketplace—
does not suffice. A signed statement about the configuration also does not suffice. For maximal effectiveness, the
platform should enable the entity itself to have authenticated keypairs and engage in protocols with any party on the
Internet: so that only that particular trusted auction marketplace, following the trusted rules, is able to receive the
encrypted strategy from a remote client; so that only that particular trusted rights box, following the trusted rules, is
able to receive the object and the rights policy it should enforce.

The Research Project. The problem of programming a device is deceptively simple until one thinks of the com-
plexities of shipping, upgrades, maintenance, and hostile code, for a generic secure coprocessor that can be configured
and maintained in the hostile field. [7] Other reports [4, 3, 8] present our experiences in bringing such a device into
existence as a COTS product, the IBM 4758.

The same issues that complicate configuring the box also complicate outbound authentication. Although our initial
security architecture [8] sketched a design for OA, we did not fully implement it—nor fully grasp the nature of the
problem—until the Model 2 device. As with the rest of the 4758 work, we had to simultaneously undertake tasks one
might prefer to tackle sequentially: identify fundamental problems; reason about solutions; design, code and test; and
ensure that it satisfied legacy application concerns.

This Paper. This paper is a post-facto report expanding on this research and development experience. Section 2
discusses problems; Section 3 presents theoretical foundations; Section 4 and Section 5 present design and implemen-
tation experiences; and Section 6 suggests some directions for future work.

2 Evolution of the Problem

2.1 Background and Approach

Software Structure We start with a brief overview of the software structure of the 4758. The device is tamper-
responding: with high assurance, on-board circuits detect tamper attempts and destroy the contents of volatile RAM
and non-volatile BBRAM before an adversary can see them. The device also is a general purpose computing device;
internal software is divided into layers, with layer boundaries corresponding to divisions in function, storage region,
and external control. The current family of devices has four layers: Layer 0 in ROM, and Layer 1 through Layer 3 in
rewritable FLASH.

The layer sequence also corresponds to the sequence of execution phases after device boot: initially Layer 0 runs, then
passes invokes Layer 1, and so on. In the current family Layer 2 is intended to be an internal operating system; it
invokes the application in Layer 3 but doesn’t actually go away.

We intended the device to be a generic platform for secure coprocessor applications; hence, applications must be
installable. Business forces pressured us to have only one shippable version of the device, and to ensure that an
untampered device with no hardware damage can always be revived. We converged on a design where Layer 1 contains
the security configuration software which establishes owners and public keys for the higher layers, and validates code
installation and update commands for those layers from those owners. Layer 1 is updatable, in case we want to change
its officer’s public key, upgrade algorithms, or fix bugs; but is mirrored so that failures during update will not leave us
with a non-functioning layer.

Authentication Approach Another business constraint we had was that the only guaranteed contact we would
have with a card was at manufacture time—in particular, we could assume no audits, nor database of card-specific data
(secret or otherwise), nor any provide any services to cards once they left. This constraint naturally suggested the use

2



of public-key cryptography for authentication, both inbound and outbound. For OA, we should keep a private key in
tamper-protected memory, and have something create signed certificates about the corresponding public key. Because
of the last-touch-at-manufacturing constraint, we can last do something cryptographic at the factory. After that, it’s
up to the card to prove what it is—despite changing configurations, and potentially buggy or malicious software,
developers, and users.

2.2 On-Card Entities

One of the first things we need to deal with is the notion of what an on-card entity is.

This is tricky. Let’s start with a simple case: suppose the coprocessor had exactly one place to hold software and
zeroized all state with each code-load. In this scenario, the notion of entity is pretty clear: a particular code-load C1

executing inside an untampered device D1. The same code C1 inside another device D2 would constitute a different
entity; as would a re-installation of C1 inside D1.

However, even this simple case raises a challenge: if a reload replaces C1 with C2, and reloads clear all state, how
does the resulting entity—C2 on D1—authenticate itself to a party on the other side of the net? (We would start down
a path of shared secrets and personalized code-loads.)

Unfortunately, the reality of building a programmable secure coprocessor to support real customer and research needs
creates more complex scenarios: multiple layers from different owners, a reloadable code-loading layer, a general-
purpose OS, post-boot execution phases, and developer demands that we sometimes permit secret retention across
reload. Each of these adds more wrinkles. With a secret-preserving load; the “entity” may stay the same, but the
code may change; with a secret-destroying load, the “entity” may change, but the code stays the same. Should an
application entity “include” the OS underneath it? Should it include the configuration control layers that ran earlier in
this boot sequence, but are no longer around?

