
Region-Based Memory Management in Cyclone

Dan Grossman Greg Morrisett Trevor Jim†

Michael Hicks Yanling Wang James Cheney

Computer Science Department
Cornell University
Ithaca, NY 14853
{danieljg,jgm,mhicks,wangyl,jcheney}@cs.cornell.edu

†AT&T Labs Research
180 Park Avenue
Florham Park, NJ 07932
trevor@research.att.com

ABSTRACT
Cyclone is a polymorphic, type-safe programming language
derived from C. The primary design goals of Cyclone are
to let programmers control data representations and mem-
ory management without sacrificing type-safety. In this pa-
per, we focus on the region-based memory management of
Cyclone and its static typing discipline. The design incor-
porates several advancements, including support for region
subtyping and a coherent integration with stack allocation
and a garbage collector. To support separate compilation,
Cyclone requires programmers to write some explicit region
annotations, but uses a combination of default annotations,
local type inference, and a novel treatment of region effects
to reduce this burden. As a result, we integrate C idioms in
a region-based framework. In our experience, porting legacy
C to Cyclone has required altering about 8% of the code; of
the changes, only 6% (of the 8%) were region annotations.

1. INTRODUCTION
Many software systems, including operating systems, de-

vice drivers, file servers, and databases require fine-grained
control over data representation (e.g., field layout) and re-
source management (e.g., memory management). The de
facto language for coding such systems is C. However, in
providing low-level control, C admits a wide class of danger-
ous — and extremely common — safety violations, such as
incorrect type casts, buffer overruns, dangling-pointer deref-
erences, and space leaks. As a result, building large systems
in C, especially ones including third-party extensions, is per-
ilous. Higher-level, type-safe languages avoid these draw-
backs, but in so doing, they often fail to give programmers
the control needed in low-level systems. Moreover, porting
or extending legacy code is often prohibitively expensive.
Therefore, a safe language at the C level of abstraction, with
an easy porting path, would be an attractive option.

Toward this end, we have developed Cyclone [6], a lan-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

guage designed to be extremely close to C while remaining
type-safe. We have written or ported over 70,000 lines of
Cyclone code, including the Cyclone compiler, an extensive
library, lexer and parser generators, compression utilities,
a Windows device driver, and a web server. In so doing,
we identified many common C idioms that are usually safe,
but for which the C type system is too weak to verify. We
then augmented the language with modern features and typ-
ing technologies so that programmers could continue to use
those idioms, but have safety guarantees.

For example, to reduce the need for type casts, Cyclone
has features like parametric polymorphism, subtyping, and
tagged unions. To prevent bounds violations without mak-
ing hidden data-representation changes, Cyclone has a va-
riety of pointer types with different compile-time invariants
and associated run-time checks. Other projects aimed at
making legacy C code safe have addressed these issues with
somewhat different approaches, as discussed in Section 7.

In this paper, we focus on the most novel aspect of Cy-
clone: its system for preventing dangling-pointer derefer-
ences and space leaks. The design addresses several seem-
ingly conflicting goals. Specifically, the system is:

• Sound: Programs never dereference dangling pointers.

• Static: Dereferencing a dangling pointer is a compile-
time error. No run-time checks are needed to deter-
mine if memory has been deallocated.

• Convenient: We minimize the need for explicit pro-
grammer annotations while supporting many C id-
ioms. In particular, C code that manipulates stack
pointers often requires no modification.

• Exposed: We provide mechanisms that let program-
mers control the placement and lifetimes of objects.
As in C, local declarations are always stack-allocated.

• Comprehensive: We treat all memory uniformly, in-
cluding the stack, the heap (which can be optionally
garbage-collected), and “growable” regions.

• Scalable: The system supports separate compilation,
as all analyses are intra-procedural.

Following the seminal work of Tofte and Talpin [22], the
system is region-based : each object lives in a distinct region
of memory and, with the optional exception of the heap,
a region’s objects are all deallocated simultaneously. As a

1

static system for an explicitly typed, low-level language, Cy-
clone’s region framework makes several important technical
contributions over previous work, notably:

• Region subtyping: A last-in-first-out discipline on re-
gion lifetimes induces an “outlives” relationship on re-
gions, which, in turn, allows us to provide a useful
subtyping discipline on pointer types.

• Simple effects: We eliminate the need for effect vari-
ables (which complicate interfaces) through the use of
a “regions_of” type operator.

• Local region inference: Though inference is local, a
system of defaults minimizes the need for explicit re-
gion annotations.

• Integration of existentials: The combination of region
subtyping and simple effects makes the integration of
first-class abstract data types relatively simple.

In the rest of this paper, we demonstrate these contributions.
We begin with a general description of the system suitable
for C programmers (Section 2), and then follow with a more
technical discussion of our novel effect system and its inter-
action with existential types (Section 3). We continue with a
core formal language that we have proven sound (Section 4),
an overview of our implementation (Section 5), and a study
of the cost of porting C code to Cyclone (Section 6). We dis-
cuss related work in Section 7 and future work in Section 8.

2. USING CYCLONE REGIONS
This section presents the programmer’s view of Cyclone’s

memory-management system. It starts with the constructs
for creating regions, allocating objects, and so on — this
part is simple because the departure from C is small. We
next present the corresponding type system, which is more
involved because every pointer type carries a region annota-
tion. Then we show how regions’ lifetimes induce subtyping
on pointer types. At that point, the type syntax is quite ver-
bose, so we explain the features that, in practice, eliminate
almost all region annotations. Throughout, we take the lib-
erty of using prettier syntax (e.g., Greek letters) than actual
Cyclone. For the ASCII syntax and a less region-oriented
introduction to Cyclone, see the user’s manual [6].

2.1 Basic Operations
In Cyclone, all memory is in some region, of which there

are three kinds:

• A single heap region, which conceptually lives forever.

• Stack regions, which correspond to local-declaration
blocks, as in C.

• Dynamic regions, which have lexically scoped lifetimes
but permit unlimited allocation into them.

Static data are placed in the heap. Primitives malloc

and new create new heap objects. The new operation is like
malloc except that it takes an expression and initializes the
memory with it. There is no explicit mechanism for reclaim-
ing heap-allocated objects (e.g., free). However, Cyclone
programs may optionally link against the Boehm-Demers-
Weiser conservative garbage collector [4] to implicitly re-
claim unreachable heap-allocated objects. The interaction
of the collector with regions is discussed in Section 5.

Stack regions correspond directly to C’s local-declaration
blocks: entering a block with local declarations creates stor-
age with a lifetime corresponding to the lexical scope of the
block. Function parameters are in a stack region correspond-
ing to the function’s lifetime. In short, Cyclone local dec-
larations and function parameters have exactly the same
layout and lifetimes as in C.

