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Abstract 
This work introduces a new approach to code safety.  

We present Naccio, a system architecture that allows a 
large class of safety policies to be expressed in a general 
and platform-independent way.  Policies are defined in 
terms of abstract resource manipulations.  We describe 
mechanisms that can be used to efficiently and 
conveniently enforce these safety policies by transforming 
programs.  We are developing implementations of Naccio 
that enforce policies on JavaVM classes and Win32 
executables.  We report on results using the JavaVM 
prototype. 

 
 

1 Introduction 
The security system was adequate, but it did not 
foresee an armed robbery. 

Italian Minister of Culture Walter Veltroni, 
explaining the theft of two van Goghs and a 
Cézanne from Rome’s National Gallery.  

 
Code safety means knowing what a program will not 

do.  The problem of code safety has been around since the 
earliest days of computing, but has become increasingly 
important as it has become easier to distribute programs.  
Current environments demand more flexible security than 
traditional operating systems provide.  Users should be 
able to run different programs with varying degrees of 
trust and specific restrictions and capabilities. 

Most code safety systems work adequately until they 
are attacked in ways the system designers did not foresee.  
What is needed is a system that allows new safety policies 
that enforce constraints outside those considered by the 
original system designers to be rapidly created and de-
ployed in response to new threats. 

This paper introduces Naccio, a platform-independent 
architecture for code safety designed to provide superior 
flexibility.  While no security system can foresee all pos-
sible attacks, by providing a system that can be used to 
define and enforce a wide range of policies we hope to be 
able to quickly respond to new threats.  Naccio can define 
and enforce policies that place arbitrary constraints on 
resource manipulations as well as policies that alter how a 
program manipulates resources, but cannot define or 

enforce liveness properties or policies that depend on 
structural properties of the code. 

The next section presents the Naccio architecture.  
Conceptually, Naccio takes a program and a safety policy 
and produces a program that behaves similarly to the orig-
inal program except that it is guaranteed to satisfy the 
safety policy.  Section 3 explains how resources are de-
scribed and Section 4 shows how we use those resource 
descriptions to define safety policies.  In Section 5, we 
show how a specific platform is specified in terms of how 
it manipulates resources. Section 6 discusses issues 
involved in developing Naccio implementations for the 
JavaVM and Win32 platforms.  Section 7 reports on 
results using a prototype implementation to enforce safety 
policies on JavaVM applications.  In Section 8, we survey 
related work.  The final section offers some conclusions. 

2 System architecture 

Anecdotal evidence suggests that any code safety 
system that places a burden on its users will be quickly 
disabled, since its benefits are only apparent in the 
extraordinary cases in which a program is behaving dan-
gerously.  Most users will not create new safety policies, 
but will select from a list of predefined policies or use 
default settings chosen by a system administrator.  Hence, 
a primary design goal is that predefined safety policies 
can be enforced cheaply and effortlessly. 

Safety policies will be written mostly by experts and 
distributed both with the system and in response to new 
threats.  It is important, however, that system administra-
tors and sophisticated users can create and modify 
policies to respond to specific needs or threats.  Safety 
policy authors can be expected to spend some time 
learning to read and write policies, but should not be 
required to understand details of one or more target 
platforms.  Hence, it is important that we allow safety 
policies to be described in a manner that hides the 
complexities and details of a particular platform. 

Suppose we wish to enforce a policy that limits the 
total number of bytes an execution may write to files.  An 
implementation will need to maintain a state variable that 
keeps track of the total number of bytes written so far.  
Before every operation that writes to a file, we need to 
check that the limit will not be exceeded.  One way to 
enforce such a property would be to rewrite the system 
libraries to maintain the necessary state and do the 
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required checking.  This would require access to the 
source code of the system libraries, and we would need to 
rewrite them each time we wanted to enforce a different 
policy. 

Instead, we could write wrapper functions that perform 
the necessary checks and then call the original system 
functions.  To enforce the policy, we would modify the 
target program to call the wrapper functions instead of the 
protected system calls.  Though wrappers are a reasonable 
implementation technique, they are not appropriate for 
describing safety policies since creating or understanding 
them requires intimate knowledge of the underlying 
system.  To implement the write limit policy, the author 
of the safety policy would need to identify and understand 
every system call that may write to a file.  For even a 
supposedly simple platform like the Java API, this 
involves knowing about dozens of different methods.  
Changing the policy would require editing the wrappers, 
and there would be no way to use the same policy on 
other platforms. 

Our solution is to express safety policies at a more 
abstract level and to provide a tool that generates the 
wrappers needed to enforce a policy on a particular 
platform.  We express safety policies in terms of abstract 
resource manipulations and characterize a platform by 
how its system calls affect those resources.  

Figure 1 shows the Naccio system architecture.  It is 
divided into a policy generator and an application trans-
former.  A policy author runs the policy generator to 
produce what the application transformer uses to enforce 
the policy on a particular program.  Since policy gen-
eration is a relatively infrequent task, we trade off 
execution time of the policy generator to make application 
transformation fast and to reduce the run-time overhead 
associated with safety checks.  Once a policy has been 
generated, it can be reused for each application on which 
we want to enforce the policy. 

 

Policy
Generator

Resources
Safety Policy

Platform Interface
Platform Library

Program

Version of program that:

Policy-enforcing 
Platform Library

Policy Description File

Application
Transformer

– Uses Policy-enforcing Platform Library 
– Satisfies low-level safety properties  

Figure 1.  Naccio Architecture.  The top half of the figure 
depicts what a policy author does to generate a new policy.  The 
bottom half shows what happens the first time a user elects to 
execute a given program enforcing that policy. 

The inputs to the policy generator are: 

• Resource descriptions (Section 3) – abstract descrip-
tions of system resources.  

• The safety policy (Section 4) – a description of the 
constraints to be enforced on resource manipulations. 

• The platform interface (Section 5) – a description of 
a particular platform that describes how its system 
calls manipulate resources. 

• The platform library – the unaltered platform library 
(e.g., Java API classes or Win32 system DLLs). 

The policy generator produces a policy-enforcing 
platform library, a version of the platform library that 
includes checking code necessary to enforce the policy.  It 
also produces a policy description file that contains 
transformation rules required to enforce the policy.   

The application transformer is run when a user elects 
to enforce a particular policy on an application.  It reads a 
policy description file and a target program and performs 
the directed transformations to produce a version of the 
program that is guaranteed to satisfy the safety policy.  
This involves replacing system calls in the program with 
calls to the policy-enforcing library.  For each program 
and selected policy, we need to run the application trans-
former only once.  Afterwards, the resulting program can 
be executed normally. 

In addition, the application transformer must ensure 
that the resulting program satisfies the low-level code 
safety properties necessary to prevent malicious programs 
from circumventing the high-level code safety mech-
anisms.  At a minimum, it must prevent programs from 
modifying their own code, writing to storage used in 
safety checking, or jumping to arbitrary memory locations 
that could contain system library code.  Although our 
work relies on low-level code safety to ensure the 
integrity of high-level code safety mechanisms, our focus 
is on providing better ways to define policies that 
constrain the use of system resources.  Various techniques 
for low-level code safety (such as bytecode verification or 
software fault isolation, see Section 8.1) can be used to 
provide the necessary low-level code safety properties. 

