

Flexible Policy-Directed Code Safety
 David Evans Andrew Twyman
 evs@sds.lcs.mit.edu twyman@sds.lcs.mit.edu

 MIT Laboratory for Computer Science

Abstract
This work introduces a new approach to code safety.

We present Naccio, a system architecture that allows a
large class of safety policies to be expressed in a general
and platform-independent way. Policies are defined in
terms of abstract resource manipulations. We describe
mechanisms that can be used to efficiently and
conveniently enforce these safety policies by transforming
programs. We are developing implementations of Naccio
that enforce policies on JavaVM classes and Win32
executables. We report on results using the JavaVM
prototype.

1 Introduction
The security system was adequate, but it did not
foresee an armed robbery.

Italian Minister of Culture Walter Veltroni,
explaining the theft of two van Goghs and a
Cézanne from Rome’s National Gallery.

Code safety means knowing what a program will not

do. The problem of code safety has been around since the
earliest days of computing, but has become increasingly
important as it has become easier to distribute programs.
Current environments demand more flexible security than
traditional operating systems provide. Users should be
able to run different programs with varying degrees of
trust and specific restrictions and capabilities.

Most code safety systems work adequately until they
are attacked in ways the system designers did not foresee.
What is needed is a system that allows new safety policies
that enforce constraints outside those considered by the
original system designers to be rapidly created and de-
ployed in response to new threats.

This paper introduces Naccio, a platform-independent
architecture for code safety designed to provide superior
flexibility. While no security system can foresee all pos-
sible attacks, by providing a system that can be used to
define and enforce a wide range of policies we hope to be
able to quickly respond to new threats. Naccio can define
and enforce policies that place arbitrary constraints on
resource manipulations as well as policies that alter how a
program manipulates resources, but cannot define or

enforce liveness properties or policies that depend on
structural properties of the code.

The next section presents the Naccio architecture.
Conceptually, Naccio takes a program and a safety policy
and produces a program that behaves similarly to the orig-
inal program except that it is guaranteed to satisfy the
safety policy. Section 3 explains how resources are de-
scribed and Section 4 shows how we use those resource
descriptions to define safety policies. In Section 5, we
show how a specific platform is specified in terms of how
it manipulates resources. Section 6 discusses issues
involved in developing Naccio implementations for the
JavaVM and Win32 platforms. Section 7 reports on
results using a prototype implementation to enforce safety
policies on JavaVM applications. In Section 8, we survey
related work. The final section offers some conclusions.

2 System architecture

Anecdotal evidence suggests that any code safety
system that places a burden on its users will be quickly
disabled, since its benefits are only apparent in the
extraordinary cases in which a program is behaving dan-
gerously. Most users will not create new safety policies,
but will select from a list of predefined policies or use
default settings chosen by a system administrator. Hence,
a primary design goal is that predefined safety policies
can be enforced cheaply and effortlessly.

Safety policies will be written mostly by experts and
distributed both with the system and in response to new
threats. It is important, however, that system administra-
tors and sophisticated users can create and modify
policies to respond to specific needs or threats. Safety
policy authors can be expected to spend some time
learning to read and write policies, but should not be
required to understand details of one or more target
platforms. Hence, it is important that we allow safety
policies to be described in a manner that hides the
complexities and details of a particular platform.

Suppose we wish to enforce a policy that limits the
total number of bytes an execution may write to files. An
implementation will need to maintain a state variable that
keeps track of the total number of bytes written so far.
Before every operation that writes to a file, we need to
check that the limit will not be exceeded. One way to
enforce such a property would be to rewrite the system
libraries to maintain the necessary state and do the

1081-6011/99 $10.00 (c) 1999 IEEE

required checking. This would require access to the
source code of the system libraries, and we would need to
rewrite them each time we wanted to enforce a different
policy.

Instead, we could write wrapper functions that perform
the necessary checks and then call the original system
functions. To enforce the policy, we would modify the
target program to call the wrapper functions instead of the
protected system calls. Though wrappers are a reasonable
implementation technique, they are not appropriate for
describing safety policies since creating or understanding
them requires intimate knowledge of the underlying
system. To implement the write limit policy, the author
of the safety policy would need to identify and understand
every system call that may write to a file. For even a
supposedly simple platform like the Java API, this
involves knowing about dozens of different methods.
Changing the policy would require editing the wrappers,
and there would be no way to use the same policy on
other platforms.

Our solution is to express safety policies at a more
abstract level and to provide a tool that generates the
wrappers needed to enforce a policy on a particular
platform. We express safety policies in terms of abstract
resource manipulations and characterize a platform by
how its system calls affect those resources.

Figure 1 shows the Naccio system architecture. It is
divided into a policy generator and an application trans-
former. A policy author runs the policy generator to
produce what the application transformer uses to enforce
the policy on a particular program. Since policy gen-
eration is a relatively infrequent task, we trade off
execution time of the policy generator to make application
transformation fast and to reduce the run-time overhead
associated with safety checks. Once a policy has been
generated, it can be reused for each application on which
we want to enforce the policy.

Policy
Generator

Resources
Safety Policy

Platform Interface
Platform Library

Program

Version of program that:

Policy-enforcing
Platform Library

Policy Description File

Application
Transformer

– Uses Policy-enforcing Platform Library
– Satisfies low-level safety properties

Figure 1. Naccio Architecture. The top half of the figure
depicts what a policy author does to generate a new policy. The
bottom half shows what happens the first time a user elects to
execute a given program enforcing that policy.

The inputs to the policy generator are:

• Resource descriptions (Section 3) – abstract descrip-
tions of system resources.

• The safety policy (Section 4) – a description of the
constraints to be enforced on resource manipulations.

• The platform interface (Section 5) – a description of
a particular platform that describes how its system
calls manipulate resources.

• The platform library – the unaltered platform library
(e.g., Java API classes or Win32 system DLLs).

The policy generator produces a policy-enforcing
platform library, a version of the platform library that
includes checking code necessary to enforce the policy. It
also produces a policy description file that contains
transformation rules required to enforce the policy.

The application transformer is run when a user elects
to enforce a particular policy on an application. It reads a
policy description file and a target program and performs
the directed transformations to produce a version of the
program that is guaranteed to satisfy the safety policy.
This involves replacing system calls in the program with
calls to the policy-enforcing library. For each program
and selected policy, we need to run the application trans-
former only once. Afterwards, the resulting program can
be executed normally.

In addition, the application transformer must ensure
that the resulting program satisfies the low-level code
safety properties necessary to prevent malicious programs
from circumventing the high-level code safety mech-
anisms. At a minimum, it must prevent programs from
modifying their own code, writing to storage used in
safety checking, or jumping to arbitrary memory locations
that could contain system library code. Although our
work relies on low-level code safety to ensure the
integrity of high-level code safety mechanisms, our focus
is on providing better ways to define policies that
constrain the use of system resources. Various techniques
for low-level code safety (such as bytecode verification or
software fault isolation, see Section 8.1) can be used to
provide the necessary low-level code safety properties.

A Naccio implementation is characterized by the for-
mat of the input program and format and content of the
platform libraries it uses. We are developing Naccio
implementations that enforce safety policies on JavaVM
classes and Win32 executables.