Dynamic regions are created with the construct region

r {s}, where r is an identifier and s is a statement. The
region’s lifetime is the execution of s. In s, r is bound to
a handle for the region, which primitives rmalloc and rnew

use to allocate objects into the associated region. For exam-
ple, rnew(r) 3 returns a pointer to an int allocated in the
region of handle r and initialized to 3. Handles are first-class
values; a caller may pass a handle to a function to allow it to
allocate into the associated region. A pre-defined constant
heap_region is a handle for the heap.

Like a declaration block, a dynamic region is deallocated
precisely when execution leaves the body of the enclosed
statement. Execution can leave due to unstructured jumps
(continue, goto, etc.), a return, or via an exception. Sec-
tion 5 explains how we compile dynamic-region deallocation.

The region system imposes no changes on the represen-
tation of pointers or the meaning of operators such as &

and *. There are no hidden fields or reference counts for
maintaining region information at run-time. Pointers to ar-
rays of unknown size (denoted τ ?) are implemented with
extra fields to support bounds-checks, but this design is or-
thogonal to regions. As a result, all the infrastructure for
preventing dangling-pointer dereferences is in the static type
system, making such dereferences a compile-time error.

2.2 Basic Type System

Region Annotations.All pointers point into exactly one
region. In principle, pointer types are annotated with the
region name of the region they point into, though in prac-
tice we eliminate most annotations. Ignoring subtyping,
int*ρ describes a pointer to an int that is in the region
whose name is ρ. This invariant—pointers have a particu-
lar region—is the basic restriction we impose to make the
undecidable problem of detecting dangling-pointer derefer-
ences tractable. Pointer types with different region names
are different types. A handle for a region corresponding to
ρ has the type region_t<ρ>.

Region names fall into four categories. The region name
for the heap is ρH . A block labeled L (such as L:{int x=0;

s}) has name ρL, and refers to the stack region that the
block creates. Similarly, the arguments of a function f are
stored in the stack region ρf . Finally, the statement region
r {s} defines region name ρr for the created region. So r has
type region_t<ρr>. In all cases, the scope of a region name
corresponds to the lifetime of the corresponding region.

We can now give types to some small examples. If e1 has
type region_t<ρ> and e2 has type τ , then rnew (e1) e2 has
type τ*ρ. If int x is declared in block L, then &x has type
int*ρL. Similarly, if e has type τ*ρ, then &*e has type τ*ρ.

Preventing dangling-pointer dereferences.To derefer-
ence a pointer, safety demands that its region be live. Our
goal is to determine at compile-time that no code follows
a dangling pointer. It appears that no well-typed pointer
could be a dangling reference, because pointer types’ region

2

char?ρ strcpy<ρ, ρ2>(char?ρ d, const char?ρ2 s);

char?ρH strdup<ρ>(const char?ρ s);

char?ρ rstrdup<ρ, ρ2>(region_t<ρ>,const char?ρ2 s);

size_t strlen<ρ>(const char?ρ s);

Figure 1: Cyclone string library prototypes

names must be in scope. For example, this code is ill-typed:

1. int*ρL p;

2. L:{ int x = 0;

3. p = &x;

4. }

5. *p = 42;

The code creates storage for x at line 2 and deallocates it at
line 4, so the assignment of &x to p creates a dangling pointer
that is dereferenced in line 5. Cyclone rejects this code be-
cause ρL is not in scope when p is declared. If we change
the declaration of p to another region, then the assignment
p = &x fails to type-check because &x has type int*ρL.

However, Cyclone’s advanced features, notably existen-
tial and universal polymorphism, conspire to allow pointers
to escape the scope of their regions, just as closures allow
pointers to escape in the original Tofte-Talpin work. There-
fore, in general, we cannot rely upon simple scoping mecha-
nisms to ensure soundness, and must instead track the set of
live regions at each control-flow point. To keep the analysis
intra-procedural, we use a novel type-and-effects system to
track inter-procedural liveness requirements. We delay the
full discussion of effects until Section 3.

Region Polymorphism.Functions in Cyclone are region-
polymorphic; they can abstract the actual regions of their
arguments or results. That way, functions can manipulate
pointers regardless of the region they point into, whether it
be the stack, the heap, or a dynamic region.

Figure 1 presents some prototypes from the Cyclone string
library, including strcpy, strdup, and strlen, and a region-
allocating function rstrdup. The ? is Cyclone notation for
a pointer to a dynamically-sized array. These functions all
exhibit region polymorphism. In strcpy, the parameters’
region names ρ and ρ2 are abstracted by the syntax <ρ, ρ2>,
meaning they can be instantiated with any actual region
name when the function is called. So we can write code like:

L:{ char buf[20];

strcpy<ρL, ρH>(buf,"a heap pointer"); }

Here, the call instantiates ρ2 with the heap region ρH and ρ
with the stack region ρL, allowing one to copy a string from
the heap to the stack.

Region polymorphism can also guarantee region equalities
of unknown regions by using the same region names. For ex-
ample, in strcpy the region names of the first argument and
the return value are the same; so the returned pointer must
point to the same region as the first argument. Region name
equalities are also important for dynamic regions. For exam-
ple, the rstrdup function is a version of strdup that copies
the source string into a dynamic region. In its prototype,
we see that the region name of the returned value ρ matches
the region name of the dynamic region handle region_t<ρ>.
In fact, we implement strdup by just calling rstrdup:

char?ρH strdup<ρ>(const char?ρ s) {

return rstrdup<ρH , ρ>(heap_region,s);
}

Polymorphic Recursion.It is often valuable to instanti-
ate the region parameters of a recursive function call with
different names than the function’s own arguments. As an
example, this contrived program has a function fact that
abstracts a region ρ and takes as arguments a pointer into
ρ and an integer.

void fact<ρ>(int*ρ result, int n) {

L: { int x = 1;

if(n > 1) fact<ρL>(&x,n-1);

*result = x*n; }

}

int g = 0;

int main() { fact<ρH>(&g,6); return g; }

When executed, the program returns the value 720. In main,
we pass fact a heap pointer (&g), so the type of fact is in-
stantiated with ρH for ρ. In contrast, the recursive call in-
stantiates ρ with ρL, which is the name of the stack region.
At run time, the first instance of fact modifies g; each re-
cursive call modifies the value of x in its caller’s stack frame.

Type Definitions.Because struct definitions can contain
pointers, Cyclone allows structs to be parameterized by
region names. For example, here is a type for lists of pointers
to ints:

struct Lst<ρ1,ρ2> {

int*ρ1 hd;

struct Lst<ρ1,ρ2> *ρ2 tl;

};

Ignoring subtyping, a value of type struct Lst<ρ1,ρ2> will
be a list with hd fields that point into ρ1 and tl fields that
point into ρ2. Other invariants are possible: If the type
of tl were struct Lst<ρ2,ρ1>* ρ2, we would describe lists
where the regions for hd and tl alternated at each element.

Type abbreviations using typedef can also have region
parameters. For example, we can define region-allocated
lists of heap-allocated pointers with:
typedef struct Lst<ρH,ρ> list_t<ρ>;.