Proposed future areas of work blur these boundaries even further. In an architecture that supports two or more mutually
suspicious applications, should the presence (and version) of one application be part of the other entity? What about
an architecture that permits applications to graft extensions onto the operating system, or one with hardware support
that permits more general scenarios than successively less-trust phases?

Since we built the 4758 to support real applications, we gravitate towards a practical definition: an entity is an instal-
lation of the application software in a trusted place, identified by the underlying operating system and hardware.

2.3 Tricky Scenarios

Consider a roughly-drawn scheme: on-card entities use a certified keypair, whose private key lives in tamper-protected
memory, to prove who they are to some party P in the external world. Careful reflection generates numerous scenarios
that create problems

Code-Loads. Suppose entity C is the application Layer 3 in a particular device. Layer 3 may change: two pos-
sible changes include a simple code update taking the current code C1 to C2, or a complete re-install of a different
application from a different owner, taking C1 to C3.

With no additional countermeasures, we’re left with some disturbing facts:

• An external party P cannot distinguish between C1 and C2.

If C1 was corrupt, then party P can never be sure if they’re talking to a patched version—even if some cards
may never had had the bad version in there.

If C1 is correct but C2 is corrupt, then party P can never be sure if they’re talking to a good version, or one that
had the corrupt update. The mere existence of a signed update command compromises all the cards.

• An external party P cannot distinguish between C1 and C3. If C3 uses the same private key as the old application
C1, then a malicious developer can write code that pretends to be someone else’s.

3



Code-Loading Code. Even more serious problems arise if a corrupted version of the configuration software A

in Layer 1 exists. If an evil version existed that allowed arbitrary behavior, then (without further countermeasures) a
party P cannot distinguish between any on-card entity E1, and an E2 consisting of a rogue Layer 1 carrying out some
elaborate spoof.

Underlying Code. Problems can also arise because underlying code changes. Debugging an application requires
an operating system with debug hooks; but since nothing works like the real thing, a reasonable development scenario
is to be able to “update” back-and-forth between a version of the OS with debug hooks and a version without.

With no additional countermeasures, party P cannot distinguish between:

• the application running securely with the real OS;

• the application with debug hooks underneath it;

• the application with the real OS, but with a policy that permits hot-update to the debug version.

Internal Certification. The above scenarios suggest that perhaps a single keypair for the card may not suffice.
But if we extend to schemes where one on-card entity generates and certifies keypairs for other on-card entities, we
encounter more tricky scenarios. For example, suppose Layer 1 generates and certifies keypairs for the Layer 2 entity.

If a reload replaces corrupt OS B1 with an honest B2, then party P should be able to distinguish between the certified
keypair for B2 and that for B1. However, without further countermeasures, if supervisor-level code can see all data on
the card, then B1 can forge messages from B2.

A similar penetrated-barrier issue arises if we expect an OS in Layer 2 to maintain a private key separate from an
application Layer 3, or if we entertained alternative schemes where mutually suspicious applications executed concur-
rently. If a hostile application might in theory penetrate the OS protections, then an external party cannot distinguish
between messages from the OS, messages from the honest application, and messages from rogue applications.

Outliving the Certified. This line of thinking led us to the more general observation that, if the certifier outlives
the certified, then the integrity of what the certified does with their keypair depends on the future behavior of the
certifier.

In the case of the coprocessor, this observation has some more subtle and dangerous implications. For example, one
of the reasons we centralized configuration control in Layer 1 was to enable the application developer to distrust the
OS developer and request that his application (and its secrets) be destroyed, if the underlying OS undergoes an update.
However, if the outbound authentication scheme has the underlying OS certify keypairs for the application, and the OS
keypair lives through the update, then (without further countermeasures) an external party cannot distinguish between
messages from the original application and messages (and certified keypairs) forged by the untrusted post-update OS.

3 Theory

The construction of the card suggests that we use certified keypairs for outbound authentication. The obvious approach
of just sending the card out with a certified keypair does not work. The next obvious approach of having some on-card
entities certify things of other on-card entities also does not quite work. Why?

3.1 Dependence

Our problems arose because entities may develope dependencies as computation proceeds. We need language to talk
about this.