3 Describing resources

Resource descriptions provide a way to identify
resources and the ways they are manipulated. Examples
of resources include files, network connections, threads
and displays. Resource descriptions are platform-
independent, but they may describe platform-specific
resources such as the Windows registry. Policy authors

1081-6011/99 $10.00 (c) 1999 IEEE

read resource descriptions, but typically do not need to
modify them.

We describe resources by listing their operations.
Resource descriptions have no state or implementation.
They are merely hooks for use in defining safety policies.
The meaning of a resource operation is indicated by in-
formal documentation. The essential promise is that a
transformed program will invoke the related resource
operation with the correct arguments whenever a
particular event occurs. It is up to the policy generator and
platform interface to ensure that this is the case.

Figure 2 shows resource descriptions for the file
system. The global modifier indicates that only one
RFileSystem instance exists for an execution. Resources
declared without a global modifier are associated with a
particular run-time object. Most of the RFileSystem oper-
ations take an RFile parameter, a resource object that iden-
tifies a particular file.

Resource manipulations may be split into more than
one resource operation. For example, reading is split into
the preRead and postRead operations. This division allows
more precise safety policies to be expressed. Pre-oper-
ations allow necessary safety checks to be performed
before the action takes place, while post-operations can be
used to maintain state and perform additional checks after
the action has been completed and more information is
available. In this case, the actual number of bytes read
may not be known until after the system call to do the
reading has executed.

global resource RFileSystem
 initialize () Called when execution starts.
 terminate () Called just before execution ends.

 openRead (file: RFile)
 Called before file is opened for reading.
 openCreate (file: RFile)
 Called before a new file is created for writing.
 openWrite (file: RFile)
 Called before an existing file is opened for writing.
 openAppend (file: RFile)
 Called before existing file is opened for appending.
 close (file: RFile) Called before file is closed.

 write (file: RFile, n: int)
 Called before n bytes are written to file.
 preRead (file: RFile, n: int)
 Called before up to n bytes are read from file.
 postRead (file: RFile, n: int)
 Called after n bytes were read from file.

 delete (file: RFile) Called before file is deleted.

 observeExists (file: RFile)
 Called before revealing if file exists.
 observeWriteable (file: RFile)
 Called before revealing if file is writeable.

 … // other similar observe<X> operations elided

resource RFile
 RFile (pathname: String)
 Constructs object corresponding to pathname

Figure 2. File System Resource.

policy LimitWrite
 NoOverwrite, LimitBytesWritten (1000000)

property NoOverwrite
 check RFileSystem.openWrite (file: RFile),
 RFileSystem.openAppend (file: RFile),
 RFileSystem.delete (file: RFile)
 violation ("Attempt to overwrite file.");

property LimitBytesWritten (limit: int)
 requires TrackTotalBytesWritten;
 check RFileSystem.write (file: RFile, n: int)
 if (bytes_written > limit) violation ("Attempt to write …”);

stateblock TrackTotalBytesWritten
 addfield RFileSystem.bytes_written : int = 0;
 precode RFileSystem.write (file: RFile, n: int)
 bytes_written += n;

Figure 3. LimitWrite Safety Policy.

4 Defining safety policies

Safety policies are defined by attaching checking code
to resource operations. A policy consists of any number
of safety properties that place constraints on resource
manipulations. Policies are described in a platform-
independent way, but may be designed for platform-
specific threats (e.g., a Unix-specific policy may restrict
reading /etc/passwd).

Figure 3 shows the LimitWrite safety policy that instan-
tiates two safety properties. NoOverwrite disallows replac-
ing or altering the contents of any existing file.
LimitBytesWritten (1000000) places a limit of one million on
the total number of bytes that may be written to the file
system. LimitWrite would not be a wise policy to use on an
untrusted application since it does not constrain what files
the application may read or how the application may use
other resources such as the network.

A safety property consists of check clauses that attach
checking code to resource operations. The check clause of
the NoOverwrite property identifies the two RFileSystem re-
source operations called before an existing file is opened
for writing (openWrite and openAppend) and the operation
associated with deleting a file. The checking code
invokes the violation command, which will produce a
dialog box that alerts the user to the safety violation and
provides an option to terminate the program. Although
the checking code is written in a Java-like language, it is
platform-independent and the same policy can be used on
multiple platforms. The policy generator translates the
checking code into the appropriate code for a particular
platform.

The LimitBytesWritten property illustrates how a more
complex safety property is defined. To enforce a limit on
the number of bytes that may be written, the property
must keep track of the total number of bytes written. This
is done by the TrackBytesWritten state block that is referred
to by the requires clause. TrackBytesWritten adds a field to
the RFileSystem resource, and defines a precode action for

1081-6011/99 $10.00 (c) 1999 IEEE

the write operation. The body of the precode action will
happen before all checking code associated with the
resource operation. Hence, the value of bytes_written used
in the LimitBytesWritten property is the number of bytes that
will have been written if the upcoming write is allowed to
execute. We keep the state maintenance and property
checking code separate, since many safety properties use
the same state.

The range of safety policies that can be defined is
limited by the resource operations. Naccio can detect vio-
lations and observe and modify state only at execution
points corresponding to resource operations. Using the
RFileSystem resource shown in Figure 2, we could not
detect a violation after a file write has occurred since the
only resource operation associated with writing is called
before the write occurs.

We are also limited by what information is passed to
resource operations. Since RFileSystem.write takes an
integer parameter revealing the number of bytes to be
written but does not have a parameter corresponding to
the actual data written, we cannot write a policy that
constrains the actual values of bytes that may be written.
5 Describing platforms

In order to enforce a safety policy, the appropriate
resource operations must be called as documented in the
resource descriptions. The platform interface describes
how system calls manipulate resources. Platform inter-
faces are tied to a particular platform and set of resource
descriptions. For typical policies, policy authors should
not need to look at or alter platform interfaces. Some
modifications to platform interfaces may be necessary to
define policies that alter program behavior in more
substantial ways than simply detecting violations.

For a given execution platform, there may be several
possible levels at which the platform interface could be
defined. The level of the platform interface limits the re-
source manipulations that can be identified and the safety
policies that can be enforced. For example, if we place
the platform interface at the level of system calls, we
cannot express safety policies that constrain resources that
may be manipulated without using system calls, such as
memory or processor usage. If the platform interface is
placed at the level of machine instructions, we could
describe more policies, but it would be harder to write a
correct platform interface, and the analyses and
transformations necessary to enforce a policy would be
more complicated and expensive. Hence, we focus on
platform interfaces at the level of system calls.

For Naccio/JavaVM, we are limited by our ability to
deal easily with code for native methods. This means that
at a minimum, the platform interface must describe how
native methods in the Java API affect resources. We can
either prevent an application from installing and using
additional native methods, or require that the
implementations of those native methods be transformed

to enforce the desired policy by a Naccio implementation
for the native platform. This allows us to use the same
policy on both the Java classes and native methods.

For every other API method, constructor and
initializer, we can decide either to describe it using a
platform interface wrapper or to let it pass through
checking so it is treated as part of the application.
Although passing through checking is the less error-prone
approach, it may be worth declaring wrappers for some
methods instead to improve efficiency and clarity. In
other situations, it may be useful to deliberately write
platform interface wrappers to allow system code to
manipulate resources without corresponding checks being
performed. For example, we may wish to write a wrapper
for the API method that loads a font so that safety
violations are not reported when that method observes
system properties to find the font. This would be
dangerous, however, since attackers may be able to
exploit the wrapped method to manipulate resources
unexpectedly. In fact, versions of the JDK were
vulnerable to an attack in which programs exploited font
loading to access restricted information [24]. In general,
the platform interface should not define wrappers for any
procedure unless we are absolutely certain how it
manipulates resources.