2.3 Subtyping
While the type system we have described thus far is quite

powerful, it is not expressive enough in some cases. For ex-
ample, it is common to define a local variable to alternatively
hold the value of one of its arguments:

void f<ρ1, ρ2>(int b, int*ρ1 p1, int*ρ2 p2) {

L: { int*ρL p;

if(b) p = p1; else p=p2;

/* ... do something with p ... */ }

}

In the type system described thus far, the program fails to
type-check because neither p1 nor p2 has type int*ρL. We
cannot change the type of p to int*ρ1 or int*ρ2, for then
one of the assignments would fail.

To solve this problem, we observe that if the region cor-
responding to ρ1 outlives the region corresponding to ρ2,

3

char?ρ strcpy(char?ρ d, const char? s);

char? strdup(const char? s);

char?ρ rstrdup(region_t<ρ>,const char? s);

size_t strlen(const char? s);

Figure 2: Cyclone prototypes minimally-annotated

then it is sound to use a value of type τ*ρ1 where we ex-
pect one of type τ*ρ2. Cyclone supports such coercions
implicitly. The last-in-first-out region discipline makes such
outlives relationships common: when we create a region, we
know every region currently alive will outlive it. Simple sub-
typing based on this outlives relationship allows the above
program to type-check.

Region-polymorphic functions can specify outlives rela-
tionships among their arguments with explicit pre-conditions
that express partial orders on region lifetimes. In practice,
we have not used this feature, because the local outlives
information has sufficed.

To ensure soundness, we do not allow casting τ1*ρ to τ2*ρ,
even if τ1 is a subtype of τ2, as this cast would allow putting
a τ2 in a location where other code expects a τ1. (This prob-
lem is the usual one with covariant subtyping on references.)
However, Cyclone does allow casts from τ1*ρ to const τ2*ρ2

when τ1 is a subtype of τ2. To ensure soundness, we must
enforce read-only access for const values (unlike C). This
support for “deep” subtyping, when combined with poly-
morphic recursion, is powerful enough to allow stack alloca-
tion of some recursive structures of arbitrary size.

2.4 Eliminating Annotations
Although Cyclone is explicitly typed in principle, it would

be too onerous to fully annotate every function. Instead, we
use a combination of inference and well-chosen defaults to
dramatically reduce the number of annotations needed in
practice. We emphasize that our approach to inference is
purely intra-procedural and that prototypes for functions
are never inferred. Rather, we use a default completion of
partial prototypes to minimize region annotations. This ap-
proach permits separate compilation.

When writing a pointer type (e.g., int*), the region an-
notation is optional; the compiler deduces an appropriate
annotation based on context:

1. For local declarations, a unification-based inference en-
gine infers the annotation from the declaration’s (intra-
procedural) uses. This local inference works well in
practice, especially when declarations have initializers.

2. Omitted region names in argument types are filled in
with fresh region names that are implicitly general-
ized. So by default, functions are region polymorphic
without any region equalities.

3. In all other contexts (return types, globals, type def-
initions), omitted region names are filled in with ρH

(i.e., the heap). This default works well for global
variables and for functions that return heap-allocated
results. However, it fails for functions like strcpy that
return one of their parameters. On the other hand,
without looking at the function body, we cannot deter-
mine which parameter (or component of a parameter)
the function might return.

In addition, when calling a region-polymorphic function,
the programmer can omit the explicit region-name instan-
tiation and the inference engine discovers it. As a result of
these devices, our fact example can become annotation-free:

void fact(int* result, int n) {

int x = 1;

if(n > 1) fact(&x,n-1);

*result = x*n;

}

Taken another way, the function above, when treated as C
code, ports to Cyclone with no additional annotations. Fig-
ure 2 shows the same string library functions as Figure 1,
but minimally annotated. In all cases, the lack of a region
annotation on the argument s means the type-checker would
insert a fresh region name for the pointer type, and gener-
alize it. The lack of an annotation on the return type of
strdup defaults to the heap. In total, five region annota-
tions were removed and all generalization became implicit.

While the default annotations and inference engine reduce
the burden on the programmer and make porting easier, it is
still necessary to put in some explicit annotations to express
equalities necessary for safety. For example, if we write:

void f2(int** pp, int* p) {*pp=p;}

then the code elaborates to:

void f2<ρ1, ρ2, ρ3>(int *ρ1*ρ2 pp, int *ρ3 p) {*pp=p;}

which fails to type-check because int*ρ1 6= int*ρ3. The
programmer must insert an explicit region annotation to
assert an appropriate equality relation on the parameters:

void f2(int*ρ* pp, int*ρ p) { *pp = p; }

Finally, we employ another technique that dramatically
reduces annotations in practice, with regard to type defini-
tions. we can partially apply parameterized type definitions;
elided arguments are filled in via the same rules used for
pointer types. Here is an aggressive use of this feature:

typedef struct Lst<ρ1,ρ2> *ρ2 l_t<ρ1,ρ2>;

l_t heap_copy(l_t l) {

l_t ans = NULL;

for(l_t l2 = l; l2 != NULL; l2 = l2->tl)

ans = new Lst(new *l2->hd,ans);

return ans;

}

Because of defaults, the parameter type is l_t<ρ1,ρ2> and
the return type is l_t<ρH,ρH>. Because of inference, the
compiler assigns ans the type l_t<ρH,ρH> and l2 the type
l_t<ρ1,ρ2>.

3. EFFECTS
We argued in Section 2.2 that the scope restrictions on re-

gion types prevent pointers from escaping the scope of their
region. In particular, a function or block cannot return or
assign a value of type τ*ρ outside the scope of ρ’s definition,
simply because you cannot write down a (well-formed) type
for the result. Indeed, if Cyclone had no mechanisms for
type abstraction, this property would hold.

But if there is some way to hide a pointer’s type in a
result value, then the pointer could escape the scope of its

4

region. For instance, if Cyclone had (upwards-escaping) clo-
sures, then one could hide a pointer to a local variable in
the closure’s environment, and return the closure outside
the scope of the variable, thereby introducing a dangling
pointer. This, in and of itself, is not a problem, but if the
closure is later invoked, then it might dereference the dan-
gling pointer. This is the critical problem that Tofte and
Talpin addresses for functional languages.

Cyclone does not have closures, but it has other typing
constructs that hide regions. In particular, Cyclone provides
existential types [17], which suffice to encode closures [16]
and simple forms of objects [5]. Therefore, it is possible in
Cyclone for pointers to escape the scope of their regions.

To address this problem, the Cyclone type system keeps
track of the subset of regions that are live at any control-flow
point. Following Walker, Crary, and Morrisett [23], we call
the set of live regions the capability. Before dereferencing a
pointer, the type system ensures that the associated region
is in the capability. Similarly, before calling a function, Cy-
clone ensures that regions the function might access are all
in the current capability. To this end, function types carry
an effect that records the set of regions the function might
access. The idea of using effects to ensure soundness is due
to Tofte and Talpin (hereafter TT). However, our treatment
of effects differs substantially from previous work.