A Naccio implementation is characterized by the for-
mat of the input program and format and content of the 
platform libraries it uses.  We are developing Naccio 
implementations that enforce safety policies on JavaVM 
classes and Win32 executables.   

3 Describing resources 

Resource descriptions provide a way to identify 
resources and the ways they are manipulated.  Examples 
of resources include files, network connections, threads 
and displays.  Resource descriptions are platform-
independent, but they may describe platform-specific 
resources such as the Windows registry.  Policy authors 
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read resource descriptions, but typically do not need to 
modify them. 

We describe resources by listing their operations.  
Resource descriptions have no state or implementation.  
They are merely hooks for use in defining safety policies.  
The meaning of a resource operation is indicated by in-
formal documentation.  The essential promise is that a 
transformed program will invoke the related resource 
operation with the correct arguments whenever a 
particular event occurs. It is up to the policy generator and 
platform interface to ensure that this is the case.  

Figure 2 shows resource descriptions for the file 
system.  The global modifier indicates that only one 
RFileSystem instance exists for an execution.  Resources 
declared without a global modifier are associated with a 
particular run-time object.  Most of the RFileSystem oper-
ations take an RFile parameter, a resource object that iden-
tifies a particular file. 

Resource manipulations may be split into more than 
one resource operation.  For example, reading is split into 
the preRead and postRead operations.  This division allows 
more precise safety policies to be expressed.  Pre-oper-
ations allow necessary safety checks to be performed 
before the action takes place, while post-operations can be 
used to maintain state and perform additional checks after 
the action has been completed and more information is 
available.  In this case, the actual number of bytes read 
may not be known until after the system call to do the 
reading has executed. 

global resource RFileSystem 
   initialize ()            Called when execution starts. 
   terminate ()          Called just before execution ends. 

   openRead (file: RFile) 
     Called before file is opened for reading. 
   openCreate (file: RFile) 
     Called before a new file is created for writing. 
   openWrite (file: RFile) 
     Called before an existing file is opened for writing. 
   openAppend (file: RFile) 
     Called before existing file is opened for appending. 
   close (file: RFile)      Called before file is closed. 

   write (file: RFile, n: int)   
     Called before n bytes are written to file. 
   preRead (file: RFile, n: int) 
     Called before up to n bytes are read from file. 
   postRead (file: RFile, n: int) 
     Called after n bytes were read from file. 

   delete (file: RFile)   Called before file is deleted. 

   observeExists (file: RFile) 
      Called before revealing if file exists. 
   observeWriteable (file: RFile) 
     Called before revealing if file is writeable.  

   … // other similar observe<X> operations elided 
 
resource RFile 
   RFile (pathname: String) 
      Constructs object corresponding to pathname 

Figure 2.  File System Resource. 

policy LimitWrite 
   NoOverwrite, LimitBytesWritten (1000000) 
 
property NoOverwrite  
   check RFileSystem.openWrite (file: RFile),  
          RFileSystem.openAppend (file: RFile), 
          RFileSystem.delete (file: RFile)  
       violation ("Attempt to overwrite file."); 
 
property LimitBytesWritten (limit: int)  
   requires TrackTotalBytesWritten; 
   check RFileSystem.write (file: RFile, n: int)  
       if (bytes_written > limit) violation ("Attempt to write …”); 
 
stateblock TrackTotalBytesWritten  
   addfield RFileSystem.bytes_written : int = 0; 
   precode RFileSystem.write (file: RFile, n: int)  
      bytes_written += n;   

Figure 3.  LimitWrite Safety Policy. 

4 Defining safety policies 

Safety policies are defined by attaching checking code 
to resource operations.  A policy consists of any number 
of safety properties that place constraints on resource 
manipulations.  Policies are described in a platform-
independent way, but may be designed for platform-
specific threats (e.g., a Unix-specific policy may restrict 
reading /etc/passwd).  

Figure 3 shows the LimitWrite safety policy that instan-
tiates two safety properties.  NoOverwrite disallows replac-
ing or altering the contents of any existing file.  
LimitBytesWritten (1000000) places a limit of one million on 
the total number of bytes that may be written to the file 
system.  LimitWrite would not be a wise policy to use on an 
untrusted application since it does not constrain what files 
the application may read or how the application may use 
other resources such as the network. 

A safety property consists of check clauses that attach 
checking code to resource operations.  The check clause of 
the NoOverwrite property identifies the two RFileSystem re-
source operations called before an existing file is opened 
for writing (openWrite and openAppend) and the operation 
associated with deleting a file.  The checking code 
invokes the violation command, which will produce a 
dialog box that alerts the user to the safety violation and 
provides an option to terminate the program.  Although 
the checking code is written in a Java-like language, it is 
platform-independent and the same policy can be used on 
multiple platforms.  The policy generator translates the 
checking code into the appropriate code for a particular 
platform. 

The LimitBytesWritten property illustrates how a more 
complex safety property is defined.  To enforce a limit on 
the number of bytes that may be written, the property 
must keep track of the total number of bytes written.  This 
is done by the TrackBytesWritten state block that is referred 
to by the requires clause.  TrackBytesWritten adds a field to 
the RFileSystem resource, and defines a precode action for 
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the write operation.  The body of the precode action will 
happen before all checking code associated with the 
resource operation.  Hence, the value of bytes_written used 
in the LimitBytesWritten property is the number of bytes that 
will have been written if the upcoming write is allowed to 
execute.  We keep the state maintenance and property 
checking code separate, since many safety properties use 
the same state. 

The range of safety policies that can be defined is 
limited by the resource operations.  Naccio can detect vio-
lations and observe and modify state only at execution 
points corresponding to resource operations.  Using the 
RFileSystem resource shown in Figure 2, we could not 
detect a violation after a file write has occurred since the 
only resource operation associated with writing is called 
before the write occurs. 

We are also limited by what information is passed to 
resource operations.  Since RFileSystem.write takes an 
integer parameter revealing the number of bytes to be 
written but does not have a parameter corresponding to 
the actual data written, we cannot write a policy that 
constrains the actual values of bytes that may be written. 
5 Describing platforms 

In order to enforce a safety policy, the appropriate 
resource operations must be called as documented in the 
resource descriptions.  The platform interface describes 
how system calls manipulate resources.  Platform inter-
faces are tied to a particular platform and set of resource 
descriptions.  For typical policies, policy authors should 
not need to look at or alter platform interfaces.  Some 
modifications to platform interfaces may be necessary to 
define policies that alter program behavior in more 
substantial ways than simply detecting violations. 

For a given execution platform, there may be several 
possible levels at which the platform interface could be 
defined.  The level of the platform interface limits the re-
source manipulations that can be identified and the safety 
policies that can be enforced.  For example, if we place 
the platform interface at the level of system calls, we 
cannot express safety policies that constrain resources that 
may be manipulated without using system calls, such as 
memory or processor usage.  If the platform interface is 
placed at the level of machine instructions, we could 
describe more policies, but it would be harder to write a 
correct platform interface, and the analyses and 
transformations necessary to enforce a policy would be 
more complicated and expensive.  Hence, we focus on 
platform interfaces at the level of system calls. 