Figure 4 shows an excerpt from the Java API platform
interface that defines wrappers for the java.io.FileOutput-
Stream class. The RFile and RFileSystem classes correspond
to the RFile and RFileSystem resources shown in Figure 2.
The RFileMap class (not shown) keeps a mapping between
Java file objects and RFile objects. We use the rfile state
variable to keep track of the RFile object associated with a
FileOutputStream. Wrappers for constructors must set this
state to the appropriate value.

wrapper java.io.FileOutputStream
 requires RFileMap;
 state RFile rfile;

 wrapper FileOutputStream (java.io.File file)
 rfile = RFileMap.lookupAdd (file);
 if (file.exists ())
 RFileSystem.openWrite (rfile);
 else
 RFileSystem.openCreate (rfile);
 %%% // marker for original call

 … // Other constructors similar.

 wrapper void write (byte data[])
 if (rfile != null) RFileSystem.write (rfile, data.length);
 %%%

 … // Other write methods similar.

Figure 4. Platform Interface excerpt.

1081-6011/99 $10.00 (c) 1999 IEEE

The constructor shown calls RFileMap.lookupAdd to find
the RFile object that corresponds to a Java file object. If
the file map does not already contain a resource file for
this object, lookupAdd creates and returns a new RFile
object. Next, we pass this object to the appropriate
RFileSystem resource operation. Since RFileSystem
distinguishes between creating new files and writing to
existing files, the wrapper calls java.io.File.exists to deter-
mine whether to call the openWrite or openCreate resource
operation. It calls the unwrapped version of exists, so no
safety checking is done. After this, the original construct-
or is invoked.

If the policy in use constrains opening files, checking
will be performed in the openWrite or openCreate resource
operation. If a violation is detected, the user will have the
option to terminate execution before the original
constructor opens the file.

The wrapper for the write(byte[]) method is defined
similarly. The rfile is null if this output stream does not
correspond to a file (e.g., if it is the standard output
stream). Otherwise, the wrapper calls RFileSystem.write to
reflect resource usage. Since write is not a native method,
this wrapper is only necessary to improve the
performance of checking. If it had no wrapper, checking
would pass through to the native method (in the Sun JDK
1.1.7 implementation, FileOutputStream.writeBytes) that
actually writes bytes to a file.

For Win32, a similar argument is used to determine the
level of the platform interface [20]. The most convenient
level for a Win32 platform interface is that of the Win32
API. The API has documented behavior, making the
creation of platform interface wrappers relatively
straightforward. Furthermore, the Win32 API is fully
encapsulated into dynamic link libraries (DLLs), and thus
it is easy to separate from user code.

6 Implementation issues

This section describes some issues involved in develo-
ping Naccio implementations for specific platforms. Our
current experience is limited to the JavaVM and Win32
platforms. However, we believe Naccio implementations
for most other platforms can be produced using similar
techniques.

6.1 Policy generator

The policy generator analyzes a safety policy and
produces a policy-enforcing platform library. For
JavaVM, it produces policy-enforcing versions of Java
API classes; for Win32, Naccio produces policy-enforcing
versions of the Win32 system DLLs. Much of the work
done by the policy generator is the same across all
platforms. The differences are the format and content of
the platform interface and the platform library.

Policy generation can be divided into two phases: gen-
erating resource implementations that perform the check-

ing necessary to enforce a safety policy and creating a
policy-enforcing library that calls those resource imple-
mentations as directed by the platform interface. For
both, it is important to analyze the policy sufficiently to
eliminate unnecessary overhead when the policy-
enforcing library is used.

Resource implementations. Generating resource
implementations involves analyzing the safety policy to
determine which resource operations do meaningful
checking and generating code that implements those
resource operations. Code from safety properties is wo-
ven together to create the body of a resource operation.

A dependency analysis determines which resource op-
erations are necessary. A resource operation is necessary
if it could produce a violation, if it modifies some state
that is used by another resource operation that could
produce a safety violation, or if it has some visible side-
effect. The necessary resource operations are then trans-
lated to produce a platform-specific implementation.

Naccio/JavaVM generates resource implementations as
Java source code and compiles them using a standard Java
compiler. Figure 5 shows the resource class for the
RFileSystem resource description (Figure 2) generated to
enforce the LimitWrite safety policy (Figure 3). Because
RFileSystem was declared as a global resource, all class
variables and methods are declared static. The
bytes_written field introduced by TrackTotalBytesWritten is
implemented by adding a class variable to RFileSystem.

The implementation of the write method consists of
code from TrackTotalBytesWritten and LimitBytesWritten. The
parameter to LimitBytesWritten used in the safety policy is
bound in the code. The violation command in the safety
property is replaced with a call to a Naccio library method
and additional arguments are passed so an informative
error message can be produced. The resource class
implementation only provides implementations for those
resource operations that are constrained by the policy. In
this case, LimitWrite constrains only the delete, openAppend,
openWrite and write operations, so these are the only
methods implemented by the RFileSystem resource class.

package naccio.policy.limitwrite.resource;

public class RFileSystem {
 static long bytes_written = 0;
 final public static void openWrite (RFile file) {
 naccio.library.Check.policyViolation
 (“LimitWrite”, "NoOverwrite", "Attempt to overwrite file.");
 }

 … // Implementations of openAppend and delete similar.

 final public static void write (RFile file, long n) {
 bytes_written += n;
 if (bytes_written > 1000000)
 naccio.library.Check.policyViolation
 (“LimitWrite”, “LimitBytesWritten”, “Attempt to write…”);
 }
}

Figure 5. Generated Resource Class.

1081-6011/99 $10.00 (c) 1999 IEEE

To be secure, Naccio must implement the generated
resource classes in a way such that the transformed
program cannot manipulate state associated with safety
checking. For Naccio/JavaVM, we can do this simply by
using new class instance variables and restricting use of
the Java reflection classes so that the transformed
program cannot access this state. We use platform
interface wrappers to enforce the necessary constraints on
the reflection classes.

Naccio/Win32 generates resource implementations as
C source code that is compiled to DLLs. For Win32, pro-
tecting resource state poses a more serious challenge. The
application transformer must ensure the necessary
properties as described in Section 6.2.

Policy-enforcing library. The policy-enforcing libra-
ry contains wrapped versions of system calls as directed
by the platform interface. For performance requirements,
it is important that wrappers are generated only for
methods where policy-relevant work is done. A wrapper
is necessary if it calls a resource operation that does
useful work (as determined by the analyses done to
produce the resource implementations), if it modifies
some state that is elsewhere used in a meaningful way, or
if it changes the behavior of the program (either by
changing how the original method is called or by calling
additional methods that have visible side effects). As
with resource implementations, a deep dependency
analysis is done to determine which wrappers can be
safely eliminated.