The first major departure from TT is that we calculate
default effects from the function prototype alone (instead of
inferring them from the function body) in order to preserve
separate compilation. The default effect is simply the set
of regions that appear in the argument or result types. For
instance, given the prototype:

int*ρ1 f(int*, int*ρ1*);

which elaborates to:

int*ρ1 f<ρ1, ρ2, ρ3>(int*ρ2, int*ρ1*ρ3);

the default effect is {ρ1, ρ2, ρ3}. In the absence of poly-
morphism, this default effect is a conservative bound on the
regions the function might access. As with region names in
prototypes, the programmer can override the default with
an explicit effect. For example, if f never dereferences its
first argument, we can strengthen its prototype by adding
an explicit effect as follows:

int*ρ1 f(int*ρ2, int*ρ1*ρ3; {ρ1, ρ3});

In practice, we have found that default effects extremely
useful. Indeed, for the 70,000 lines of Cyclone code we have
written thus far, we have written one non-default effect.

The second major departure from TT is that we do not
have effect variables. Effect variables are used by TT for
three purposes: (1) to simulate subtyping in a unification-
based inference framework, (2) to abstract the set of regions
that a closure might need to access, and (3) to abstract the
set of regions hidden by an abstract type.

In our original Cyclone design, we tried to use TT-style
effect variables. However, we found that the approach does
not work well in an explicitly-typed language for two rea-
sons. First, the effect variables introduced by TT to support
effect subtyping could only occur free in one location, and all
effect variables had to be prenex quantified [20]. Their uni-
fication algorithm depended crucially upon these structural
invariants. In an explicitly-typed language, we found that

enforcing these constraints was difficult. Furthermore, the
prenex quantification restriction prevented first-class poly-
morphic functions, which Cyclone supports.

Second, we found that effect variables appeared in some
library interfaces, making the libraries harder to understand
and use. Consider, for instance, an implementation of poly-
morphic sets:

struct Set<α, ρ, ε> {

list_t<α,ρ> elts;

int (*cmp)(α,α; ε);
}

A Set consists of a list of α elements, with the spine of the
list in region ρ. We do not know where the elements are
allocated until we instantiate α. The comparison function
cmp is used to determine set membership. Because the type
of the elements is not yet known, the type of the cmp function
must use an effect variable ε to abstract the set of regions
that it might access when comparing the two α values. And
this effect variable, like the type and region variable, must
be abstracted by the Set structure.

Now the library might export the Set structure to clients
abstractly (i.e., without revealing its definition):

struct Set<α, ρ, ε>;

The client must somehow discern the connection between α
and ε, namely that ε is meant to abstract the set of regions
within α that the hidden comparison function might access.

To simplify the system while solving the problems that ef-
fect variables solve, we use a type operator, regions_of(τ).
This novel operator is just part of the type system; it does
not exist at run-time. Intuitively, regions_of(τ) represents
the set of regions that occur free in τ . In particular:

regions_of(int) = ∅
regions_of(τ*ρ) = {ρ} ∪ regions_of(τ)
regions_of((τ1, . . . , τn) → τ) =
regions_of(τ1) ∪ · · · ∪ regions_of(τn) ∪ regions_of(τ)

For type variables, regions_of(α) is treated as an abstract
set of region variables, much like effect variables. For exam-
ple, regions_of(α*ρ) = {ρ} ∪ regions_of(α).

With the addition of regions_of, we can rewrite the Set

example as follows:

struct Set<α, ρ> {

list_t<α,ρ> elts;

int (*cmp)(α,α; regions_of(α));
}

Now the connection between the type parameter α and the
comparison function’s effect is apparent, and the data struc-
ture no longer needs to be parameterized by an effect vari-
able. Moreover, regions_of(α) is the default effect for int
(*cmp)(α,α), so we need not write it.

Now suppose we wish to build a Set<int*ρ1,ρ2> value
using some pre-defined comparison function:

int cmp_ptr<ρ1>(int*ρ1 p1, int*ρ1 p2) {

return (*p1) == (*p2);

}

Set<int*ρ1,ρ2> build_set(list_t<int*ρ1,ρ2> e) {

return Set{.elts = e, .cmp = cmp_ptr<ρ1>};

}

5

The default effect for cmp_ptr is {ρ1}. After instantiating α
with int*ρ1, the effect of cmp becomes regions_of(int*ρ1),
which equals {ρ1}. As a result, the function build_set type-
checks. And indeed, using any function with a default effect
will always succeed. Consequently, programmers need not
explicitly mention effects when designing or using libraries.

In addition, unifying function types becomes somewhat
easier when default effects are used because, given the same
argument and result types, two functions always have the
same default effect.

3.1 Interaction with Existentials
As mentioned above, Cyclone supports existential types,

which allow programmers to encode closures. For example,
we can give a type for “call-backs” that return an int:

struct IntFn ∃α { int (*func)(α env); α env;};

Here, the call-back consists of a function pointer and some
abstracted state that should be passed to the function. The
α is existentially bound: Various objects of type struct

IntFn can instantiate α differently. When a struct IntFn

object is created, the type-checker ensures there is a type
for α such that the fields are correctly initialized.

To access the fields of an existential object, we need to
“open” them by giving a name to the bound type variable.
For example, we can write (in admittedly alien syntax):

int apply_intfn(struct IntFn pkg) {

let IntFn<β>{.func = f,.env = y} = pkg;

return f(y);

}

The let form binds f to pkg.func with type int (*)(β)
and y to pkg.env with type β. So the function call appears
well-typed. However, the effect for f is regions_of(β) and
we have no evidence that these regions are still live, even
though β is in scope. Indeed, the regions may not be live as
the following code demonstrates:

int read<ρ>(int*ρ x) { return *x; }

struct IntFn dangle() {

L:{int x = 0;

struct IntFn ans =

<int*ρL>{.func = read<ρL>, .env = &x};

return ans; }

}

Here, the abstracted type α is instantiated with int*ρL be-
cause the call-back’s environment is a pointer to an int x in
region ρL. The function for the call-back just dereferences
the pointer it is passed. When packaged as an existential,
the int*ρL is hidden and thus the result is well-typed de-
spite the fact that the call-back has a dangling pointer.

In short, to use struct IntFn objects, we must “leak”
enough information to prove a call is safe. We accomplish
this by giving regions_of(α) a bound :

struct IntFn<ρ> ∃α:>ρ { ... };

The bound means regions_of(α) must all outlive ρ. There-
fore, if pkg has type struct IntFn<ρ>, then we can call the
func field so long as ρ is live. In practice, this soundly re-
duces the “effect” of the call-back to a single region.

4. FORMAL SOUNDNESS
In a separate technical report [13], we have defined an

operational model of core Cyclone, formalized the type sys-
tem, and proven type soundness. Space constraints prevent
us from duplicating the material here, so we summarize the
salient details.