For Naccio/JavaVM, we are limited by our ability to 
deal easily with code for native methods.  This means that 
at a minimum, the platform interface must describe how 
native methods in the Java API affect resources.  We can 
either prevent an application from installing and using 
additional native methods, or require that the 
implementations of those native methods be transformed 

to enforce the desired policy by a Naccio implementation 
for the native platform.  This allows us to use the same 
policy on both the Java classes and native methods. 

For every other API method, constructor and 
initializer, we can decide either to describe it using a 
platform interface wrapper or to let it pass through 
checking so it is treated as part of the application.  
Although passing through checking is the less error-prone 
approach, it may be worth declaring wrappers for some 
methods instead to improve efficiency and clarity.  In 
other situations, it may be useful to deliberately write 
platform interface wrappers to allow system code to 
manipulate resources without corresponding checks being 
performed.  For example, we may wish to write a wrapper 
for the API method that loads a font so that safety 
violations are not reported when that method observes 
system properties to find the font.  This would be 
dangerous, however, since attackers may be able to 
exploit the wrapped method to manipulate resources 
unexpectedly.   In fact, versions of the JDK were 
vulnerable to an attack in which programs exploited font 
loading to access restricted information [24].  In general, 
the platform interface should not define wrappers for any 
procedure unless we are absolutely certain how it 
manipulates resources. 

Figure 4 shows an excerpt from the Java API platform 
interface that defines wrappers for the java.io.FileOutput-
Stream class.  The RFile and RFileSystem classes correspond 
to the RFile and RFileSystem resources shown in Figure 2.  
The RFileMap class (not shown) keeps a mapping between 
Java file objects and RFile objects.  We use the rfile state 
variable to keep track of the RFile object associated with a 
FileOutputStream.  Wrappers for constructors must set this 
state to the appropriate value. 

 
 

wrapper java.io.FileOutputStream 
   requires RFileMap; 
   state RFile rfile; 

   wrapper FileOutputStream (java.io.File file) 
      rfile = RFileMap.lookupAdd (file); 
      if (file.exists ())  
         RFileSystem.openWrite (rfile); 
      else  
         RFileSystem.openCreate (rfile);  
      %%%   // marker for original call 

   …  // Other constructors similar. 

   wrapper void write (byte data[]) 
      if (rfile != null) RFileSystem.write (rfile, data.length); 
      %%% 

   …  // Other write methods similar. 

Figure 4.  Platform Interface excerpt. 
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The constructor shown calls RFileMap.lookupAdd to find 
the RFile object that corresponds to a Java file object.  If 
the file map does not already contain a resource file for 
this object, lookupAdd creates and returns a new RFile 
object.  Next, we pass this object to the appropriate 
RFileSystem resource operation.  Since RFileSystem 
distinguishes between creating new files and writing to 
existing files, the wrapper calls java.io.File.exists to deter-
mine whether to call the openWrite or openCreate resource 
operation.  It calls the unwrapped version of exists, so no 
safety checking is done.  After this, the original construct-
or is invoked. 

If the policy in use constrains opening files, checking 
will be performed in the openWrite or openCreate resource 
operation.  If a violation is detected, the user will have the 
option to terminate execution before the original 
constructor opens the file. 

The wrapper for the write(byte[]) method is defined 
similarly.  The rfile is null if this output stream does not 
correspond to a file (e.g., if it is the standard output 
stream).  Otherwise, the wrapper calls RFileSystem.write to 
reflect resource usage.  Since write is not a native method, 
this wrapper is only necessary to improve the 
performance of checking.  If it had no wrapper, checking 
would pass through to the native method (in the Sun JDK 
1.1.7 implementation, FileOutputStream.writeBytes) that 
actually writes bytes to a file. 

For Win32, a similar argument is used to determine the 
level of the platform interface [20].  The most convenient 
level for a Win32 platform interface is that of the Win32 
API.  The API has documented behavior, making the 
creation of platform interface wrappers relatively 
straightforward.  Furthermore, the Win32 API is fully 
encapsulated into dynamic link libraries (DLLs), and thus 
it is easy to separate from user code. 

6 Implementation issues 

This section describes some issues involved in develo-
ping Naccio implementations for specific platforms.  Our 
current experience is limited to the JavaVM and Win32 
platforms.  However, we believe Naccio implementations 
for most other platforms can be produced using similar 
techniques. 

6.1 Policy generator 

The policy generator analyzes a safety policy and 
produces a policy-enforcing platform library.  For 
JavaVM, it produces policy-enforcing versions of Java 
API classes; for Win32, Naccio produces policy-enforcing 
versions of the Win32 system DLLs.  Much of the work 
done by the policy generator is the same across all 
platforms.  The differences are the format and content of 
the platform interface and the platform library. 

Policy generation can be divided into two phases: gen-
erating resource implementations that perform the check-

ing necessary to enforce a safety policy and creating a 
policy-enforcing library that calls those resource imple-
mentations as directed by the platform interface.  For 
both, it is important to analyze the policy sufficiently to 
eliminate unnecessary overhead when the policy-
enforcing library is used. 

Resource implementations.  Generating resource 
implementations involves analyzing the safety policy to 
determine which resource operations do meaningful 
checking and generating code that implements those 
resource operations.  Code from safety properties is wo-
ven together to create the body of a resource operation.   

A dependency analysis determines which resource op-
erations are necessary.  A resource operation is necessary 
if it could produce a violation, if it modifies some state 
that is used by another resource operation that could 
produce a safety violation, or if it has some visible side-
effect.  The necessary resource operations are then trans-
lated to produce a platform-specific implementation.  

Naccio/JavaVM generates resource implementations as 
Java source code and compiles them using a standard Java 
compiler.  Figure 5 shows the resource class for the 
RFileSystem resource description (Figure 2) generated to 
enforce the LimitWrite safety policy (Figure 3).  Because 
RFileSystem was declared as a global resource, all class 
variables and methods are declared static.  The 
bytes_written field introduced by TrackTotalBytesWritten is 
implemented by adding a class variable to RFileSystem. 

The implementation of the write method consists of 
code from TrackTotalBytesWritten and LimitBytesWritten.  The 
parameter to LimitBytesWritten used in the safety policy is 
bound in the code.  The violation command in the safety 
property is replaced with a call to a Naccio library method 
and additional arguments are passed so an informative 
error message can be produced.  The resource class 
implementation only provides implementations for those 
resource operations that are constrained by the policy.  In 
this case, LimitWrite constrains only the delete, openAppend, 
openWrite and write operations, so these are the only 
methods implemented by the RFileSystem resource class.  

package naccio.policy.limitwrite.resource; 

public class RFileSystem { 
   static long bytes_written = 0; 
   final public static void openWrite (RFile file) { 
      naccio.library.Check.policyViolation  
         (“LimitWrite”, "NoOverwrite", "Attempt to overwrite file."); 
   } 

  …  // Implementations of openAppend and delete similar. 

   final public static void write (RFile file, long n) { 
      bytes_written += n;   
      if (bytes_written > 1000000)  
         naccio.library.Check.policyViolation  
            (“LimitWrite”, “LimitBytesWritten”, “Attempt to write…”); 
   } 
} 

Figure 5.  Generated Resource Class. 
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To be secure, Naccio must implement the generated 
resource classes in a way such that the transformed 
program cannot manipulate state associated with safety 
checking.  For Naccio/JavaVM, we can do this simply by 
using new class instance variables and restricting use of 
the Java reflection classes so that the transformed 
program cannot access this state.  We use platform 
interface wrappers to enforce the necessary constraints on 
the reflection classes. 