Naccio/JavaVM produces the policy-enforcing library
by modifying the Java API classes directly. We use the
JOIE toolkit [2] to perform the necessary modifications.
To implement a wrapper, we rename the original method
by adding a unique prefix to the method name. This is
necessary since the wrapped version of the method and
other methods in the class library will need to be able to
call the original method. The wrapper code from the
platform interface is compiled into Java byte codes and
inserted into the class file in place of the original method.
Next, we need to ensure that the unwrapped version of the
method is called by other wrapped API methods. Those
methods have wrappers to account for their resource
usage, so they should not call the wrapped versions of
API methods since that would duplicate checking.

Constructors and native methods introduce a few
complications. Since the class determines the names of
constructors, we cannot rename constructors. Instead, we
add an extra argument to distinguish the original con-
structor from any other constructors. This means when
Naccio transforms library classes and needs to call the
unwrapped version of the constructor, it must push an
extra argument on the stack and change the type descrip-
tor of the constructor it calls. Since application code al-
ways calls the wrapped constructor, there is no need to
alter application classes.

For native methods, we cannot change the method
name since the JavaVM will not be able to find the native
method implementation. Instead, we introduce a new
method that implements the wrapper and calls the original
native method. This means we need to replace calls to the
native method in application and unwrapped library code
with calls to the new wrapped method instead. An
alternative would be to rename the native method and
modify the VM so that it can still map the new name to
the correct native method. This would eliminate the need
to replace wrapped native method names in application
classes, but would not be portable across different VM
implementations.

The modified classes are written to a new directory so
that they can be selected at runtime by setting the
CLASSPATH appropriately. If we wish to support multiple
policies running in the same VM, we also need to globally
rename all classes in the API to include a unique package
name so that they can be identified (e.g., java.io.File be-
comes policy248.java.io.File). To rename classes
consistently, all classes in the API must be rewritten. If
applications that enforce different policies share objects
that are instances of API classes, a type error will result.
The problem of sharing objects between applications
enforcing different policies is a complex one and will be
considered in future work.

For the Win32 implementation, the policy generator
produces policy-enforcing versions of the library DLLs.
The policy-enforcing versions of the library DLLs contain
export table entries for all functions in the original DLL.
These entries identify wrapper routines that perform the
necessary checking and call the library API routines using
the original DLLs. Entries for which no wrapper is
necessary can be implemented simply as forwarding
pointers. The Win32 loader will substitute the original
API call so there is no runtime overhead associated with
unwrapped methods.

Policy description file. The other output of the policy
generator is the policy description file. This file contains
transformation rules that compactly describe the changes
the application transformer must perform. It contains a
rule that identifies the location of the policy-enforcing
library. Rules may also direct the application transformer
to rename wrapped native methods, and to modify the
application to call resource initializers before execution
begins and to call finalizers just before execution termin-
ates.

6.2 Application transformer

The application transformer reads a policy description
file and transforms an application accordingly. In
addition, it must ensure that the low-level code safety
properties necessary to ensure the integrity of the
checking are enforced. The application transformer is

1081-6011/99 $10.00 (c) 1999 IEEE

mostly platform dependent, since it deals with low-level
issues of transforming an object file.

For Naccio/JavaVM, the application transformer
examines an application class to determine which classes
it uses, and recursively examines those classes to
determine all class dependencies. Classes that are not part
of the Java API (that is, they are not described by the
platform interface) are added to the classes to be
transformed.

The main change the application transformer must
perform is to ensure that the correct policy-enforcing
library classes are used. If we are running the application
in its own VM, the application transformer simply sets the
CLASSPATH so that the modified classes are found before
the standard Java API. For many policies, there is no
need to alter the application class files and hence, there is
no load time cost associated with enforcing the policy.
The only cost is the run-time overhead required to do the
actual safety checking for a particular policy. For some
policies, the application transformer still needs to make
other changes to the application classes such as renaming
wrapped native methods or inserting calls in the main
method to initializers or finalizers. All these changes can
be performed by simple class file modifications.

If we wish to support running the application in a VM
with other active policies, we need to use a version of the
policy-enforcing library with renamed classes. One possi-
bility would be to do this at run-time using namespace
management. Wallach et al. describe how a Java
ClassLoader could be modified to use this technique to
hide system classes or interpose implementations with
extra security checking [22]. Instead, we modify the class
file at load time by replacing class names directly. The
Java class file format makes renaming classes simple and
efficient. All class names are given in the constant table
found at the beginning of the class file. We replace class
names of library files with the corresponding policy-
enforcing library class name.

An advantage of renaming classes statically is that
once the application has been modified it can be run
repeatedly without further modification. Also, it means
we are not tied to a particular Java environment. The
disadvantage is that we need to be careful to make sure
dynamic class loading loads the correct policy-enforcing
library classes or transformed application classes. We do
this by writing platform interface wrappers for the API
methods that load classes dynamically. These wrappers
either ensure that only policy-enforcing classes are
loaded, or they run Naccio/JavaVM to transform new
classes before they are loaded. Similarly, we use platform
interface wrappers to prevent applications from using
reflection classes to directly access methods and fields of
platform library and resource implementation classes.

We use the Java byte code verifier to ensure the neces-
sary low-level code safety properties. By verifying the
application classes before they are transformed, we can

ensure that an application is not able to indirectly call the
unwrapped methods or manipulate resource implementa-
tions since these actions would be detected as violations
by the byte code verifier. We also run the byte code
verifier on the modified classes after the transformations.
This step could be eliminated if load time efficiency is a
priority, but is useful for detecting bugs in the
transformer.

For the Win32 implementation, the DLL interface
provides a convenient point at which to perform the redi-
rection of platform calls to their policy-enforcing wrap-
per. For DLLs linked implicitly at load time, a simple
change to the DLL name in an application’s import table
will redirect all calls to a policy-enforcing version of the
DLL. For DLLs loaded explicitly at run-time, a wrapper
for the LoadLibrary API function (which is always linked
implicitly) can transparently substitute the appropriate
policy-enforcing version of the DLL.

Naccio/Win32 must enforce the necessary low-level
code safety properties to prevent self-modifying code
(which could be used to jump directly to system DLL
routines thereby circumventing safety checks) and access
to protected memory (such as storage used to implement
resource state). We use a limited version of software-
based fault isolation [21] to ensure that all jumps remain
within the application’s code segment. For single-
threaded applications, we can take advantage of read-only
pages to provide the necessary memory safety. Since
access permissions are turned on and off using system
calls, we can write platform interface wrappers that limit a
program’s ability to change memory access permissions
so that only Naccio checking code can modify the
protected state. We are currently investigating methods
that can efficiently provide the necessary guarantees for
multi-threaded applications.

Since these protections must be applied at the level of
machine instructions, the implementation of low-level
code safety is dependent on the processor architecture.
Our current implementation supports the DEC Alpha
architecture, due to the public availability of tools for
binary code modification on that architecture, including
ATOM [19] and SPIKE [3]. The rest of the Win32
implementation, in particular the platform interface and
policy generator, is portable across different Win32
processors.

7 Results

This section reports on results using Naccio/JavaVM to
enforce several safety policies. We can view the costs of
using Naccio in terms of the one-time costs associated
with generating a new policy and with preparing an
application to enforce a particular policy, and the over-
head to enforce a policy when the application executes.
While we are willing to accept high policy-generation
costs, it is important that the application preparation and
run-time costs are low.