The core includes all of the features relevant to memory
management, including stack allocation, dynamic region al-
location, polymorphism, and existentials. The operational
semantics is a small-step, deterministic rewriting relation
(→) from machine states to machine states. A machine state
is a triple (G, S, s) consisting of a garbage stack G, a stack
S, and a statement s. The stacks are finite maps from region
names (ρ) to regions (R), which in turn are finite maps from
locations (x) to values (v). The garbage stack G is a tech-
nical device used to record the deallocated storage so that
the program stays closed despite dangling pointers. Note,
however, that the abstract machine becomes stuck if the
program attempts to read or write a location in the garbage
stack. The primary goal of the formalism is to prove that
well-typed programs cannot get stuck, and thus the garbage
can be safely reclaimed at any point during the execution.

4.1 Syntax
Figure 3 gives BNF definitions for the syntax of the state-

ments, expressions, and types for Core Cyclone. Construc-
tors (τ) define syntax for both types and regions. We use a
kind discipline to determine whether a type variable repre-
sents a type (T) or a region (R).

Types include pairs (τ1 × τ2) to model primitive structs.
Like structs, pairs are passed by value (i.e., copy-in/copy-
out). They cannot instantiate type variables because we do
not duplicate polymorphic code and values of pair types are
larger than other types. Types also include type variables,
universal types, and existential types. The quantifiers can
range over types or regions and include region constraints,
which are used to specify partial orders on region lifetimes.
A region constraint (γ) is a list of primitive constraints of
the form ε <: ρ where ε is a region set, and ρ is a region.
Intuitively, the constraint means that if you can show any
of the regions in ε are live, then you can assume ρ is live.
Region sets can include either region variables (ρ) or the
regions_of a type variable. (We omit the regions_of for
conciseness.) Finally, function types include a region set (ε),
which specifies the function’s effect — the set of regions that
must be live before calling the function.

Statements consist of expressions, return statements, com-
position, if-statements, and while-statements. In addition,
they include blocks (ρ : {τ xρ = e; s}) for declaring a new
stack region and a variable within that region, dynamic
region declarations (region〈ρ〉xρ s), and a mechanism for
opening values of existential type. Finally, statements in-
clude a special form “s pop[ρ]” which, when executed, eval-
uates s to a terminal state and then deallocates the region
ρ. This special form is not available at the source level, but
is used internally by the abstract machine as a marker to
indicate when regions should be deallocated.

Expressions include variables xρ which double as loca-
tions. Each variable x lives in a given region ρ; formally xρ

makes this fact explicit. Expressions also include integers,
functions, pointer dereference, function calls, the address-of
operator, and assignment as in C. In addition, expressions
include polymorphic instantiation, pairs, projection, rnew,

6

kinds κ ::= T | R
type and region vars α, ρ

region sets ε ::= α1 ∪ · · · ∪ αn ∪ {ρ1, . . . , ρm}
region constraints γ ::= ∅ | γ, ε <: ρ

constructors τ ::= α | int | τ1
ε→ τ2 | τ1 × τ2 | τ ∗ ρ | handle(ρ) | ∀α:κ . γ.τ | ∃α:κ . γ.τ

expressions e ::= xρ | v | e〈τ〉 | (e1, e2) | e.i | ∗e | rnew(e1)e2 |
e1(e2) | &e | e1 = e2 | pack [τ1, e] as τ2

values v ::= i | f | &p | region(ρ) | (v1, v2) | pack [τ1, v] as τ2

paths p ::= xρ | p.i

functions f ::= ρ:(τ1 xρ)
ε→ τ2 = {s} | Λα:κ . γ.f

statements s ::= e | return e | s1; s2 | if (e) s1 else s2 | while (e) s |
ρ:{τ xρ = e; s} | region〈ρ〉 xρ s | ρ:{open [α, xρ] = e; s} | s pop[ρ]

Figure 3: Abstract Syntax of Core Cyclone

existential packages, region handles, and paths. Rather than
model individual memory locations, paths provide a sym-
bolic way to refer to a component of a compound object. For
instance, if the location xρ contains the value ((3, 4), (5, 6)),
then the path xρ.1 refers to (3, 4), and xρ.1.2 refers to 4.

4.2 Static Semantics
The most important typing judgment is the one for state-

ments. It has the form:

∆; Γ; γ; ε; τ `stmt s

Here, ∆ records the set of type and region variables that
are in scope, Γ records the set of value variables in scope
along with their types, γ records partial order constraints
on region lifetimes from ∆, ε records the static capability
(i.e., which regions in ∆ are considered live), and τ records
the return type for the statement.

The inference rules for deriving this judgment allow dan-
gling pointers to be manipulated, but they cannot be deref-
erenced. This is because the rules for pointer dereference
require that the region into which the pointer refers is still
live. To establish liveness, it suffices to show that the region
name ρ is in ε. Often, this can be shown directly. When it
cannot, we can try to find another region ρ′ in ε such that
the constraint ρ′ :> ρ is in γ. The constraint ensures that ρ
outlives ρ′ and since ρ′ is live, ρ must be also.

The other important judgment for statements is

`ret s

which asserts that the statement will not “fall off”. Rather,
if execution of the statement terminates, then the terminal
state will be of the form return(v) for some value v. This
judgment is defined via a simple syntax-directed analysis.

Another important typing judgment is the one that allows
us to assert that a garbage stack G and stack S can be
described by the context ∆; Γ; γ:

`heap (G, S) : ∆; Γ; γ

Here, ∆ is the set of region names that are bound in either
G or S; Γ records the types of the locations bound in either
G or S; and γ records the relative lifetimes of the regions
in S. This judgment is used to connect assumptions that a
statement might make with the reality of the current heap.

With these top-level judgments (informally) defined, we
can state the Soundness Theorem for Core Cyclone:

Theorem 4.1 (Soundness). If:

1. `heap (∅, [ρH 7→ R]) : ∆; Γ; γ,

2. `ret s,

3. ∆;Γ; γ; {ρH}; int `stmt s, and

4. s contains no pop statements

then either (G, S, s) runs forever or there exists a G′, R′ and
i such that (G, [ρH 7→ R], s) →∗ (G′, [ρH 7→ R′], return(i))

In plain English, if we start with an empty garbage heap,
and a stack that contains a single heap region ([ρH 7→ R])
that is well-formed, and if statement s doesn’t fall off, and s
is well formed with respect to the type of the initial heap and
promises to return only integers, and s does not contain pop

statements, then the program cannot get stuck from type
errors or dangling-pointer dereferences. Furthermore, if the
program terminates, all of the regions it allocated will have
been freed and the program will return an integer. The proof
details are available in our companion technical report [13].

5. IMPLEMENTING CYCLONE REGIONS
The code-generation and run-time support for Cyclone

regions is very simple. Heap and stack manipulation are
exactly as in C. Dynamic regions are represented as linked
lists of “pages” where each page is twice the size of the pre-
vious one. A region handle points to the beginning of the list
and the current “allocation point” on the last page, where
rnew or rmalloc place the next object. If there is insuffi-
cient space for an object, a new page is allocated. Region
deallocation simply frees each page of the list.