Naccio/Win32 generates resource implementations as 
C source code that is compiled to DLLs.  For Win32, pro-
tecting resource state poses a more serious challenge.  The 
application transformer must ensure the necessary 
properties as described in Section 6.2. 

Policy-enforcing library.  The policy-enforcing libra-
ry contains wrapped versions of system calls as directed 
by the platform interface.  For performance requirements, 
it is important that wrappers are generated only for 
methods where policy-relevant work is done.  A wrapper 
is necessary if it calls a resource operation that does 
useful work (as determined by the analyses done to 
produce the resource implementations), if it modifies 
some state that is elsewhere used in a meaningful way, or 
if it changes the behavior of the program (either by 
changing how the original method is called or by calling 
additional methods that have visible side effects).  As 
with resource implementations, a deep dependency 
analysis is done to determine which wrappers can be 
safely eliminated. 

Naccio/JavaVM produces the policy-enforcing library 
by modifying the Java API classes directly.  We use the 
JOIE toolkit [2] to perform the necessary modifications.  
To implement a wrapper, we rename the original method 
by adding a unique prefix to the method name.  This is 
necessary since the wrapped version of the method and 
other methods in the class library will need to be able to 
call the original method.  The wrapper code from the 
platform interface is compiled into Java byte codes and 
inserted into the class file in place of the original method.  
Next, we need to ensure that the unwrapped version of the 
method is called by other wrapped API methods.  Those 
methods have wrappers to account for their resource 
usage, so they should not call the wrapped versions of 
API methods since that would duplicate checking. 

Constructors and native methods introduce a few 
complications.  Since the class determines the names of 
constructors, we cannot rename constructors.  Instead, we 
add an extra argument to distinguish the original con-
structor from any other constructors.  This means when 
Naccio transforms library classes and needs to call the 
unwrapped version of the constructor, it must push an 
extra argument on the stack and change the type descrip-
tor of the constructor it calls.  Since application code al-
ways calls the wrapped constructor, there is no need to 
alter application classes. 

For native methods, we cannot change the method 
name since the JavaVM will not be able to find the native 
method implementation.  Instead, we introduce a new 
method that implements the wrapper and calls the original 
native method.  This means we need to replace calls to the 
native method in application and unwrapped library code 
with calls to the new wrapped method instead.  An 
alternative would be to rename the native method and 
modify the VM so that it can still map the new name to 
the correct native method.  This would eliminate the need 
to replace wrapped native method names in application 
classes, but would not be portable across different VM 
implementations. 

The modified classes are written to a new directory so 
that they can be selected at runtime by setting the 
CLASSPATH appropriately.  If we wish to support multiple 
policies running in the same VM, we also need to globally 
rename all classes in the API to include a unique package 
name so that they can be identified (e.g., java.io.File be-
comes policy248.java.io.File).  To rename classes 
consistently, all classes in the API must be rewritten.  If 
applications that enforce different policies share objects 
that are instances of API classes, a type error will result.  
The problem of sharing objects between applications 
enforcing different policies is a complex one and will be 
considered in future work. 

For the Win32 implementation, the policy generator 
produces policy-enforcing versions of the library DLLs.  
The policy-enforcing versions of the library DLLs contain 
export table entries for all functions in the original DLL.  
These entries identify wrapper routines that perform the 
necessary checking and call the library API routines using 
the original DLLs.  Entries for which no wrapper is 
necessary can be implemented simply as forwarding 
pointers.  The Win32 loader will substitute the original 
API call so there is no runtime overhead associated with 
unwrapped methods. 

Policy description file.  The other output of the policy 
generator is the policy description file.  This file contains 
transformation rules that compactly describe the changes 
the application transformer must perform.  It contains a 
rule that identifies the location of the policy-enforcing 
library.  Rules may also direct the application transformer 
to rename wrapped native methods, and to modify the 
application to call resource initializers before execution 
begins and to call finalizers just before execution termin-
ates. 

6.2 Application transformer 

The application transformer reads a policy description 
file and transforms an application accordingly.  In 
addition, it must ensure that the low-level code safety 
properties necessary to ensure the integrity of the 
checking are enforced.  The application transformer is 

1081-6011/99 $10.00 (c) 1999 IEEE



  

mostly platform dependent, since it deals with low-level 
issues of transforming an object file. 

For Naccio/JavaVM, the application transformer 
examines an application class to determine which classes 
it uses, and recursively examines those classes to 
determine all class dependencies.  Classes that are not part 
of the Java API (that is, they are not described by the 
platform interface) are added to the classes to be 
transformed. 

The main change the application transformer must 
perform is to ensure that the correct policy-enforcing 
library classes are used.  If we are running the application 
in its own VM, the application transformer simply sets the 
CLASSPATH so that the modified classes are found before 
the standard Java API.  For many policies, there is no 
need to alter the application class files and hence, there is 
no load time cost associated with enforcing the policy.  
The only cost is the run-time overhead required to do the 
actual safety checking for a particular policy.  For some 
policies, the application transformer still needs to make 
other changes to the application classes such as renaming 
wrapped native methods or inserting calls in the main 
method to initializers or finalizers.  All these changes can 
be performed by simple class file modifications. 

If we wish to support running the application in a VM 
with other active policies, we need to use a version of the 
policy-enforcing library with renamed classes.  One possi-
bility would be to do this at run-time using namespace 
management.  Wallach et al. describe how a Java 
ClassLoader could be modified to use this technique to 
hide system classes or interpose implementations with 
extra security checking [22].  Instead, we modify the class 
file at load time by replacing class names directly. The 
Java class file format makes renaming classes simple and 
efficient.  All class names are given in the constant table 
found at the beginning of the class file.  We replace class 
names of library files with the corresponding policy-
enforcing library class name. 

An advantage of renaming classes statically is that 
once the application has been modified it can be run 
repeatedly without further modification.  Also, it means 
we are not tied to a particular Java environment.  The 
disadvantage is that we need to be careful to make sure 
dynamic class loading loads the correct policy-enforcing 
library classes or transformed application classes.  We do 
this by writing platform interface wrappers for the API 
methods that load classes dynamically.   These wrappers 
either ensure that only policy-enforcing classes are 
loaded, or they run Naccio/JavaVM to transform new 
classes before they are loaded.  Similarly, we use platform 
interface wrappers to prevent applications from using 
reflection classes to directly access methods and fields of 
platform library and resource implementation classes. 