1081-6011/99 $10.00 (c) 1999 IEEE

7.1 Sample policies

An important advantage of Naccio’s general
mechanisms for defining safety policies is that a wide
range of policies can be enforced. Naccio can enforce
policies outside the scope of those considered by
traditional systems, as well as policies that are more
precise than traditional systems can support. For our
experiments, we use the following six policies.

LimitWrite. The LimitWrite policy (Figure 3) prevents
applications from altering any existing file and places a
one million-byte limit on the amount of data that may be
written to the file system.

LimitNetwork. The LimitNetwork policy limits the hosts
to which an application may connect, constrains how
much bandwidth may be used, and limits the total amount
of data that may be transferred using the network.

Traditional code safety systems support policies that
restrict network use by limiting the hosts to which the
application may connect. With Naccio, we can easily ex-
press such policies by placing constraints on the resource
operation associated with opening a connection. Merely
restricting the hosts to which applications may connect,
however, does not provide sufficient protection from
denial-of-service attacks or buggy programs. Naccio can
be used to define properties that limit the total amount of
data an application may send over the network in a way
similar to how the LimitBytesWritten property (Figure 3)
limits the amount of data that may be written to files.

A more useful property limits the rate at which data is
sent and received. A bandwidth limit is useful if, for
example, we want to run a stock ticker applet at the same
time as a video conferencing program and ensure that the
stock ticker does not consume too much bandwidth at the
expense of video quality. To limit transfer rates, we add
resource fields that keep track of the start time for the
current time quantum and the number of bytes sent during
this quantum. For each send or receive, we check if the
current time quantum has expired. If it has, we reset the
transfer counter and start a new time quantum. Then, we
increment the value of the number of bytes transferred in
this quantum. If the limit would be exceeded, a violation
is raised. A more useful version of this policy
(enforceable using Naccio, but not used in for the perfor-
mance results), splits and delays network sends to
conform to the desired bandwidth limit instead of raising
a violation when it would be exceeded.

Paranoid. The Paranoid safety policy includes all pro-
perties of the LimitWrite and LimitNetwork as well as proper-
ties that limit what system properties can be observed,
limit how many different files may be touched, and allow
a program to touch either the file system or the network,
but not both. Paranoid also prevents an execution from
creating windows, observing keyboard or mouse events,
or manipulating threads.

JavaApplet. The JavaApplet policy duplicates the policy
HotJava 1.1.5 enforces on untrusted applets. Naccio can
be used to mimic any JDK policy by writing a safety
policy that calls the security manager check methods at
the same execution points as the Java API would call
them. For better performance, we mimic the HotJava
policy by moving the checking code from AppletSecurity
security manager into the safety policy and making the
few changes necessary to convert Java code into safety
policy actions. JavaApplet disallows reading, writing and
observing files except as permitted by access lists in the
user’s configuration file. It only allows network connec-
tions to the originating host. (For our experiments we set
the originating host using a command-line definition.)

Null. The simplest safety policy is the Null policy. It
places no constraints on resource usage, and is included as
a baseline. To generate the Null policy, we modify the
policy generator so that it removes code related to calling
security manager checks from all API classes.

TarCustom. All the safety policies we have seen so far
are general enough to be part of a standard policy library.
Naccio is flexible enough that we can also define policies
precisely targeted to the expected behavior of a particular
application. While we do not expect typical users would
go to the trouble of constructing an application-specific
policy, it would be reasonable to expect application
developers to include a precise safety policy as part of a
distribution. Although we cannot depend on malicious
attackers to provide appropriate safety policies, it is
reasonable to expect trustworthy developers to provide an
application-specific policy that protects users from bugs.
A system administrator installing the application would
examine the safety policy and combine it with an
organizational policy.

The TarCustom policy is designed specifically for the
tar archive utility. It instantiates several properties specif-
ically targeted to the tar application, as well as some
general properties, such as the NoNetwork property that
disallows all network use. It includes a property that
allows one file with a name ending in .tar to be over-
written if the c flag is used to create an archive, but allows
no other files to be overwritten. TarCustom also limits the
number of bytes written at all execution points to a func-
tion of the number of bytes read, and restricts files that
may be read during the execution to those listed on the
command line.

In addition to offering protection from malicious or
buggy implementations, a precise application-specific
policy provides protection from user mistakes. For exam-
ple, executing tar -cf * using a policy-enforcing version of
tar results in a policy violation. With the original applica-
tion it would replace the first file in the directory with an
archive of all other files.

1081-6011/99 $10.00 (c) 1999 IEEE

Policy

R
esource

O
perations

W
rapped

M
ethods

S
ize

(K
B

)

T
im

e
(m

in:sec)

Null 0 17 20 1:08

LimitWrite 3 30 86 1:59

LimitNetwork 14 31 103 2:12

Paranoid 51 130 320 5:08

JavaApplet 46 114 300 5:51

TarCustom 23 107 268 4:42

Table 1. Costs of generating policies. The 17 methods
wrapped for the Null policy are the methods all policies must wrap
to protect dynamic class loading and reflection. Time is the clock
time to generate the policy not including not include time required
to remove security manager calls from the Java API since that
can be done once for all policies. For all our experiments, we use
Sun’s JDK 1.1.6 with no JIT compiler on a Pentium II/300 running
Linux 1.3.

7.2 Generating policies

Table 1 shows the time required to generate each
sample policy and the size of the policy-enforcing library.
Although complex policies take several minutes to
generate, this is believed to be acceptable since policy
generation is an infrequent task.

Policy generation time is dominated by the dependency
analysis needed to determine which resource operations
and wrappers are necessary and the time required to parse,
transform and rewrite the Java library classes. The cur-
rent implementation is extremely inefficient, and it would
not be difficult to produce a better implementation that
reduces these times dramatically.

The size of the policy-enforcing library depends on
how much of the API needs to be modified and how many
resource operations are required. In the worst case,
Naccio would need to copy the entire API. For the
normal case, however, only a subset of the API classes
need modifications and Naccio need only generate those
classes. If we are not renaming classes, we simply gener-
ate the classes that need to be modified, and the runtime
will find the modified class if it exists, or the original
class if it does not. For the version of the policy with
renamed classes, we need to rewrite all API classes so the
size of the policy-enforcing library is approximately the
size of the Java API (about 9 megabytes).

7.3 Transforming applications

The time required to transform an application is
important, since users experience it every time a new
program is run with a safety policy. The prototype
implementation transforms about 15KB of application
classes per second. Most of the time is spent parsing class
files. This performance would be unacceptable in most

actual uses but it could easily be improved. In particular,
we can reduce the overhead of application transformation
to nearly zero by integrating it into the byte code verifier.
The actual work needed to transform an application is
limited to some simple string replacements in the constant
pool at the beginning of each class file and for some
policies inserting a few calls to initializers and finalizers
into the main method.

7.4 Execution performance

Assuming the policy generation and application
transformation costs are acceptable, the most important
cost of enforcing a safety policy is the run-time overhead
experienced when the program is run. For our tests we
use the following benchmarks:

• Blast – a toy application that tests if a file exists and
observes several system properties in a loop that
executes 100,000 times. This benchmark requires a
large amount of security checking relative to the
amount of real work.

• Tar – an implementation of the tar file archiving
utility from www.ice.com. It is run to create a new
archive of a directory tree containing 10MB in 3152
mostly small files.

• Socket – an application based on the java.net.Socket
example in The Java Class Libraries [1]. In a loop
that executes ten times, it opens a socket to an
allowed host, sends 50,000 bytes in 10-20 byte
blocks, and closes the socket.