When the garbage collector is included, dynamic-region
list pages are acquired from the collector. The collector
supports explicit deallocation, which we use to free regions.
It is important to note that the collector simply treats the
region pages as large objects. As they are always reachable
from the stack, they are scanned and any pointers to heap-
allocated objects are found, ensuring that these objects are
preserved. The advantage of this interface is its simplicity,
but at some cost: At collection time, every object in ev-
ery dynamic region appears reachable, and thus no objects
within (or reachable from) dynamic regions are reclaimed.

The code generator ensures that regions are deallocated
even when their lifetimes end due to unstructured control
flow. For each intra-procedural jump or return, it is easy to
determine statically how many regions should be deallocated

7

before transferring control. When throwing an exception,
this is no longer the case. Therefore, we store region handles
and exception handlers in an integrated list that operates in
a last-in-first-out manner. When an exception is thrown,
we traverse the list deallocating regions until we reach an
exception handler. We then transfer control with longjmp.
In this fashion, we ensure that a region is always deallocated
when control returns.

6. EXPERIMENTAL RESULTS
One of our central goals has been to minimize the num-

ber of required region annotations, to simplify both writing
new code and porting existing code. To evaluate our de-
sign, we examined a large body of Cyclone code, including
applications and libraries. In this section, we present our
observations, finding that region annotations impose neg-
ligible burden on the application writer, but a somewhat
larger burden on the library writer.

6.1 Application Code
To understand the overhead of porting C code to Cy-

clone, and particularly the impact of our region system, we
ported a number of legacy applications and compared the
differences in source code between the original and the Cy-
clone version. We picked several networking applications
because they are part of the “systems” domain in which
controlling data representation is important; these include
a web server (mini_httpd), some web utilities (http_get,
http_post, http_ping, and http_load), and a simple client
(finger). We also used some computationally-intense, older
C applications that make heavy use of arrays and pointers;
these include cfrac, grobner, and tile. Finally, we ported
the compression utilities cacm and ncompress.

We took two approaches to porting. First, we changed
all the programs as little as possible to make them correct
Cyclone programs. Then, for cfrac and mini_httpd, we
regionized the code: We made functions more region poly-
morphic and, where possible, eliminated heap allocation in
favor of dynamic region allocation with rnew. We also added
compiler-checked “not null” annotations to pointer types
where possible to avoid some null checks.

The results of our efforts are summarized in Table 1. For
each benchmark program, we show the number of lines of
C and Cyclone code, the differences between the two, the
region annotations required, and a performance comparison
of the Cyclone version with or without bounds/null checks.
The + column indicates the number of lines added relative
to C, and the - column is the lines removed. For the anno-
tations, the total column is the number of individual region-
related alterations, including per-variable annotations and
occurrences of region r {s} and rnew. The lines column
is the total number of lines in the file that changed due to
these annotations. Though not our focus, we give perfor-
mance estimates as well. The times are the median running
times (n=21) on a 750MHz PentiumIII with 256MRam run-
ning Linux kernel 2.2.16-12. The percentage for the Cyclone
programs is time relative to the C version.

There are two interesting results regarding the difficulty
of minimal-porting. First, the overall changes in the pro-
grams are relatively small — less than 10% of the program
code needed to be changed. The vast majority of the over-
all differences arise from pointer-syntax alterations. These
changes are typically easy to make — e.g., the type of strings

are changed from char * to char ?.
The most encouraging result is that the number of region

annotations is small: only 124 changes in total for more than
18,000 lines of code, which account for roughly 6% of the to-
tal changes. The majority of these changes were completely
trivial, e.g., many programs required adding ρH annotations
to argv so that arguments could be stored in global vari-
ables. The program that required the most changes was
grobner. Interestingly, the majority of these changes arose
from the fact that in one place a stack pointer was being
stored in a struct type. We therefore parameterized the
struct definition with a region variable, and this param-
eterization then propagated through the rest of the code.
However, the default annotation still worked in many cases:
out of 133 total variable declarations of the parameterized
struct type, only 38 required annotations, or 28%.

The cost of porting a program to use dynamic regions
was also reasonable; in this case roughly 13% of the total
diffs were region-related. For the web server, we were able
to eliminate heap allocation entirely. Because it is event-
driven, handling each request as it comes in, we changed
the main handler function to create a dynamic region and
then pass the region handle to its subroutines in a request
structure. After the request is serviced, the region is freed.
The majority of the overall changes arose from moving global
variables into the request structure and adding the structure
as a parameter to various functions. This request structure
is parameterized by a region, so many of the functions need
annotations to connect the region of the request structure
to that of another argument or return value.

We were less successful in regionizing cfrac. As in the
web server, we changed many functions to allocate using
region-handle parameters. It was easy to do dynamic region
allocation and deallocation as part of the algorithm’s main
iteration, but for large inputs, it was difficult to keep regions
from growing large before deallocation. We conclude that
garbage collection is a better match for this code, but others
have had more success with regions [11].

As for performance, we achieve near-zero overhead for net-
work or I/O bound applications such as the http clients
and servers, but we pay a considerable run-time penalty
for processor-intensive benchmarks such as the compression
tools. The unusually high overhead for the unregionized
cfrac appears due to poor code generation for *p++ where p

has type int?. The regionized port avoids such expressions.
We believe much of the overhead is due to array representa-
tion, not regions. We address this issue further in Section 8.

6.2 Library Code
We have ported a significant subset of the C and Ocaml

libraries to Cyclone. Two illustrative cases are the Cyclone
list and string libraries, ported from Ocaml and C respec-
tively. Table 2 summarizes the region annotations in the in-
terfaces and implementations of these libraries. As a rough
measure of the effectiveness of default region annotations,
we also provide results for “maximally annotated” versions
of the interfaces (list-max.h and string-max.h, respectively).
The proto column lists the number of region type annota-
tions that were necessary in function prototypes; the rnew
column lists the number of uses of rnew, and the region col-
umn lists the number of uses of dynamic regions.