4



Definition 1 (History, Run,≺) Let a history be a finite sequence of computation for a particular device.
Let a run be some unbounded sequence of computation for a particular device. We write H ≺ R when
history H is a prefix of run R.

Definition 2 (Dependency) For entities E1 and E2 in run R, we write:

• E2

data
−→R E1 when E1 has read/write access to the secrets of E2

• E2

code
−→R E1 when E1 has write-privilege to the code of E1

Let −→R be the transitive closure of the union of these two relations.

Definition 3 (Dependency Set) For an entity E in a run R, define its dependency set:

DepSet(E,R) = {F : E −→R F}

A party trying to authenticate entity E usually has some notion who E is. DepSet(E,R) denotes the rest of the entities

whose malicious operation could fool P in this run R. If C1 follows B1 in the post-boot sequence, then C1

data
−→R B1;

if C2 is a secret-preserving replacement of C1, then C1

data
−→R C1; if A can reburn the FLASH segment where B lives,

then B
code
−→R A.

3.2 Certificate Chains

How might an external party P authenticate a message M came from on-card entity E? Typically, E signs M using
the private member of a keypair KP, and party P obtains a certificate chain X that purports to support the binding of
KP to E. P then carries out some validation algorithm Validate on the chain. If that yields true—and if the signature
on M validates against KP—then P accepts that M came from E.

In this analysis, we’ll use certificate in the limited sense of a signed statement binding together a public key and an
identity. The certificate chain usually consists of (as the name suggests) a chain of certificates: X0, X1, ..., Xn. For
i < n, each Xi is a signed statement attesting to the public key of the entity that signed Xi+1; Xn attests to the public
key of the entity E. The Validate algorithm usually (e.g., [1]) consists of: validating that X0 was signed by a trust
root (an entity and keypair that party P trusts prima facie), and then validating that each Xi was signed by the public
key named in Xi−1. (One may also see forays into time and expiration dates; PGP allows individual users to establish
more flexible trust policies.)

3.3 Drawing Conclusions from Certificate Chains

What consistency rules are reasonable for validating chains from coprocessor entities?

First, we need some notion of trust. A party P usually has some ideas of which on-card applications it might trust to
behave “correctly” regarding keys and signed statements, and which ones it is unsure of.

Definition 4 For a party P , let TrustSet(P ) denote the set of entities that P whose statements P trusts.

In a more formal treatment, E ∈ TrustSet(P ) might imply:

• If P knows a binding of KP to E, and receives a statement S correctly signed with KP, then P concludes that
E said S.

• If S is a statement regarding some domain of interest (such as statements about other keypair-entity bindings),
and P believes that E said S, then P believes S.

5



Security dependence depends on the run; entity and trust do not. This leads to a potential conundrum: suppose in run
R, C −→R B, C ∈ TrustSet(P ), but B 6∈ TrustSet(P ). Then P cannot reasonably accept any signed statement from
C, because B may have forged it.

This situation suggests the following rule:

Definition 5 (Consistency) A certification scheme is consistent when, for any entity E, party P , run
R, and chain XE allegedly from E:

Validate(P,XE) =⇒ DepSet(E,R) ⊆ TrustSet(P )

One might also turn the implication the other way.

Definition 6 (Complete) A certification scheme is complete when, for any entity E, party P , run R,
and correctly signed chain XE actually from E:

DepSet(E,R) ⊆ TrustSet(P ) =⇒ Validate(P,XE)

In the context of OA for coprocessors that cannot be opened or otherwise examined, it’s reasonable to impose the
restriction: on-card entities carry their own chains, and an external party decides validity based on this chain and the
party’s own list of trusted entities.

Definition 7 Let Chain(E,H) denote the certificate chain presented by entity E after history H .

Definition 8 (Trust-set) A trust-set certification scheme is one where the Validate algorithm is deter-
ministic on the variables Chain(E,H) and TrustSet(P ).

These definitions equip us to formalize a fundamental observation:

Theorem 1 Suppose an on-card entity E uses a trust-set certification scheme that is consistent and
complete, and suppose two histories H1, H2 are prefixes of runs R1, R2 respectively. Then:

DepSet(E,R1) 6= DepSet(E,R2) =⇒ Chain(E,H1) 6= Chain(E,H2)

Proof Suppose DepSet(E,R1) 6= DepSet(E,R2) but Chain(E,H1) = Chain(E,H2). Let party P have DepSet(E,R1) ⊆
TrustSet(P ) but DepSet(E,R2) 6⊆ TrustSet(P ).