Figure 6 compares the performance overhead to en-
force the Null and JavaApplet policies on each application
using Naccio and the JDK. The Null policy is used as a
baseline since it does no security checking. We compare
it to the JDK-Null policy, a security manager where each
check method has an empty body. The overhead of
calling the security manager check methods averages a
few percent (up to five percent for the Tar benchmark).
This overhead varies depending on the API methods
called by an application, but is incurred when we use JDK
security mechanisms regardless of the actual policy.

0

1

2

3

4

Blast Tar Socket

Null
JDK-Null

JavaApplet
JDK-JavaApplet

Figure 6. Performance. Each bar indicates the execution
time using the given policy divided by the run-time for the Null
policy. Timings are clock time average of four trials.

1081-6011/99 $10.00 (c) 1999 IEEE

We compare the Naccio JavaApplet policy to the JDK-
JavaApplet policy. This is the security manager used by
HotJava modified to enforce the same policy on applica-
tions as it does on applets (by changing the return value of
one function). To avoid any security violations, we set
the acl.read and acl.write properties to allow the necessary
reading and writing, and set the originating host to allow
the network connections made by the Socket benchmark.

The relative security overhead varies greatly according
to the type of application. The overhead to enforce the
JavaApplet policy on the Blast and Tar benchmarks is
significantly lower using Naccio than using the JDK. For
the Tar benchmark, Naccio enforces the policy with 84%
slowdown, compared to 153% slowdown using the JDK
to enforce the same policy.

For the Socket benchmark, using Naccio to enforce
JavaApplet requires slightly more overhead than using the
JDK. This is because the Naccio implementation of the
policy must create RNetConnection objects to represent
network connections whereas the JDK security manager
uses the Java Socket objects directly. The run-time of the
Socket benchmark is dominated by network sends. Since
the Null and JavaApplet policies place no constraints on
sending once a socket is open (and the JDK cannot
impose any such constraints), the effect of different
enforcement mechanisms is less significant on its overall
performance.

Naccio offers two performance advantages over the
JDK security manager approach. Whereas the JDK has to
determine which security manager to use and whether or
not to apply a policy by examining the ClassLoader stack
at run-time, Naccio makes all policy decisions statically
when the policy is generated and the application is
transformed. This effect is clear when we compare the
results using Naccio to enforce the Null policy to those
using JDK security mechanisms with an empty security
manager.

The other performance advantage of our approach is
that checking overhead is incurred only for API calls that
are constrained by the actual policy. This becomes clear
when we compare the relative costs of enforcing different
policies on different application. Figure 7 shows the
relative enforcement overhead of the LimitFile, LimitNetwork,
Paranoid and TarCustom policies on the benchmarks.
Constants used in the Naccio policies (such as the write
limit and network rate) are set high enough so that no
violations are detected running the benchmarks.

There is no meaningful comparison to the JDK for
these policies, since it is impossible to enforce them using
the JDK. Nevertheless, Naccio enforces most of these
policies with less overhead than necessary to enforce the
JavaApplet policy using the JDK. Enforcing the Paranoid
and TarCustom policies on the Tar benchmark requires
slightly more overhead than enforcing JavaApplet using the
JDK.

0

0.5

1

1.5

2

2.5

Blast Tar Socket

LimitWrite
LimitNetw ork
Paranoid
TarCustom

Figure 7. Policy enforcement costs. Each bar gives the
execution time for running the benchmark enforcing the given
policy divided by the execution time for running the benchmark
enforcing the Null policy.

The execution cost varies according to the complexity
and ubiquity of the policy. Enforcing a policy that places
no meaningful constraints on the application has
negligible overhead. For example, the slow-down for
enforcing LimitNetwork on the Tar benchmark is minimal.
Since the only safety checking is associated with network-
related methods that are never called by tar, there is no
significant overhead necessary to enforce the policy.

On the other hand, enforcing a complex and ubiquitous
policy has a significant performance penalty. Enforcing
the policies that limit the number of bytes that may be
read or written on the Tar benchmark illustrates the worst-
case scenario. Most of the work done by the application
is in executing a large number of fast system calls that
need to be checked to enforce the safety policy. For each
write, TarCustom increments a state variable that keeps
track of the number of bytes written and then compares
this value to a function of the number of bytes read.

The performance disadvantage of using Naccio is the
overhead required to create and maintain abstract resource
objects. In cases such as the Socket benchmark with the
JavaApplet policy, this overhead may outweigh the perfor-
mance benefits of statically determining policies. Perhaps
a better policy generator could reduce this overhead by
optimizing out resource objects in cases where it is
possible to derive the necessary information from the
unmodified Java object. In other cases, the extra state
information kept in resource objects improves checking
performance considerably. For example, the checks rela-
ting to file readability in the JavaApplet policy can be
performed more quickly because the absolute pathname of
a file is stored in its corresponding RFile resource object.
The JDK implementation needs to recompute this path for
every check that uses it.

Unlike traditional code safety systems where much of
the overhead is incurred irrespective of the safety policy
being enforced, with Naccio the run-time overhead is
directly related to the checking needed to enforce a
particular safety policy. Naccio can provide the extra
flexibility needed to enforce a wide class of policies
without suffering a performance penalty when simpler
policies are enforced.

1081-6011/99 $10.00 (c) 1999 IEEE

8 Related work

This section surveys relevant work in low-level and
high-level code safety. Work in low-level code safety
provides the foundation necessary to support Naccio’s
high-level safety mechanisms. We survey how other
high-level code safety approaches express and enforce
policies. The most closely related work is the work on
enforcing resource limits, execution monitoring and the
Ariel project.

8.1 Low-level code safety

The minimum low-level code safety required to
support most high-level code safety mechanisms is
control flow safety, memory safety, and stack safety [8].
Without control flow safety, an attacker could construct a
program that jumps directly to the body of a system call
bypassing any restrictions or checking code. Without
memory safety, a program could modify its own code and
the data used in safety checking. Approaches that offer
the most promising options for providing the low-level
code safety needed by Naccio include verification and
software fault isolation.

Verification. One way to ensure low-level code safety
is to verify the needed properties of an object file before
allowing it to execute. If the property cannot be proven,
the code is rejected.

Java uses a byte code verifier [25] to provide low-level
code safety. Before loading a class, the verifier performs
data-flow analysis on the class implementation to verify
that it is type safe and that all control-flow instructions
jump to valid locations. Naccio/JavaVM relies on the
Java byte code verifier to provide low-level code safety.

A more ambitious verification approach is Proof-
Carrying Code (PCC) [11]. PCC combines a program
with a proof that the program satisfies certain properties.
Before installing the program, a certifier verifies the
proof. Proof generation may be complex and time-
consuming, but verification should be simple and
efficient. In theory, PCC techniques can be used to verify
both low-level and high-level code safety properties. In
practice, they are limited by automatic proof-generation
technology, and have been used most effectively to verify
low-level safety properties [12].

Software fault isolation. Instead of proving that
arbitrary code has desired properties, it is usually easier to
transform code in a special-purpose way so that it is
guaranteed to have the desired properties. Software fault
isolation (SFI) [21] introduced this approach to provide
low-level code safety. It uses bit masks to ensure that
memory operations and jumps access only the correct
memory ranges. Omniware [10] uses SFI to provide low-
level code safety in a mobile code system. Software Fault
Isolation has been implemented on other platforms
including Alpha [17] and Intel x86 [18]. Naccio/Win32

uses software fault isolation to prevent application code
from jumping directly into system code.