We found that library code requires more region annota-
tions than application code, but most of these annotations

8

Program LOC diffs annotations performance
C Cyc + - total lines C time (s) checked(s) % unchecked(s) %

cacm 340 359 42 23 0 0 1.77 3.49 97% 3.03 71%
cfrac 4218 4214 132 136 2 2 2.61 17.07 554% 17.07 554%
finger 158 161 18 15 3 3 0.58 0.55 -5% 0.48 -17%
grobner 3244 3377 438 305 71 40 0.07 0.20 186% 0.20 186%
http get 529 529 36 36 4 4 0.28 0.28 0% 0.28 0%
http load 2072 2057 115 130 15 13 89.37 90.22 1% 90.19 1%
http ping 1072 1081 30 21 1 1 0.28 0.28 0% 0.28 0%
http post 607 608 42 41 8 8 0.16 0.16 0% 0.16 0%
matxmult 57 48 3 12 3 1 1.38 1.83 32% 1.38 0%
mini httpd 3005 3022 233 216 4 4 3.71 3.85 4% 3.86 4%
ncompress 1964 1982 120 102 10 9 0.20 0.39 95% 0.38 90%
tile 1345 1366 145 124 2 2 0.48 1.05 116% 0.99 104%
total 18611 18804 1354 1161 124 86 - - - - -

“regionized” versions of benchmarks
cfrac 4218 4110 501 528 158 107 2.61 10.07 286% 8.80 237%
mini httpd 3005 2967 500 522 88 54 3.71 3.83 3% 3.82 3%
total 7223 7174 1001 1050 246 161 - - - - -

Table 1: Porting C code to Cyclone

LOC proto rnew region
string.h 139 57 0 0
string-max.h 139 135 0 0
string.cyc 739 68 14 2
list.h 364 85 0 0
list-max.h 364 171 0 0
list.cyc 819 74 38 0

Table 2: Region annotations in libraries

are for the sake of convenience and generality rather than
necessity. Library functions that perform allocation tend to
come in two flavors: a heap allocating function that has the
same signature as the corresponding C or Ocaml function,
and a region version that takes an additional region handle.
Most of the annotations occur in the latter, and so were
made for the sake of the convenience of using of the libraries
with arbitrary regions. Most of the changes are to function
prototypes; no explicit region annotations were necessary in
the bodies of functions. The maximally annotated interfaces
require 2-2.4 times more region annotations; that is, the de-
fault region annotations suffice 50-60% of the time. Most of
the non-default region annotations were needed to express
a “same-region” relationship between arguments and return
types or to allow the function to allocate into an arbitrary
region; the remainder were needed in type definitions. More-
over, no effect annotations whatsoever were necessary.

Most importantly, our applications, such as the compiler,
use the libraries extensively and region instantiation is im-
plicit throughout them. The vast majority of library calls in
ported C code require no changes; malloc, realloc, memcpy,
etc., are essentially the only exceptions.

7. RELATED WORK
In this paper, we have concentrated on the region-based

type system for Cyclone, which naturally supports C-style
stack allocation, conventional heap allocation, and dynamic
region allocation. We feel that Cyclone is a unique and
promising point in the programming-language design-space,
but many other systems share some of these features.

Making C Safe.Many systems, including (but not limited
to) LCLint [9, 8], SLAM [3], Safe-C [2], and CCured [19] aim
to make C code safe. Some of these systems, such as LCLint,
are meant to be static bug-finding tools. Like Cyclone, they
usually require restricted coding idioms or additional anno-
tations, but unlike Cyclone, they offer no soundness guar-
antees. In this way, these static tools reduce false positives.
In contrast, Cyclone uses a combination of static analysis
(for memory management) and run-time checks (for bounds
violations) to minimize false positives.

Other systems, such as Safe-C and CCured, ensure sound-
ness by rewriting the code and adding run-time checks. The
primary advantage of these systems is that they require (al-
most) no changes to the C code, unlike Cyclone. However,
they do not preserve the same data representations and life-
times for objects. Furthermore, memory errors are caught
at run-time instead of compile time. For instance, when
an object is freed under CCured, the (entire) storage is not
immediately reclaimed, but rather marked as inaccessible.
Subsequent accesses check the mark and signal an error
when the object is dereferenced. Ultimately, the “mark”
is reclaimed with a garbage collector to avoid leaks. Fur-
thermore, CCured may implicitly move some stack-allocated
objects to the heap to avoid dangling-pointer dereferences.

Static Regions.Tofte and Talpin’s seminal work [22] on
implementing ML with regions provides the foundation for
regions in the ML Kit [21]. Programming with the Kit is
convenient, as the compiler automatically infers all region
annotations. However, small changes to a program can have
drastic, unintuitive effects on object lifetimes. Thus, to pro-
gram effectively, one must understand the analysis and try
to control it indirectly by using certain idioms [21]. More
recent work for the ML Kit includes optional support for
garbage collection within regions [14].

A number of extensions to the basic Tofte-Talpin frame-
work can avoid the constraints of LIFO region lifetimes. As
examples, the ML Kit includes a reset-region primitive [21];
Aiken et al. provide an analysis to free some regions early [1];
and Walker et al. [23, 24] propose general systems for free-
ing regions based on linear types. All of these systems are

9

more expressive than our framework. For instance, the ideas
in the Capability Calculus were used to implement type-
safe garbage collectors within a language [25, 18]. However,
these systems were not designed for source-level program-
ming. Rather, they were designed as compiler intermediate
languages or analyses and can thus ignore user issues such
as minimizing annotations or providing control to the user.

Two other recent projects, Vault [7] and the work of Hen-
glein et al. [15] aim to provide convenient, source-level con-
trol over memory management using regions. Vault’s pow-
erful type system allows a region to be freed before it leaves
scope and its types can enforce that code must free a region.
To do so, Vault restricts region aliasing and tracks more fine-
grained effects. As a result, programming in Vault requires
more annotations. Nevertheless, we find Vault an extremely
promising direction and hope to adapt some of these ideas to
Cyclone. Henglein et al. [15] have designed a flexible region
system that does not require LIFO behavior. However, the
system is monomorphic and first-order; it is unclear how to
extend it to support polymorphism or existential types.

Regions in C.Perhaps the most closely related work is
Gay and Aiken’s RC [11] compiler and their earlier system,
C@ [10]. As they note, region-based programming in C is an
old idea; they contribute language support for efficient refer-
ence counting to detect if a region is deallocated while there
remain pointers to it (that are not within it). This dynamic
system has no a priori restrictions on regions’ lifetimes and
a pointer can point anywhere, so the RC approach can en-
code more memory-management idioms. Like Cyclone, they
provide pointer annotations. These annotations are never
required, but they are often crucial for performance because
they reduce the need for reference-counting. One such an-
notation is very similar to our notion of region subtyping.

RC uses reference counting only for dynamic regions. In
fact, one annotation enforces that a pointer never points into
a dynamic region, so no reference counting is needed. As a
result, RC allows dangling pointers into the stack or heap.
Other kinds of type errors also remain. Indeed, we found
a number of array-bounds bugs in the benchmarks used to
evaluate RC, such as grobner. Finally, RC cannot support
the kind of polymorphism that Cyclone does because the RC
compiler must know statically which objects are pointers.

In summary, some of these systems are more convenient
to use than Cyclone (e.g., CCured and the MLKit) but take
away control over memory management. Some of the static
systems (e.g., the Capability Calculus) provide more pow-
erful region constructs, but were designed as intermediate
languages and do not have the programming convenience of
Cyclone. Other systems (e.g., RC, Safe-C) are more flexible
but offer no static guarantees.

8. FUTURE WORK
A great deal of work remains to achieve our goals of pro-

viding a tool to easily move legacy code to a type-safe en-
vironment and providing a type-safe language for building
systems where control over data representations and mem-
ory management is an issue.