Since this is a trust-set certification scheme and Chain(E,H1) = Chain(E,H2), party P must either accept or reject
the chain in both runs. If party P accepts in run R2, then the scheme cannot be consistent; But if party P rejects in
run R1, the scheme cannot be complete.

Theorem 1 implies that if:

• on-card entities are going to carry around their own certificates,

• the nature of coprocessor architecture forces dependencies,

• and we need to accommodate a range of potential opinions about trusted entities,

then certificate chains had better name the dependency set.

(We note that the above definitions and theorem could also be extended to include the notion of time as a parameter to
Validate.)

6



4 Design

4.1 Breaking Unwanted Dependencies

Our first step developing an OA scheme that enables reasonable conclusions is to trim away unnecessary dependencies.

Vertical Separation Let B,C be Layer i, Layer i + 1 respectively. The post-boot sequence gives us C −→R B,
which we felt was unavoidable. 1 But other direction should be avoidable; and we used hardware to avoid it.

• Ratchet Locks. To provide high-assurance separation, we developed ratchet locks: an independent micro-
controller tracks a counter, reset to zero at boot time. The microcontroller will advance the ratchet at the main
coprocessor CPU’s request, but never roll it back. Before B invokes the next layer, it requests an advance.

• Protected Memory. To ensure B
data
6−→R C, we reserved a portion of battery-backed RAM for B—and used

the ratchet hardware to enforce access control.

• Protected Code. To ensure B
code
6−→R C, we write-protect the FLASH region where B is stored. The ratchet

hardware restricts write privileges only to the designated prefix of this sequence.

Horizontal Separation Another set of solutions addressed code-loading and ownership changes.

• Updates to the code-loading layer. As discussed elsewhere, we felt that centralizing code-loading and
policy decisions in one place enabled cleaner solutions to the trust issues arising when different parties control

different layers of code. Suppose Layer 1 entity A1 is reloaded with A2. It’s unavoidable that A2

code
−→R A1. But

to avoid A1

data
−→R A2, we take these steps as an atomic part of the reload:

– A1 generates a keypair for its successor A2;

– A1 uses its current keypair to sign a transition certificate attesting to this change of versions and keypairs;

– A1 destroys its current private key.

• Updates to higher layers. For higher layers, we established a two-step process: establishing ownership for
an unowned layer, and loading code into that layer. At every boot, Layer n’s private memory is cleared unless
it’s owned and contains undamaged code. Code reloads will preserve a layer’s memory only if that layer’s owner
explicitly permits that—and the card is in a position to verify that permission. This breaks dependency across
successive installations of code at that layer, as well as across all other loads the owner requested.

Diagonal Separation. The card may destroy a layer’s secrets because a code-load violated that layer’s owner’s
policy, or because of other disaster. How should such destruction relate across layers? We decided to preserve a lower
layer’s secrets, but destroy a higher layer’s.

4.2 Chaining along the Dependency

4.2.1 Linear Chains

Trimming dependency down to a linear chain enables a nice certification scheme. Suppose E0 is a CA and E1, ..., Ek

is a sequence of entities in history H ≺ R such that:

• For i ≥ 1, DepSet(Ei, R) = {Ej : 0 ≤ j < i}

1With unknown software, and only one chance to get the hardware right, we did not feel comfortable with attempts to restore the system to a
more trusted state, short of reboot.

7



• Chain(E1, H) is a certificate from E0.

• For i > 1, Chain(Ei, H) is a certificate from Ei−1 appended to Chain(Ei−1, H).

This linear structure gives rise to a simple algorithm for validation:

• Validate(P, Chain(E1, H)) is true when {E0, E1} ⊆ TrustSet(P ) and the certificate is correctly signed.

• For i > 1, Validate(P, Chain(Ei, H)) is true when Validate(P, Chain(Ei−1, H)) is true, Ei ∈ TrustSet(P ), and
the the Ei certificate is correctly signed.

This is a trust-set certification scheme, since party P decides Validate based only the chain and TrustSet(P ); this
scheme is also consistent and complete, since party P accepts the certificate if and only if DepSet(Ek, R) ⊆ TrustSet(P ).

Layer 1 If we group the ROM Layer 0 with the hardware, and describe the Layer 1 entity as “this software, on
this hardware,” then the above separation schemes organize the the Layer 1 dependency into a linear chain, pointing
backwards in time: each version depends on the previous version.