8.2 High-level code safety

Provided low-level code safety is in place, we can
employ mechanisms for high-level code safety knowing
that they cannot be circumvented by forged pointers or
arbitrary jumps. A number of high-level code safety
techniques have been invented. We describe those most
relevant to our work, focusing on how they describe
policies, what policies they can enforce, and the enforce-
ment mechanisms they employ.

Safe-Tcl. Safe-Tcl [13] is a version of the Tcl
scripting language designed as a safe platform for running
untrusted scripts that control the behavior of trusted
containing applications. Safe-Tcl implements a safety
policy by hiding commands from an untrusted script. A
safety policy can be defined to allow the untrusted code to
access hidden commands through aliases that may do
checks before calling the unsafe command. One
limitation of Safe-Tcl policies is that only a small fixed
set of commands can be controlled. Naccio’s use of
policy-enforcing libraries is similar to Safe-Tcl’s use of
command aliases.

Java. The Java run-time environment [5, 7] provides
high-level security by allowing access to system resources
only through the Java API. Functions in the API are
implemented to call safety checks before certain system
calls are executed.

In implementations before JDK 1.2, the safety checks
are performed by check methods of the SecurityManager
class. The SecurityManager acts as a reference monitor [9],
enforcing a particular safety policy by controlling access
to system calls. If the safety policy disallows a call, a
security exception is raised before the system call can be
executed.

New safety policies can be defined and enforced by
writing a SecurityManager subclass. The scope and preci-
sion of policies, however, is limited by where the system
libraries call security manager methods and by how much
information is passed to the check method. For instance,
the constructor for FileOutputStream calls the checkWrite
method before opening a file, but the write method does
not call any security manager method. Hence, one can
implement an arbitrary security policy on what files may
be written by changing the checkWrite method, but can
place no constraints on the amount of data that may be
written to a file once it has been opened.

Although one could imagine solving this problem by
simply adding more security manager calls to the Java
API, the performance penalty associated with this
straightforward solution would be unacceptable. The
problem is that the security manager method must be
called regardless of whether or not the safety policy in use
constrains it. This overhead is acceptably small in

1081-6011/99 $10.00 (c) 1999 IEEE

situations where it is used for expensive operations like
opening a file or establishing a network connection.
However, it would be unacceptable to require it for every
system call, especially inexpensive, frequent ones like
writing a byte to a file.

By requiring the cost of a security manager check
regardless of whether or not the safety policy places any
constrains a particular API call, the JDK security mechan-
isms limit the API methods that call security manager
checks, and hence the range and precision of safety
policies that can be enforced. Because the security
manager not usually known at compile time, no matter
how good compilers get they are unlikely to be able to
optimize out calls to security manager checks. Naccio
avoids this problem, since static analysis of safety policies
ensures that wrappers are applied only to methods that
may manipulate a resource in a way constrained by the
selected safety policy.

Much of the work in Java security has been directed at
providing greater flexibility as to which policy is applied
to a particular class. The Java class loading mechanism
offers opportunities here, since each run-time class is
associated with a ClassLoader that can be used to
determine safety properties. A particular problem is dis-
tinguishing between applet code, which should be limited
by a particular safety policy, and system code, which may
be granted extra privileges. One technique for dealing
with this is stack inspection [22]. System classes are
permitted to enable privileges, but they are enabled only
for inner calls that remain inside the system code. When
a privilege is required for an operation, the run-time sys-
tem examines the stack to determine if the privilege was
enabled by some system code, and if all classes on the
stack frame after it are system classes.

Stack inspection can be implemented by transforming
code to pass an extra parameter with each call that
encodes which privileges are enabled [23]. By making all
policy decisions statically, Naccio avoids the need to
make any of these distinctions at run-time. This
eliminates the complexity and vulnerability associated
with determining the appropriate policy to apply to a
particular class at run-time.

The Java security model continues to evolve with new
Java releases [7]. JDK 1.2 introduced a more flexible
security model in which the class loader can assign a
different security policy to each class as it is loaded and
stack inspection is used to determine what privileges are
enabled. JDK 1.2 also introduced the AccessController as a
more abstract and flexible alternative to the
SecurityManager. Instead of calling a particular check
method, implementations call an AccessController method
that checks if the necessary permissions are enabled.
While these changes have made it easier for vendors and
users to implement different safety policies, they have not
expanded the scope or improved the precision of policies
that may be enforced since they are still limited by where

the API calls safety checks, and are trapped because Java
security mechanisms offer no way to eliminate unneces-
sary checks depending on the policy in use.

Resource limits. Most work on resource limits has
been done in the context of operating systems instead of
application-level code safety. Here, we consider work on
applying resource limits to Java programs.

JRes is a resource management interface for JavaVM
programs [4]. It supports per-thread accounting for heap
memory, CPU time and network usage. Limits can be
placed on the amount of a particular resource a thread
may consume, and callbacks are invoked when a limit is
exceeded. In JRes, policies are described by application
calls to methods that set fixed value limits on a predefined
set of resources. Many policies that Naccio can enforce
could not be defined using JRes because they depend on
resource manipulations not constrained by JRes or they
place more complex constraints on resource usage than a
fixed limit (e.g., a rate or a function of other resource
usage).

JRes is implemented by rewriting Java application
classes to keep track of thread and resource information.
To account for memory usage, JRes inserts code before
every object or array allocation that calculates the size of
the allocation and invokes a method that accounts for this
memory usage. Accounting for CPU usage requires
native code and a new thread that queries the operating
system for CPU consumption.

We believe that the mechanisms used by JRes could be
incorporated into Naccio/JavaVM with minor modifica-
tions. This would allow resources corresponding to CPU
and heap memory usage to be defined, and policies to be
defined and enforced that constrain these resources.
Unfortunately, this would tie us to a particular JavaVM
since JRes uses native methods and operating system calls
to monitor CPU consumption.

Execution monitoring. Schneider defines EM, a class
of enforcement mechanisms that enforce security policies
by monitoring a target system and terminating an
execution immediately before the policy would be
violated [16]. Enforcement mechanisms in class EM can
only enforce security policies that are safety policies.
That is, policies that can be defined as a predicate on a
prefix of execution states.

Naccio is not in class EM because it modifies the
application instead of just monitoring an execution.
However, if we place a few restrictions on the platform
interface, safety property definitions, and static analyses
done by the application transformer, then Naccio can be
viewed as an execution monitor in class EM.

The necessary restrictions are that platform interface
wrappers and safety property checking code only modify
state invisible to the application, perform side-effect free
computation guaranteed to terminate, and issue violations.
Further, all platform interface wrappers must call the

1081-6011/99 $10.00 (c) 1999 IEEE

original method with the original arguments on every
execution path that does not report a violation. In
addition, the application transformer may not do any
interesting static analyses or transformations to the code.

Policies that do not satisfy these restrictions can
change the behavior of the program in more fundamental
ways and are harder to classify. For example, we have
defined a policy that enforces a soft bandwidth limit.
Instead of issuing a violation when the bandwidth limit
would be exceeded, it splits and delays network sends to
stay within the requested limit. Examples of other
reasonable policies enforceable by Naccio but not by
execution monitoring include a policy that adds warning
strings to the titles of windows created by an untrusted
execution and a policy that redirects all network sends to
a local file.