In the near future, we hope to incorporate support for
deallocating dynamic regions early. We have experimented
briefly with linear type systems in the style of the Capa-
bility Calculus or Vault, but have found that this approach

is generally too restrictive, especially in the context of ex-
ceptions. Instead, we are currently developing a traditional
intra-procedural flow analysis to track region aliasing and
region lifetimes. Again, for the inter-procedural case, we
expect to add support for explicit annotations, and to use
experimental evidence to drive the choice of defaults.

We also expect to incorporate better support for first-class
regions, in the style of RC. The goal is to give programmers
a sufficient range of options that they can use the statically
checked regions most of the time, but fall back on the dy-
namically checked regions when needed.

In addition to enhancements to the region framework,
work is needed in other areas. For instance, we have seen
run-time overheads ranging from 1 to 3x for the benchmarks
presented here. For compute-intensive micro-benchmarks,
we have seen performance range from 1 to 10x, depending on
the architecture and C compiler. We are currently working
to identify the bottlenecks, but an obvious problem is that
we perform all array-bounds checks at run-time. For exam-
ple, when we disabled bounds checks for a matrix multiply
program, overhead dropped from 30% to 0%. Fortunately,
array-bounds-check elimination is a well-studied issue, and
we feel confident that we can adapt a simple, but effective
approach to avoid much of this cost.

The other key area we are investigating is data representa-
tion: To support dynamically sized arrays and array-bounds
checks, we tag such arrays with implicit size information.
Similarly, to support type-safe, discriminated unions, we
add implicit tags. We are adapting ideas from DML [27] and
Xanadu [26] to give programmers control over the placement
of these tags. We hope this will make it easier to interface
with legacy C code or devices that do not expect these tags
on the data. However, we have found that the DML frame-
work does not easily extend to imperative languages such as
C. In particular, there are subtle issues involving existential
types and the address-of (&) operator [12].

Acknowledgments
We would like to thank Steve Zdancewic and Jeff Vinocur
for help in proofreading this manuscript.

9. REFERENCES
[1] A. Aiken, M. Fähndrich, and R. Levien. Better static

memory management: Improving region-based
analysis of higher-order languages. In ACM
Conference on Programming Language Design and
Implementation, pages 174–185, La Jolla, CA, 1995.

[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient
detection of all pointer and array access errors. In
ACM Conference on Programming Language Design
and Implementation, pages 290–301, June 1994.

[3] T. Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfaces. In SPIN 2001,
Workshop on Model Checking of Software, volume
2057 of Lecture Notes in Computer Science, pages
103–122. Springer-Verlag, May 2001.

[4] H.-J. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. Software Practice and
Experience, 18(9):807–820, 1988.

[5] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing
object encodings. Information and Computation,
155:108–133, 1999.

10

[6] Cyclone user’s manual. Technical Report 2001-1855,
Department of Computer Science, Cornell University,
Nov. 2001. Current version at
http://www.cs.cornell.edu/projects/cyclone/.

[7] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In ACM Conference on
Programming Language Design and Implementation,
pages 59–69, Snowbird, UT, June 2001.

[8] D. Evans. LCLint user’s guide.
http://lclint.cs.virginia.edu/guide/.

[9] D. Evans. Static detection of dynamic memory errors.
In ACM Conference on Programming Language
Design and Implementation, pages 44–53,
Philadelphia, Pennsylvania, May 1996.

[10] D. Gay and A. Aiken. Memory management with
explicit regions. In ACM Conference on Programming
Language Design and Implementation, pages 313–323,
Montreal, Canada, June 1998.

[11] D. Gay and A. Aiken. Language support for regions.
In ACM Conference on Programming Language
Design and Implementation, pages 70–80, Snowbird,
UT, June 2001.

[12] D. Grossman. Existential types for imperative
languages. Oct. 2001. Submitted for publication.
Available at http://www.cs.cornell.edu/

home/danieljg/papers/exists_imp.pdf.

[13] D. Grossman, G. Morrisett, Y. Wang, T. Jim,
M. Hicks, and J. Cheney. Formal type soundness for
Cyclone’s region system. Technical Report 2001-1856,
Department of Computer Science, Cornell University,
Nov. 2001. Available at http://www.cs.cornell.edu/

home/danieljg/papers/cyclone_regions_tr.pdf.

[14] N. Hallenberg. Combining garbage collection and
region inference in the ML Kit. Master’s thesis,
Department of Computer Science, University of
Copenhagen, 1999.

[15] F. Henglein, H. Makholm, and H. Niss. A direct
approach to control-flow sensitive region-based
memory management. In Third International
Conference on Principles and Practice of Declarative
Programming, Firenze, Italy, Sept. 2001.

[16] Y. Minamide, G. Morrisett, and R. Harper. Typed
closure conversion. In Twenty-Third ACM Symposium
on Principles of Programming Languages, pages
271–283, St. Petersburg, Jan. 1996.

[17] J. Mitchell and G. Plotkin. Abstract types have
existential type. ACM Trans. on Programming
Languages and Systems, 10(3):470–502, 1988.
Preliminary version in Twelfth ACM Symposium on
Principles of Programming Languages, 1985.

[18] S. Monnier, B. Saha, and Z. Shao. Principled
scavenging. In ACM Conference on Programming
Language Design and Implementation, pages 81–91,
Snowbird, UT, June 2001.

[19] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In Twenty-Ninth
ACM Symposium on Principles of Programming
Languages, Portland, OR, Jan. 2002. To appear.

[20] M. Tofte and L. Birkedal. A region inference
algorithm. ACM Transactions on Progamming
Languages and Systems, 20(4):734–767, July 1998.

[21] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg,

T. H. Olesen, and P. Sestoft. Programming with
regions in the ML Kit (for version 4). Technical
report, IT University of Copenhagen, Sept. 2001.

[22] M. Tofte and J.-P. Talpin. Region-based memory
management. Information and Computation,
132(2):109–176, 1997.

[23] D. Walker, K. Crary, and G. Morrisett. Typed
memory management in a calculus of capabilities.
ACM Transactions on Progamming Languages and
Systems, 24(4):701–771, July 2000.

[24] D. Walker and K. Watkins. On regions and linear
types. In ACM International Conference on
Functional Programming, pages 181–192, Sept. 2001.

[25] D. C. Wang and A. W. Appel. Type-preserving
garbage collectors. In Twenty-Eighth ACM Symposium
on Principles of Programming Languages, pages
166–178, London, United Kingdom, Jan. 2001.

[26] H. Xi. Imperative programming with dependent types.
In Proceedings of 15th IEEE Symposium on Logic in
Computer Science, pages 375–387, Santa Barbara,
June 2000.

[27] H. Xi and F. Pfenning. Dependent types in practical
programming. In Proceedings of ACM SIGPLAN
Symposium on Principles of Programming Languages,
pages 214–227, San Antonio, January 1999.

11