This convenient organization enables clean construction of a consistent, complete, trust-set certification scheme for
Layer 1 entities: the certificate chain consists of the original factory certificate, and the sequence of transition certifi-
cates.

Subsequent Layers, Conveniently. If officers requested that all reloads destroyed secrets, then the linear de-
pendency sequence would extend upwards to Layer 2 and Layer 3 (much as Figure 16 from [8] implies).

For example, suppose A1, B1, C1 are the layer entities. Then DepSet(B1, R) is just DepSet(A1, R) with A1; and
DepSet(C1, R) picks up B1. The dependencies form a linear sequence; the vertical, horizontal, and diagonal separa-
tions of Section 4.1 preserve this fact across reloads.

4.2.2 Subsequent Layers, in Reality

Unfortunately, this simple design cannot accommodate the reality of the development and application environments
we targeted.

• Selective Preservation. Some developers wanted their layer’s data preserved across updates Some don’t.
Some want the their data preserved, but still regard the installation with the new code as a different entity.

• Retroactive Paranoia. Even full-preservation developers reserved the right to, post-facto, suddenly develop
negative opinions about certain versions of code—and be able to verify whether any of those nefarious entities
had snuck in and out.

• Careless Verification. One experienced application architect insisted that users and developers will not pay
attention to details of certificate paths, and (unless care was taken) would happily accept anything that validates
to any root, for any purpose.

• Penetration Risk. Although the current architecture forces applications to trust the device’s OS, we felt that
developers would also demand “retroactive paranoia” here: to, later on, discover that a certain version of the OS
code could be penetrated by a malicious application, and to (post-facto) try to determine if that had happened.

• Upstart Developers. Where possible, we should maximize the credibility our architecture can endow on ap-
plications from small developers unable to assure the public of the integrity and correctness of their applications
(e.g., through code inspection, formal modeling, etc).

4.3 Dealing with Reality

Can we preserve the nice chain-scheme, while accommodating these limitations?

8



4.3.1 Lifetimes and Dependency

The conflicting concepts that developers have about what exactly happens to their on-card entity when code update
occurs leads us to think more closely about entity lifetimes.

Definition 9 (Configuration, Epoch) A Layer N configuration is the maximal period in which that
Layer is runnable, with an unchanging software environment. A Layer N epoch is the maximal period in
which the Layer can run and accumulate state. If E is an on-card entity in Layer N ,

• E is an epoch-entity if its lifetime extends for a Layer n epoch.

• E is a configuration-entity if its lifetime extends for a Layer n configuration.

A Layer n epoch-entity consists of a sequence of Layer n configuration-entities. This sequence may be unbounded—
since any particular epoch might persist indefinitely, across arbitrarily many configuration changes.

Definition 10 (Sequence Set) Suppose E is a Layer n epoch-entity.

• Let Sequence(E,H) be the sequence of Layer n configuration-entities in history H .

• Let Sequence(E,R) be the sequence of Layer n configuration-entities in the entire run R.

If H ≺ R, then Sequence(E,H) ⊆ Sequence(E,R). However, this inequality may very well be strict: since H is just
a prefix, many configuration changes may still come.

Given developer constraints, we have two views of Layer n in a particular run R: as a configuration-entity EC and as
an epoch-entity EE , satisfying EC ∈ Sequence(EE , R).

• EE
data
−→R EC , because entity EC is the epoch-entity EE during that configuration.

• However, we can ensure that EC

data
6−→R EE if we take care to declare a portion of the Layer n protected memory

for the configuration-entity only—and if we ensure that this memory is indeed destroyed as part of configuration
change.

4.3.2 Certification Scheme

Since we do not know a priori what these applications will be doing, we felt that application keypairs needed to be
created and used at the application’s discretion. From the software architecture, this means that Layer 2 does this work
(since it’s easier at run-time and the Layer 1 protected memory is locked away before Layer 2 and Layer 3 run)

However, developers want to think of applications both as epoch-entities and as configuration-entities. Can we build a
Layer 2 CA that will enable the nice chain-scheme of Section 4.2.1 for both types of applications?

Clearly Bad Example. If this CA BCA outlived the Layer 2 configuration, then our certification scheme cannot
be both consistent and complete. Suppose C1 is a configuration-entity on top of B1; B1 changes to B2 but both
are in BCA; and party P trusts C1, B1 but not B2. (Such parties will likely exist, for developers who worry about
configurations.) For the scheme to be complete, P should accept certificate chains from C1—but that means accepting
a chain from BCA, and BCA −→R B2 6∈ TrustSet(P ).