We use the Java byte code verifier to ensure the neces-
sary low-level code safety properties.  By verifying the 
application classes before they are transformed, we can 

ensure that an application is not able to indirectly call the 
unwrapped methods or manipulate resource implementa-
tions since these actions would be detected as violations 
by the byte code verifier.  We also run the byte code 
verifier on the modified classes after the transformations.  
This step could be eliminated if load time efficiency is a 
priority, but is useful for detecting bugs in the 
transformer. 

For the Win32 implementation, the DLL interface 
provides a convenient point at which to perform the redi-
rection of platform calls to their policy-enforcing wrap-
per.  For DLLs linked implicitly at load time, a simple 
change to the DLL name in an application’s import table 
will redirect all calls to a policy-enforcing version of the 
DLL.  For DLLs loaded explicitly at run-time, a wrapper 
for the LoadLibrary API function (which is always linked 
implicitly) can transparently substitute the appropriate 
policy-enforcing version of the DLL. 

Naccio/Win32 must enforce the necessary low-level 
code safety properties to prevent self-modifying code 
(which could be used to jump directly to system DLL 
routines thereby circumventing safety checks) and access 
to protected memory (such as storage used to implement 
resource state).  We use a limited version of software-
based fault isolation [21] to ensure that all jumps remain 
within the application’s code segment.  For single-
threaded applications, we can take advantage of read-only 
pages to provide the necessary memory safety.  Since 
access permissions are turned on and off using system 
calls, we can write platform interface wrappers that limit a 
program’s ability to change memory access permissions 
so that only Naccio checking code can modify the 
protected state.  We are currently investigating methods 
that can efficiently provide the necessary guarantees for 
multi-threaded applications. 

Since these protections must be applied at the level of 
machine instructions, the implementation of low-level 
code safety is dependent on the processor architecture.  
Our current implementation supports the DEC Alpha 
architecture, due to the public availability of tools for 
binary code modification on that architecture, including 
ATOM [19] and SPIKE [3].  The rest of the Win32 
implementation, in particular the platform interface and 
policy generator, is portable across different Win32 
processors. 

7 Results 

This section reports on results using Naccio/JavaVM to 
enforce several safety policies.  We can view the costs of 
using Naccio in terms of the one-time costs associated 
with generating a new policy and with preparing an 
application to enforce a particular policy, and the over-
head to enforce a policy when the application executes. 
While we are willing to accept high policy-generation 
costs, it is important that the application preparation and 
run-time costs are low. 
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7.1 Sample policies 

An important advantage of Naccio’s general 
mechanisms for defining safety policies is that a wide 
range of policies can be enforced.  Naccio can enforce 
policies outside the scope of those considered by 
traditional systems, as well as policies that are more 
precise than traditional systems can support.  For our 
experiments, we use the following six policies. 

LimitWrite.  The LimitWrite policy (Figure 3) prevents 
applications from altering any existing file and places a 
one million-byte limit on the amount of data that may be 
written to the file system. 

LimitNetwork.  The LimitNetwork policy limits the hosts 
to which an application may connect, constrains how 
much bandwidth may be used, and limits the total amount 
of data that may be transferred using the network. 

Traditional code safety systems support policies that 
restrict network use by limiting the hosts to which the 
application may connect.  With Naccio, we can easily ex-
press such policies by placing constraints on the resource 
operation associated with opening a connection.  Merely 
restricting the hosts to which applications may connect, 
however, does not provide sufficient protection from 
denial-of-service attacks or buggy programs.  Naccio can 
be used to define properties that limit the total amount of 
data an application may send over the network in a way 
similar to how the LimitBytesWritten property (Figure 3) 
limits the amount of data that may be written to files. 

A more useful property limits the rate at which data is 
sent and received.  A bandwidth limit is useful if, for 
example, we want to run a stock ticker applet at the same 
time as a video conferencing program and ensure that the 
stock ticker does not consume too much bandwidth at the 
expense of video quality.  To limit transfer rates, we add 
resource fields that keep track of the start time for the 
current time quantum and the number of bytes sent during 
this quantum.  For each send or receive, we check if the 
current time quantum has expired.  If it has, we reset the 
transfer counter and start a new time quantum.  Then, we 
increment the value of the number of bytes transferred in 
this quantum.  If the limit would be exceeded, a violation 
is raised.  A more useful version of this policy 
(enforceable using Naccio, but not used in for the perfor-
mance results), splits and delays network sends to 
conform to the desired bandwidth limit instead of raising 
a violation when it would be exceeded. 

Paranoid.  The Paranoid safety policy includes all pro-
perties of the LimitWrite and LimitNetwork as well as proper-
ties that limit what system properties can be observed, 
limit how many different files may be touched, and allow 
a program to touch either the file system or the network, 
but not both.  Paranoid also prevents an execution from 
creating windows, observing keyboard or mouse events, 
or manipulating threads. 

JavaApplet.  The JavaApplet policy duplicates the policy 
HotJava 1.1.5 enforces on untrusted applets.  Naccio can 
be used to mimic any JDK policy by writing a safety 
policy that calls the security manager check methods at 
the same execution points as the Java API would call 
them.  For better performance, we mimic the HotJava 
policy by moving the checking code from AppletSecurity 
security manager into the safety policy and making the 
few changes necessary to convert Java code into safety 
policy actions.  JavaApplet disallows reading, writing and 
observing files except as permitted by access lists in the 
user’s configuration file.  It only allows network connec-
tions to the originating host.  (For our experiments we set 
the originating host using a command-line definition.) 

Null.  The simplest safety policy is the Null policy.  It 
places no constraints on resource usage, and is included as 
a baseline.  To generate the Null policy, we modify the 
policy generator so that it removes code related to calling 
security manager checks from all API classes. 

TarCustom.  All the safety policies we have seen so far 
are general enough to be part of a standard policy library.  
Naccio is flexible enough that we can also define policies 
precisely targeted to the expected behavior of a particular 
application.  While we do not expect typical users would 
go to the trouble of constructing an application-specific 
policy, it would be reasonable to expect application 
developers to include a precise safety policy as part of a 
distribution.  Although we cannot depend on malicious 
attackers to provide appropriate safety policies, it is 
reasonable to expect trustworthy developers to provide an 
application-specific policy that protects users from bugs.  
A system administrator installing the application would 
examine the safety policy and combine it with an 
organizational policy. 

The TarCustom policy is designed specifically for the 
tar archive utility.  It instantiates several properties specif-
ically targeted to the tar application, as well as some 
general properties, such as the NoNetwork property that 
disallows all network use.  It includes a property that 
allows one file with a name ending in .tar to be over-
written if the c flag is used to create an archive, but allows 
no other files to be overwritten.  TarCustom also limits the 
number of bytes written at all execution points to a func-
tion of the number of bytes read, and restricts files that 
may be read during the execution to those listed on the 
command line. 