Schneider suggests techniques for using finite-state
automata to express safety policies enforceable by
execution monitoring. Úlfar Erlingsson has developed
Security Automata SFI Implementation (SASI) [6], a
system that enforces policies defined using automata by
inserting code in program executables similarly to what is
done by Naccio. Although no performance analysis is
available, SASI should be able to enforce many policies
more efficiently than Naccio since it does not require the
overhead associated with maintaining abstract resource
objects. The transformations and analyses SASI has to do
to enforce a policy are more complex than those that must
be done by the Naccio application transformer, so we
expect the application preparation costs will be higher
with their approach. The main advantage of Naccio over
SASI is that Naccio offers a convenient, platform-
independent way of defining policies. By describing
policies at a lower level, SASI can define and enforce
policies that cannot be enforced by Naccio such as those
that constrain memory accesses or the structure of the
code. However, SASI cannot describe or enforce policies
that modify the actual behavior of the program (such as
the policy that alters network sends to conform to a
requested bandwidth limit).

Ariel Project. The Ariel project describes policies
using a declarative language and enforces policies by
inserting code in Java classes [14]. The transformations
done by Ariel to enforce a policy are similar to those done
by Naccio/JavaVM. Policies are described as access
constraints that prevent the creation of objects or invoca-
tion of methods based on a predicate. Because of the
declarative nature of policy descriptions, Ariel is unable
to describe behavior-modifying policies that can be
described using Naccio’s mechanisms. Policies are
described at the level of the Java API so they are not
portable across platforms, and writing a policy that
constrains writing would require placing constraints on all
methods that may write to a file (although they are

working on techniques that allow classes and methods to
be grouped [15]).

9 Conclusion

Our results demonstrate that it is possible to support a
large class of interesting and useful safety policies
without sacrificing performance or convenience. We
have presented a system architecture that supports the
platform-independent description of a wide range of
safety policies in terms of the abstract resource
manipulations. A platform interface describes how sys-
tem calls affect those resources.

Our hope is that by providing better ways to define
safety policies along with efficient and convenient
mechanisms for enforcing policies, we can expand the
situations in which code safety policies are used. Cur-
rently, code safety is usually considered only for
untrusted mobile code. We believe a satisfactory code
safety implementation would be useful in protecting users
from bugs in applications from trustworthy sources as
well. As the precision of safety policies increases and the
costs of enforcement are reduced, policies can be enforced
in more situations with more pervasive benefits.

Acknowledgements

The authors thank John Guttag for his advice on and
support of this work and careful reading of drafts of this
paper; John Chapin, Drew Dean, Úlfar Erlingsson, Steve
Garland, Brant Hashii, Daniel Jackson, Ulana Legedza,
Greg Morrisett, Andrew Myers, Raju Pandey, Fred
Schneider and David Wetherall for their comments on the
work and/or suggestions for this paper; Geoff Cohen for
making JOIE available and answering all our questions;
and Robert Cohn, David Goodwin, P. Geoffrey Lowney
and Dan Scales for help with ATOM and SPIKE. This
research is supported in part by DARPA contract F30602-
96-C-0J0J, monitored by the USAF Rome Laboratory,
and by DARPA contract N66001-96-C-8522, monitored
by the Office of Naval Research.

Availability

The examples used in this paper are available at
http://naccio.lcs.mit.edu/.

References

[1] Patrick Chan, Rosanna Lee, and Doug Kramer. The Java
Class Libraries, Second Edition, Volume 1. Addison-
Wesley, 1997.

[2] Geoff Cohen, Jeff Chase, and David Kaminsky. Automatic
Program Transformation with JOIE. 1998 USENIX Annual
Technical Symposium.

[3] R. Cohn, D. Goodwin, P. G. Lowney and N. Rubin. Spike:
An Optimizer forAlpha/NT Executables. USENIX Windows
NT Workshop. Seattle, August 1997.

1081-6011/99 $10.00 (c) 1999 IEEE

[4] Grzegorz Czajkowsik and Thorsten von Eicken. JRes: A
Resource Accounting Interface for Java. ACM OOPSLA
Conference, Oct 1998.

[5] Drew Dean, Edward W. Felten, Dan S. Wallach. Java
Security: From HotJava to Netscape and Beyond. IEEE
Symposium on Security and Privacy. May 1996.

[6] Úlfar Erlingsson, personal communication, March 1999.
[7] Li Gong, Marianne Mueller, Hemma Prafullchandra. Going

Beyond the Sandbox: An Overview of the New Security
Architecture in the Java Development Kit 1.2. USENIX
Symposium on Internet Technologies and Systems, Dec
1997.

[8] Dexter Kozen. Efficient Code Certification. Cornell
University Tech. Report 98-1661. January 1998.

[9] Butler Lampson. Protection. Fifth Princeton Symposium on
Information Sciences and Systems, March 1971.

[10] Steven Lucco, Oliver Sharp and Robert Wahbe.
Omniware: A Universal Substrate for Web Programming.
WWW4, 1995.

[11] George C. Necula and Peter Lee. Safe kernel extensions
without run-time checking. OSDI ’96.

[12] George C. Necula and Peter Lee. The Design and
Implementation of a Certifying Compiler. PLDI ’98.

[13] John K. Ousterhout, Jacob Y. Levy, and Brent B. Welch.
The Safe-Tcl Security Model. http://www.scriptics.com/
people/john.ousterhout/safeTcl.html.

[14] Raju Pandey and Brant Hashii. Providing Fine-Grained
Access Control For Mobile Programs Through Binary
Editing. UC Davis Technical Report TR98-08. August
1998.

[15] Raju Pandey, personal communication, March 1999.
[16] Fred B. Schneider. Enforceable Security Policies. Cornell

University Technical Report TR98-1664. Jan 1998.
[17] Scott M. Silver. Implementation and Analysis of Software

Based Fault Isolation. Technical Report PCS-TR96-287,
Darthmouth College, June 1996.

[18] Christopher Small and Margo Seltzer. MiSFIT: A Tool for
Construction Safe Extensible C++ Systems. Third
Conference on Object-Oriented Technologies and Systems,
1997.

[19] Amitabh Srivastava and Alan Eustace. ATOM: A system
for building customized program analysis tools. PLDI ’94.

[20] Andrew R. Twyman. Providing Flexible Code Safety for
Win32. MIT Master of Engineering Thesis Proposal. Feb
1999.

[21] Robert Wahbe, Steven Lucco, Thomas E. Anderson and
Susan L. Graham. Efficient Software-Based Fault Isolation.
SOSP ’93.

[22] Dan S. Wallach, Dirk Balfanz, Drew Dean and Edward W.
Felten. Extensible Security Architectures for Java. SOSP
’97.

[23] Dan S. Wallach and Edward W. Felten. Understanding
Java Stack Inspection. IEEE Security and Privacy. May
1998.

[24] Dan S. Wallach. A New Approach to Mobile Code
Security. PhD Thesis, Princeton University. January 1999.

[25] Frank Yellin. Low-level Security in Java. WWW4
Conference, Dec 1995.

1081-6011/99 $10.00 (c) 1999 IEEE