Subtly Bad Example. The above example fails because the application entity has a CA whose dependency set is
larger than the application’s. Limiting the CA to the the current Layer 2 configuration-entity eliminates this issue, but
fails to address the penetration risk issue from Section 4.2.2. Parties who come to believe that a particular OS can be
penetrated by an application can end up with the current BCA depending on future application loads.

9



Our Solution. Our final design avoids these problems by having the Layer 2 CA BCA live exactly as long as the
Layer 3 configuration. We reserve part of the Layer 2 protected memory for the private key for BCA; upon any change
to the Layer 3 configuration, Layer 1 destroys the old BCA private key, generates a new keypair, and certifies it to
belong to the new BCA for the new Layer 3 configuration.

This gives us a trust-set scheme for both epoch-applications and configuration-applications, that is both complete and
consistent.

5 Implementation

5.1 System Model

With this certification scheme, the Layer 3 application sees an outbound authentication manager (resident in Layer 2)
that maintains a store of certificate-keypair objects (CKOs), and provides various services for the application to interact
with them.

These services include:

• generating and certifying a new CKO (the certificate indicates whether the application specified the private key
should persist to end of the current configuration, or all the way to the end of the epoch);

• operations with the private-key of a specified application-level CKO; and

• providing certificate lists and certificates so the application can easily extract those necessary to form a support-
ing chain for a particular signature. (To ease chain construction, we provide the list as an indexed array, whose
entries include the index of that certificate’s signing certificate.)

The store includes all the Layer 1 certificates, including the original device certificate, as well as the public key of the
factory CA (so the application can authenticate other device applications).

Automatic Destruction. The layers underneath the application ensure that the store changes in accordance with
significant state changes of the device.

When the Layer 3 configuration ends, the private keys in any current Layer 3 configuration keypairs need to be de-
stroyed along with the OA Manager’s current private key; and a new OA Manager keypair needs to be generated and
certified. When the Layer 3 epoch finally ends: the private keys in any current Layer 3 epoch keypairs need to be
destroyed; we also take this opportunity to delete any old inactive Layer 2 and Layer 3 certificates that persist.

The Manager itself needs to gracefully recognize and respond to these changes (e.g., by noticing that it has a new
keypair object, and that many other objects have changed to inactive, “no private key” status).

5.2 Coding

Our implementation consists of two components:

• the security configuration code in Layer 1 needs to do the appropriate generation, certification, and destruction
as an atomic part of the various configuration changes, and

• the OS that IBM ships in Layer 2 needs to pick up the pieces that Layer 1 leaves it, and provide the appropriate
services to Layer 3.

Full support for OA shipped with all Model 2 family devices. Furthermore, the Layer 1 component underwent full
formal modeling and testing, as part of the FIPS 140-1 Level 4 validation of the Model 2 hardware and security layers.

10



The Threat of Backwards Compatibility. As our original architecture paper sketched, we intended full out-
bound authentication support in the device from the beginning. However, the Model 1 family of 4758 devices shipped
with just the Layer 1 chain, for the mundane reason that we needed to meet the product deadline imposed by the legacy
IBM cryptographic accelerator line, which (at the time) did not require this feature.

The potential that we might upgrade deployed Model 1 cards to include OA complicated our coding. We needed to
live within the hardware restrictions of both devices: the smaller sizes and layouts of protected BBRAM in Model 1
limited what we could store; the larger FLASH sector sizes in Model 2 eliminated any chance of establishing special
certificate stores. Furthermore, this potential meant that we needed to allow for an OA-aware Layer 1 to be loaded
into a pre-OA card, and figure out and process the pre-OA certificate information there. The eventual decree that OA
would only go out with the new devices was welcome news.

Storage Areas. We had four interesting transitions: epoch and configuration ends, for Layer 2 and Layer 3. Since
the Model 1 device did not use the Layer 2 and Layer 3 BBRAM regions, we seized them, divided each in two to
get four regions, declared one for each of the interesting transitions, and ensured that Layer 1’s initial clean-up code
enforced the appropriate rules.