In addition to offering protection from malicious or 
buggy implementations, a precise application-specific 
policy provides protection from user mistakes.  For exam-
ple, executing tar -cf * using a policy-enforcing version of 
tar results in a policy violation.  With the original applica-
tion it would replace the first file in the directory with an 
archive of all other files. 
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Null 0 17 20 1:08

LimitWrite 3 30 86 1:59

LimitNetwork 14 31 103 2:12

Paranoid 51 130 320 5:08

JavaApplet 46 114 300 5:51

TarCustom 23 107 268 4:42

Table 1.  Costs of generating policies.  The 17 methods 
wrapped for the Null policy are the methods all policies must wrap 
to protect dynamic class loading and reflection.  Time is the clock 
time to generate the policy not including not include time required 
to remove security manager calls from the Java API since that 
can be done once for all policies.  For all our experiments, we use 
Sun’s JDK 1.1.6 with no JIT compiler on a Pentium II/300 running 
Linux 1.3. 

7.2 Generating policies 

Table 1 shows the time required to generate each 
sample policy and the size of the policy-enforcing library.  
Although complex policies take several minutes to 
generate, this is believed to be acceptable since policy 
generation is an infrequent task.  

Policy generation time is dominated by the dependency 
analysis needed to determine which resource operations 
and wrappers are necessary and the time required to parse, 
transform and rewrite the Java library classes.  The cur-
rent implementation is extremely inefficient, and it would 
not be difficult to produce a better implementation that 
reduces these times dramatically. 

The size of the policy-enforcing library depends on 
how much of the API needs to be modified and how many 
resource operations are required.  In the worst case, 
Naccio would need to copy the entire API.  For the 
normal case, however, only a subset of the API classes 
need modifications and Naccio need only generate those 
classes.  If we are not renaming classes, we simply gener-
ate the classes that need to be modified, and the runtime 
will find the modified class if it exists, or the original 
class if it does not. For the version of the policy with 
renamed classes, we need to rewrite all API classes so the 
size of the policy-enforcing library is approximately the 
size of the Java API (about 9 megabytes). 

7.3 Transforming applications 

The time required to transform an application is 
important, since users experience it every time a new 
program is run with a safety policy.  The prototype 
implementation transforms about 15KB of application 
classes per second.  Most of the time is spent parsing class 
files.  This performance would be unacceptable in most 

actual uses but it could easily be improved.  In particular, 
we can reduce the overhead of application transformation 
to nearly zero by integrating it into the byte code verifier.  
The actual work needed to transform an application is 
limited to some simple string replacements in the constant 
pool at the beginning of each class file and for some 
policies inserting a few calls to initializers and finalizers 
into the main method. 

7.4 Execution performance 

Assuming the policy generation and application 
transformation costs are acceptable, the most important 
cost of enforcing a safety policy is the run-time overhead 
experienced when the program is run.  For our tests we 
use the following benchmarks: 

• Blast – a toy application that tests if a file exists and 
observes several system properties in a loop that 
executes 100,000 times.  This benchmark requires a 
large amount of security checking relative to the 
amount of real work.  

• Tar – an implementation of the tar file archiving 
utility from www.ice.com.  It is run to create a new 
archive of a directory tree containing 10MB in 3152 
mostly small files. 

• Socket – an application based on the java.net.Socket 
example in The Java Class Libraries [1].  In a loop 
that executes ten times, it opens a socket to an 
allowed host, sends 50,000 bytes in 10-20 byte 
blocks, and closes the socket.  

Figure 6 compares the performance overhead to en-
force the Null and JavaApplet policies on each application 
using Naccio and the JDK.  The Null policy is used as a 
baseline since it does no security checking.  We compare 
it to the JDK-Null policy, a security manager where each 
check method has an empty body.  The overhead of 
calling the security manager check methods averages a 
few percent (up to five percent for the Tar benchmark).  
This overhead varies depending on the API methods 
called by an application, but is incurred when we use JDK 
security mechanisms regardless of the actual policy. 
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Figure 6.  Performance.  Each bar indicates the execution 
time using the given policy divided by the run-time for the Null 
policy.  Timings are clock time average of four trials. 
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We compare the Naccio JavaApplet policy to the JDK-
JavaApplet policy.  This is the security manager used by 
HotJava modified to enforce the same policy on applica-
tions as it does on applets (by changing the return value of 
one function).  To avoid any security violations, we set 
the acl.read and acl.write properties to allow the necessary 
reading and writing, and set the originating host to allow 
the network connections made by the Socket benchmark. 

The relative security overhead varies greatly according 
to the type of application.  The overhead to enforce the 
JavaApplet policy on the Blast and Tar benchmarks is 
significantly lower using Naccio than using the JDK.  For 
the Tar benchmark, Naccio enforces the policy with 84% 
slowdown, compared to 153% slowdown using the JDK 
to enforce the same policy. 

For the Socket benchmark, using Naccio to enforce 
JavaApplet requires slightly more overhead than using the 
JDK.  This is because the Naccio implementation of the 
policy must create RNetConnection objects to represent 
network connections whereas the JDK security manager 
uses the Java Socket objects directly.  The run-time of the 
Socket benchmark is dominated by network sends.  Since 
the Null and JavaApplet policies place no constraints on 
sending once a socket is open (and the JDK cannot 
impose any such constraints), the effect of different 
enforcement mechanisms is less significant on its overall 
performance. 

Naccio offers two performance advantages over the 
JDK security manager approach.  Whereas the JDK has to 
determine which security manager to use and whether or 
not to apply a policy by examining the ClassLoader stack 
at run-time, Naccio makes all policy decisions statically 
when the policy is generated and the application is 
transformed.  This effect is clear when we compare the 
results using Naccio to enforce the Null policy to those 
using JDK security mechanisms with an empty security 
manager. 

The other performance advantage of our approach is 
that checking overhead is incurred only for API calls that 
are constrained by the actual policy.  This becomes clear 
when we compare the relative costs of enforcing different 
policies on different application.  Figure 7 shows the 
relative enforcement overhead of the LimitFile, LimitNetwork, 
Paranoid and TarCustom policies on the benchmarks.  
Constants used in the Naccio policies (such as the write 
limit and network rate) are set high enough so that no 
violations are detected running the benchmarks. 

There is no meaningful comparison to the JDK for 
these policies, since it is impossible to enforce them using 
the JDK. Nevertheless, Naccio enforces most of these 
policies with less overhead than necessary to enforce the 
JavaApplet policy using the JDK.  Enforcing the Paranoid 
and TarCustom policies on the Tar benchmark requires 
slightly more overhead than enforcing JavaApplet using the 
JDK. 
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Figure 7.  Policy enforcement costs.  Each bar gives the 
execution time for running the benchmark enforcing the given 
policy divided by the execution time for running the benchmark 
enforcing the Null policy. 

The execution cost varies according to the complexity 
and ubiquity of the policy.  Enforcing a policy that places 
no meaningful constraints on the application has 
negligible overhead.  For example, the slow-down for 
enforcing LimitNetwork on the Tar benchmark is minimal.  
Since the only safety checking is associated with network-
related methods that are never called by tar, there is no 
significant overhead necessary to enforce the policy. 

On the other hand, enforcing a complex and ubiquitous 
policy has a significant performance penalty.  Enforcing 
the policies that limit the number of bytes that may be 
read or written on the Tar benchmark illustrates the worst-
case scenario.  Most of the work done by the application 
is in executing a large number of fast system calls that 
need to be checked to enforce the safety policy.  For each 
write, TarCustom increments a state variable that keeps 
track of the number of bytes written and then compares 
this value to a function of the number of bytes read. 

The performance disadvantage of using Naccio is the 
overhead required to create and maintain abstract resource 
objects.  In cases such as the Socket benchmark with the 
JavaApplet policy, this overhead may outweigh the perfor-
mance benefits of statically determining policies.  Perhaps 
a better policy generator could reduce this overhead by 
optimizing out resource objects in cases where it is 
possible to derive the necessary information from the 
unmodified Java object.  In other cases, the extra state 
information kept in resource objects improves checking 
performance considerably.  For example, the checks rela-
ting to file readability in the JavaApplet policy can be 
performed more quickly because the absolute pathname of 
a file is stored in its corresponding RFile resource object.  
The JDK implementation needs to recompute this path for 
every check that uses it. 

Unlike traditional code safety systems where much of 
the overhead is incurred irrespective of the safety policy 
being enforced, with Naccio the run-time overhead is 
directly related to the checking needed to enforce a 
particular safety policy.  Naccio can provide the extra 
flexibility needed to enforce a wide class of policies 
without suffering a performance penalty when simpler 
policies are enforced. 

1081-6011/99 $10.00 (c) 1999 IEEE



  

8 Related work 

This section surveys relevant work in low-level and 
high-level code safety.  Work in low-level code safety 
provides the foundation necessary to support Naccio’s 
high-level safety mechanisms.  We survey how other 
high-level code safety approaches express and enforce 
policies.  The most closely related work is the work on 
enforcing resource limits, execution monitoring and the 
Ariel project. 

8.1 Low-level code safety 

The minimum low-level code safety required to 
support most high-level code safety mechanisms is 
control flow safety, memory safety, and stack safety [8].  
Without control flow safety, an attacker could construct a 
program that jumps directly to the body of a system call 
bypassing any restrictions or checking code.  Without 
memory safety, a program could modify its own code and 
the data used in safety checking.  Approaches that offer 
the most promising options for providing the low-level 
code safety needed by Naccio include verification and 
software fault isolation. 

Verification.  One way to ensure low-level code safety 
is to verify the needed properties of an object file before 
allowing it to execute.  If the property cannot be proven, 
the code is rejected. 

Java uses a byte code verifier [25] to provide low-level 
code safety.  Before loading a class, the verifier performs 
data-flow analysis on the class implementation to verify 
that it is type safe and that all control-flow instructions 
jump to valid locations.  Naccio/JavaVM relies on the 
Java byte code verifier to provide low-level code safety. 

A more ambitious verification approach is Proof-
Carrying Code (PCC) [11].  PCC combines a program 
with a proof that the program satisfies certain properties.  
Before installing the program, a certifier verifies the 
proof.  Proof generation may be complex and time-
consuming, but verification should be simple and 
efficient.  In theory, PCC techniques can be used to verify 
both low-level and high-level code safety properties.  In 
practice, they are limited by automatic proof-generation 
technology, and have been used most effectively to verify 
low-level safety properties [12]. 

Software fault isolation.  Instead of proving that 
arbitrary code has desired properties, it is usually easier to 
transform code in a special-purpose way so that it is 
guaranteed to have the desired properties.  Software fault 
isolation (SFI) [21] introduced this approach to provide 
low-level code safety.  It uses bit masks to ensure that 
memory operations and jumps access only the correct 
memory ranges.  Omniware [10] uses SFI to provide low-
level code safety in a mobile code system.  Software Fault 
Isolation has been implemented on other platforms 
including Alpha [17] and Intel x86 [18].  Naccio/Win32 

uses software fault isolation to prevent application code 
from jumping directly into system code. 

8.2 High-level code safety 

Provided low-level code safety is in place, we can 
employ mechanisms for high-level code safety knowing 
that they cannot be circumvented by forged pointers or 
arbitrary jumps.  A number of high-level code safety 
techniques have been invented.  We describe those most 
relevant to our work, focusing on how they describe 
policies, what policies they can enforce, and the enforce-
ment mechanisms they employ. 

Safe-Tcl.  Safe-Tcl [13] is a version of the Tcl 
scripting language designed as a safe platform for running 
untrusted scripts that control the behavior of trusted 
containing applications.  Safe-Tcl implements a safety 
policy by hiding commands from an untrusted script.  A 
safety policy can be defined to allow the untrusted code to 
access hidden commands through aliases that may do 
checks before calling the unsafe command.  One 
limitation of Safe-Tcl policies is that only a small fixed 
set of commands can be controlled.  Naccio’s use of 
policy-enforcing libraries is similar to Safe-Tcl’s use of 
command aliases. 

Java.  The Java run-time environment [5, 7] provides 
high-level security by allowing access to system resources 
only through the Java API.  Functions in the API are 
implemented to call safety checks before certain system 
calls are executed. 

In implementations before JDK 1.2, the safety checks 
are performed by check methods of the SecurityManager 
class.  The SecurityManager acts as a reference monitor [9], 
enforcing a particular safety policy by controlling access 
to system calls.  If the safety policy disallows a call, a 
security exception is raised before the system call can be 
executed. 

New safety policies can be defined and enforced by 
writing a SecurityManager subclass.  The scope and preci-
sion of policies, however, is limited by where the system 
libraries call security manager methods and by how much 
information is passed to the check method.  For instance, 
the constructor for FileOutputStream calls the checkWrite 
method before opening a file, but the write method does 
not call any security manager method.  Hence, one can 
implement an arbitrary security policy on what files may 
be written by changing the checkWrite method, but can 
place no constraints on the amount of data that may be 
written to a file once it has been opened. 

Although one could imagine solving this problem by 
simply adding more security manager calls to the Java 
API, the performance penalty associated with this 
straightforward solution would be unacceptable.  The 
problem is that the security manager method must be 
called regardless of whether or not the safety policy in use 
constrains it.  This overhead is acceptably small in 
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situations where it is used for expensive operations like 
opening a file or establishing a network connection.  
However, it would be unacceptable to require it for every 
system call, especially inexpensive, frequent ones like 
writing a byte to a file. 

By requiring the cost of a security manager check 
regardless of whether or not the safety policy places any 
constrains a particular API call, the JDK security mechan-
isms limit the API methods that call security manager 
checks, and hence the range and precision of safety 
policies that can be enforced.  Because the security 
manager not usually known at compile time, no matter 
how good compilers get they are unlikely to be able to 
optimize out calls to security manager checks.  Naccio 
avoids this problem, since static analysis of safety policies 
ensures that wrappers are applied only to methods that 
may manipulate a resource in a way constrained by the 
selected safety policy. 