However, what needs to be destroyed—a non-empty set of private keys—and what needs to be stored is much larger
than these small protected regions. New material may be generated for code-loads or other changes to any of the three
rewritable layers, and may also be generated during application run-time. We extended the virtual storage area by
storing a MAC key and a TDES encryption key in each protected region. We stored the ciphertext for new material
wherever we could: during a code-change, that region’s FLASH segment; during application run-time, in the Layer 2-
provided PPD data storage service. The OA Manager start-up code needs to check all the FLASH segments to see
where the latest ciphertext store is, extract the run-time certificates from PPD, and digest all this information. This
digestion includes recognizing that a previously active keypair has been demoted to inactive, by noticing that the entity
TDES/MAC keys no longer extract the private key.

Atomic Actions. Now that we have places to store things and destroy them, we needed to extend the Layer 1 tran-
sition engine to perform the appropriate generations and certifications. Here we benefitted from earlier groundwork:
the fact that the initial Layer 1 was designed for potential FIPS validation led to a clean layout of state changes; our
security paranoia led to a nice layout of staging, then atomically committing, state changes. The multiplicity of keys
and identities added some wrinkles. For example, if Layer 1 decides to accept a new Layer 1 load, we now also need
to to generate a new OA Manager keypair, and certify it with the new Layer 1 keypair as additional elements of this
atomic change. We needed two passes before commitment, one to determine everyone’s names should the change
succeed, and another to then use these names in the construction of new certificates.

Data Structures and Naming. Naming the configuration and epoch entities in a way that users and developers
was challenging—particularly since the initial architecture was designed in terms of parameters such as code version
and owner, and the notion of “entity” is much murkier. We eventually included all the identifying information that
was possibly relevant, but minimized redundancy—what’s in the Layer 1 certificate is not repeated in the OA Manager
certificate, and what’s in the OA Manager certificate is not repeated in the application certificates. We simplify the
developer’s view by, in the API documentation, using “epoch” and “configuration” only for the Layer 3 variety—the
only one they care about.

As lamented elsewhere, the commercial 4758 family has no notion of secure time—since the hardware real-time clock
may drift, and since the hardware permits the application to set actual clock value. As a consequence, the security
configuration code tracks time by boot count: a non-decreasing counter advanced each time the device is booted.
We name epochs and configurations by the boot-count in which they started; we also track the count of how many
configurations have occurred within this epoch.

5.3 Addressing the Issues

This design meets the criteria of Section 4.2.2:

11



• Selective Preservation. Applications can select either configuration or epoch lifetimes for their keys.

• Retroactive Paranoia. A party can determine the sequence of Layer 3 configurations so far in a particular
epoch by authenticating the current configuration, and requesting to the see the sequence of OA Manager cer-
tificates for each previous configuration. By design, these are not deleted, and are linked together by count. An
untrusted configuration within this epoch cannot hide its existence.

• Careless Verification. To mitigate this risk, we do not provide a “verify this chain” service—applications
must explicitly walk the chain. Also, we gave different families of cards different factory roots, to avoid the risk
of carelessly accepting the wrong entity.

• Penetration Risk. To mitigate this risk, we bound the OA Manager entity to a Layer 3 configuration.

• Upstart Applications. To mitigate this risk, we retain the private keys within the OA Manager, and only
provide private-key services to the application.

By defining and separating entities, and considering how trust and certification interact, this design also addresses the
issues of Section 2.3.

6 Alternatives and Future Work

We quickly enumerate some avenues for future research and reflection:

• Alternative Software Structure. Our OA design follows the 4758 architecture’s sequence of increasingly
less-trusted entities after boot. Some current research explores architectures that dispense with this limiting
assumption, and also dispensing with the 4758 assumptions of one central loader/policy engine, and of a Layer 2
that exists only to serve Layer 3. It would be interesting to explore OA in these realms.

• TCPA. Since our work, the Trusted Computing Platform Alliance [11] has published ideas on how remote par-
ties might gain assurance about the software configuration of remote desktop machines. It would be interesting
to explore the interaction of our OA work with this now-timely topic, as well as the longer history of work in
securely booting desktops [2, 12]

• Standardized Certificate Formats. As a consequence of the development process, our OA design uses
4758-specific certificate formats. Using a broader standard, such as SPKI, would enhance interoperability.

• Witnesses. The analysis and design presented in this paper assumes an authority making a statement about
an entity at the time a keypair is created. Long-lived entities with the potential for run-time corruption suggest
ongoing integrity-checking techniques. It would be interesting to examine OA in light of such techniques.