Much of the work in Java security has been directed at 
providing greater flexibility as to which policy is applied 
to a particular class.  The Java class loading mechanism 
offers opportunities here, since each run-time class is 
associated with a ClassLoader that can be used to 
determine safety properties.  A particular problem is dis-
tinguishing between applet code, which should be limited 
by a particular safety policy, and system code, which may 
be granted extra privileges.  One technique for dealing 
with this is stack inspection [22].  System classes are 
permitted to enable privileges, but they are enabled only 
for inner calls that remain inside the system code.  When 
a privilege is required for an operation, the run-time sys-
tem examines the stack to determine if the privilege was 
enabled by some system code, and if all classes on the 
stack frame after it are system classes. 

Stack inspection can be implemented by transforming 
code to pass an extra parameter with each call that 
encodes which privileges are enabled [23].  By making all 
policy decisions statically, Naccio avoids the need to 
make any of these distinctions at run-time.  This 
eliminates the complexity and vulnerability associated 
with determining the appropriate policy to apply to a 
particular class at run-time. 

The Java security model continues to evolve with new 
Java releases [7].  JDK 1.2 introduced a more flexible 
security model in which the class loader can assign a 
different security policy to each class as it is loaded and 
stack inspection is used to determine what privileges are 
enabled.  JDK 1.2 also introduced the AccessController as a 
more abstract and flexible alternative to the 
SecurityManager.  Instead of calling a particular check 
method, implementations call an AccessController method 
that checks if the necessary permissions are enabled.  
While these changes have made it easier for vendors and 
users to implement different safety policies, they have not 
expanded the scope or improved the precision of policies 
that may be enforced since they are still limited by where 

the API calls safety checks, and are trapped because Java 
security mechanisms offer no way to eliminate unneces-
sary checks depending on the policy in use. 

Resource limits.  Most work on resource limits has 
been done in the context of operating systems instead of 
application-level code safety.  Here, we consider work on 
applying resource limits to Java programs. 

JRes is a resource management interface for JavaVM 
programs [4].  It supports per-thread accounting for heap 
memory, CPU time and network usage.  Limits can be 
placed on the amount of a particular resource a thread 
may consume, and callbacks are invoked when a limit is 
exceeded.  In JRes, policies are described by application 
calls to methods that set fixed value limits on a predefined 
set of resources.  Many policies that Naccio can enforce 
could not be defined using JRes because they depend on 
resource manipulations not constrained by JRes or they 
place more complex constraints on resource usage than a 
fixed limit (e.g., a rate or a function of other resource 
usage). 

JRes is implemented by rewriting Java application 
classes to keep track of thread and resource information.  
To account for memory usage, JRes inserts code before 
every object or array allocation that calculates the size of 
the allocation and invokes a method that accounts for this 
memory usage.  Accounting for CPU usage requires 
native code and a new thread that queries the operating 
system for CPU consumption.   

We believe that the mechanisms used by JRes could be 
incorporated into Naccio/JavaVM with minor modifica-
tions.  This would allow resources corresponding to CPU 
and heap memory usage to be defined, and policies to be 
defined and enforced that constrain these resources.  
Unfortunately, this would tie us to a particular JavaVM 
since JRes uses native methods and operating system calls 
to monitor CPU consumption. 

Execution monitoring.  Schneider defines EM, a class 
of enforcement mechanisms that enforce security policies 
by monitoring a target system and terminating an 
execution immediately before the policy would be 
violated [16].  Enforcement mechanisms in class EM can 
only enforce security policies that are safety policies.  
That is, policies that can be defined as a predicate on a 
prefix of execution states. 

Naccio is not in class EM because it modifies the 
application instead of just monitoring an execution.  
However, if we place a few restrictions on the platform 
interface, safety property definitions, and static analyses 
done by the application transformer, then Naccio can be 
viewed as an execution monitor in class EM. 

The necessary restrictions are that platform interface 
wrappers and safety property checking code only modify 
state invisible to the application, perform side-effect free 
computation guaranteed to terminate, and issue violations.  
Further, all platform interface wrappers must call the 
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original method with the original arguments on every 
execution path that does not report a violation.  In 
addition, the application transformer may not do any 
interesting static analyses or transformations to the code. 

Policies that do not satisfy these restrictions can 
change the behavior of the program in more fundamental 
ways and are harder to classify.  For example, we have 
defined a policy that enforces a soft bandwidth limit.  
Instead of issuing a violation when the bandwidth limit 
would be exceeded, it splits and delays network sends to 
stay within the requested limit.  Examples of other 
reasonable policies enforceable by Naccio but not by 
execution monitoring include a policy that adds warning 
strings to the titles of windows created by an untrusted 
execution and a policy that redirects all network sends to 
a local file. 

Schneider suggests techniques for using finite-state 
automata to express safety policies enforceable by 
execution monitoring.  Úlfar Erlingsson has developed 
Security Automata SFI Implementation (SASI) [6], a 
system that enforces policies defined using automata by 
inserting code in program executables similarly to what is 
done by Naccio.  Although no performance analysis is 
available, SASI should be able to enforce many policies 
more efficiently than Naccio since it does not require the 
overhead associated with maintaining abstract resource 
objects.  The transformations and analyses SASI has to do 
to enforce a policy are more complex than those that must 
be done by the Naccio application transformer, so we 
expect the application preparation costs will be higher 
with their approach.  The main advantage of Naccio over 
SASI is that Naccio offers a convenient, platform-
independent way of defining policies.  By describing 
policies at a lower level, SASI can define and enforce 
policies that cannot be enforced by Naccio such as those 
that constrain memory accesses or the structure of the 
code.  However, SASI cannot describe or enforce policies 
that modify the actual behavior of the program (such as 
the policy that alters network sends to conform to a 
requested bandwidth limit). 

Ariel Project.  The Ariel project describes policies 
using a declarative language and enforces policies by 
inserting code in Java classes [14].  The transformations 
done by Ariel to enforce a policy are similar to those done 
by Naccio/JavaVM.  Policies are described as access 
constraints that prevent the creation of objects or invoca-
tion of methods based on a predicate.  Because of the 
declarative nature of policy descriptions, Ariel is unable 
to describe behavior-modifying policies that can be 
described using Naccio’s mechanisms.  Policies are 
described at the level of the Java API so they are not 
portable across platforms, and writing a policy that 
constrains writing would require placing constraints on all 
methods that may write to a file (although they are 

working on techniques that allow classes and methods to 
be grouped [15]). 

9 Conclusion 

Our results demonstrate that it is possible to support a 
large class of interesting and useful safety policies 
without sacrificing performance or convenience.  We 
have presented a system architecture that supports the 
platform-independent description of a wide range of 
safety policies in terms of the abstract resource 
manipulations.  A platform interface describes how sys-
tem calls affect those resources. 

Our hope is that by providing better ways to define 
safety policies along with efficient and convenient 
mechanisms for enforcing policies, we can expand the 
situations in which code safety policies are used.  Cur-
rently, code safety is usually considered only for 
untrusted mobile code.  We believe a satisfactory code 
safety implementation would be useful in protecting users 
from bugs in applications from trustworthy sources as 
well.  As the precision of safety policies increases and the 
costs of enforcement are reduced, policies can be enforced 
in more situations with more pervasive benefits.  
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