• Formal Semantics for PKI. Throughout this design process, we continually found ourselves reasoning about
and explaining what a particular signature or certification scheme meant. (Indeed, one might characterize the
entire 4758 architecture process as “tracing each dependency, and securing it.”) This is an area of ongoing re-
search for PKI in general (e.g., [5]). It would be interesting to examine the impact of such work in the context of
secure coprocessors, where PKI-based OA may be the only way to verify what’s going on inside the untampered
box.

Our experience with the OA architecture in the 4758, like other aspects of this work, balanced the goals of enabling
secure coprocessing applications while also living within product deadlines. OA enables Alice to design and release
an application; Bob to download it into his coprocessor; and Charlie to then authenticate remotely that he’s working
with this application in an untampered device.

Outbound authentication allows third-party developers to finally deploy coprocessor applications, like Web servers [10],
that can be authenticated by anyone on the Internet. Perhaps the most exciting avenue for future work will be the emer-
gence and deployment of such applications.

12



Acknowledgments

The author gratefully acknowledges the comments and advice of the greater IBM 4758 team; particular thanks go to
Mark Lindemann, who co-coded the Layer 2 OA Manager, and Jonathan Edwards, who tested the API and transformed
my design notes into manuals and customer training material. The author is also grateful for the comments and advice
of the Dartmouth PKI Lab on new research issues here, and the continual probing questions from Leendert Van Doorn
and the current IBM Research team.

References

[1] C. Adams, S. Lloyd. Understanding Public-Key Infrastructure. Macmillian. 1999.

[2] W. A. Arbaugh, D. J. Farber, J. M. Smith. “A Secure and Reliable Bootstrap Architecture.” IEEE Computer Society Conference
on Security and Privacy. 1997.

[3] J. Dyer, R. Perez, S.W. Smith, M. Lindemann. ‘Application Support Architecture for a High-Performance, Programmable
Secure Coprocessor.” 22nd National Information Systems Security Conference. October 1999.

[4] J. Dyer, M. Lindemann, R. Perez, R. Sailer, S.W. Smtih, L. van Doorn, S. Weingart. “The IBM 4758 Secure Coprocessor:
Overview and Retrospective.” IEEE Computer, to appear, 2001.

[5] J. Howell and D. Kotz. A Formal Semantics for SPKI (extended version). Computer Science Technical Report TR2000-363,
Dartmouth College. March 2000. (An earlier version appeared in ESORICS.)

[6] A. Perrig, D. Song, J. D. Tygar, S.W. Smith. “SAM: A Flexible and Secure Auction Architecture Using Trusted Hardware.”
1st International Workshop on Internet Computing and Electronic Commerce. IEEE Computer Society, 2001.

[7] S. W. Smith, E. R. Palmer, S. H. Weingart. “Using a High-Performance, Programmable Secure Coprocessor.” Proceedings,
Second International Conference on Financial Cryptography. Springer-Verlag LNCS, 1998.

[8] S.W. Smith, S.H. Weingart. “Building a High-Performance, Programmable Secure Coprocessor.” Computer Networks (Special
Issue on Computer Network Security). 31: 831-860. April 1999.

[9] S. W. Smith. Secure Coprocessing Applications and Research Issues. Los Alamos Unclassified Release LA-UR-96-2805, Los
Alamos National Laboratory. August 1996.

[10] S. W. Smith. WebALPS: Using Trusted Co-Servers to Enhance Privacy and Security of Web Interactions. Research Report RC
21851, IBM TJ Watson Research Center. October 2000.

[11] Trusted Computing Platform Alliance. TCPA Design Philosophies and Concepts, Version 1.0. January, 2001.

[12] J. D. Tygar and B. S. Yee. “Dyad: A System for Using Physically Secure Coprocessors.” Proceedings of the Joint Harvard-
MIT Workshop on Technological Strategies for the Protection of Intellectual Property in the Network Multimedia Environment.
April 1993.

[13] B.S. Yee. Using Secure Coprocessors. Ph.D. thesis. Computer Science Technical Report CMU-CS-94-149, Carnegie Mellon
University. May 1994.

[14] B.S. Yee and J.D. Tygar. “Secure Coprocessors in Electronic Commerce Applications.” 1st USENIX Electronic Commerce
Workshop. 1996.

[15] B.S. Yee. A Sanctuary For Mobile Agents. Computer Science Technical Report CS97-537, UCSD, April 1997. (An earlier
version of this paper appeared at the DARPA Workshop on Foundations for Secure Mobile Code.)

13


