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Abstract

Cyclone is a polymorphic, type-safe programming language derived from C. The primary
design goals of Cyclone are to let programmers control data representations and memory man-
agement without sacrificing type-safety. In this paper, we focus on the region-based memory
management of Cyclone and its static typing discipline. The design incorporates several advance-
ments, including support for region subtyping and a coherent integration with stack allocation
and a garbage collector. To support separate compilation, Cyclone requires programmers to
write some explicit region annotations, but uses a combination of default annotations, local
type inference, and a novel treatment of region effects to reduce this burden. As a result, we
integrate C idioms in a region-based framework. In our experience, porting legacy C to Cyclone
has required altering about 8% of the code; of the changes, only 6% (of the 8%) were region
annotations.

This technical report is really two documents in one: The first part is a paper submitted
for publication in November, 2001. The second part is the full formal language and type-safety
proof mentioned briefly in the first part. If you have already read a version of, “Region-Based
Memory Management in Cyclone”, then you should proceed directly to Section 9.

1 Introduction

Many software systems, including operating systems, device drivers, file servers, and databases
require fine-grained control over data representation (e.g., field layout) and resource management
(e.g., memory management). The de facto language for coding such systems is C. However, in
providing low-level control, C admits a wide class of dangerous — and extremely common — safety
violations, such as incorrect type casts, buffer overruns, dangling-pointer dereferences, and space
leaks. As a result, building large systems in C, especially ones including third-party extensions, is
perilous. Higher-level, type-safe languages avoid these drawbacks, but in so doing, they often fail to
give programmers the control needed in low-level systems. Moreover, porting or extending legacy
code is often prohibitively expensive. Therefore, a safe language at the C level of abstraction, with
an easy porting path, would be an attractive option.

Toward this end, we have developed Cyclone [6], a language designed to be extremely close to C
while remaining type-safe. We have written or ported over 70,000 lines of Cyclone code, including
the Cyclone compiler, an extensive library, lexer and parser generators, compression utilities, a
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Windows device driver, and a web server. In so doing, we identified many common C idioms that
are usually safe, but for which the C type system is too weak to verify. We then augmented the
language with modern features and typing technologies so that programmers could continue to use
those idioms, but have safety guarantees.

For example, to reduce the need for type casts, Cyclone has features like parametric polymor-
phism, subtyping, and tagged unions. To prevent bounds violations without making hidden data-
representation changes, Cyclone has a variety of pointer types with different compile-time invariants
and associated run-time checks. Other projects aimed at making legacy C code safe have addressed
these issues with somewhat different approaches, as discussed in Section 7.

In this paper, we focus on the most novel aspect of Cyclone: its system for preventing dangling-
pointer dereferences and space leaks. The design addresses several seemingly conflicting goals.
Specifically, the system is:

• Sound: Programs never dereference dangling pointers.

• Static: Dereferencing a dangling pointer is a compile-time error. No run-time checks are
needed to determine if memory has been deallocated.

• Convenient: We minimize the need for explicit programmer annotations while supporting many
C idioms. In particular, C code that manipulates stack pointers often requires no modification.

• Exposed: We provide mechanisms that let programmers control the placement and lifetimes of
objects. As in C, local declarations are always stack-allocated.

• Comprehensive: We treat all memory uniformly, including the stack, the heap (which can be
optionally garbage-collected), and “growable” regions.

• Scalable: The system supports separate compilation, as all analyses are intra-procedural.

Following the seminal work of Tofte and Talpin [22], the system is region-based : each object lives
in a distinct region of memory and, with the optional exception of the heap, a region’s objects are all
deallocated simultaneously. As a static system for an explicitly typed, low-level language, Cyclone’s
region framework makes several important technical contributions over previous work, notably:

• Region subtyping: A last-in-first-out discipline on region lifetimes induces an “outlives” re-
lationship on regions, which, in turn, allows us to provide a useful subtyping discipline on
pointer types.

• Simple effects: We eliminate the need for effect variables (which complicate interfaces) through
the use of a “regions_of” type operator.

• Local region inference: Though inference is local, a system of defaults minimizes the need for
explicit region annotations.

• Integration of existentials: The combination of region subtyping and simple effects makes the
integration of first-class abstract data types relatively simple.

In the rest of this paper, we demonstrate these contributions. We begin with a general description of
the system suitable for C programmers (Section 2), and then follow with a more technical discussion
of our novel effect system and its interaction with existential types (Section 3). We continue with
a core formal language that we have proven sound (Section 4), an overview of our implementation
(Section 5), and a study of the cost of porting C code to Cyclone (Section 6). We discuss related
work in Section 7 and future work in Section 8.
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2 Using Cyclone Regions

This section presents the programmer’s view of Cyclone’s memory-management system. It starts
with the constructs for creating regions, allocating objects, and so on — this part is simple because
the departure from C is small. We next present the corresponding type system, which is more
involved because every pointer type carries a region annotation. Then we show how regions’ lifetimes
induce subtyping on pointer types. At that point, the type syntax is quite verbose, so we explain the
features that, in practice, eliminate almost all region annotations. Throughout, we take the liberty
of using prettier syntax (e.g., Greek letters) than actual Cyclone. For the ASCII syntax and a less
region-oriented introduction to Cyclone, see the user’s manual [6].

2.1 Basic Operations

In Cyclone, all memory is in some region, of which there are three kinds:

• A single heap region, which conceptually lives forever.

• Stack regions, which correspond to local-declaration blocks, as in C.

• Dynamic regions, which have lexically scoped lifetimes but permit unlimited allocation into
them.

Static data are placed in the heap. Primitives malloc and new create new heap objects. The
new operation is like malloc except that it takes an expression and initializes the memory with it.
There is no explicit mechanism for reclaiming heap-allocated objects (e.g., free). However, Cyclone
programs may optionally link against the Boehm-Demers-Weiser conservative garbage collector [4] to
implicitly reclaim unreachable heap-allocated objects. The interaction of the collector with regions
is discussed in Section 5.

Stack regions correspond directly to C’s local-declaration blocks: entering a block with local
declarations creates storage with a lifetime corresponding to the lexical scope of the block. Function
parameters are in a stack region corresponding to the function’s lifetime. In short, Cyclone local
declarations and function parameters have exactly the same layout and lifetimes as in C.

Dynamic regions are created with the construct region r {s}, where r is an identifier and s
is a statement. The region’s lifetime is the execution of s. In s, r is bound to a handle for the
region, which primitives rmalloc and rnew use to allocate objects into the associated region. For
example, rnew(r) 3 returns a pointer to an int allocated in the region of handle r and initialized
to 3. Handles are first-class values; a caller may pass a handle to a function to allow it to allocate
into the associated region. A pre-defined constant heap_region is a handle for the heap.

Like a declaration block, a dynamic region is deallocated precisely when execution leaves the
body of the enclosed statement. Execution can leave due to unstructured jumps (continue, goto,
etc.), a return, or via an exception. Section 5 explains how we compile dynamic-region deallocation.

The region system imposes no changes on the representation of pointers or the meaning of
operators such as & and *. There are no hidden fields or reference counts for maintaining region
information at run-time. Pointers to arrays of unknown size (denoted τ ?) are implemented with
extra fields to support bounds-checks, but this design is orthogonal to regions. As a result, all the
infrastructure for preventing dangling-pointer dereferences is in the static type system, making such
dereferences a compile-time error.

2.2 Basic Type System

Region Annotations All pointers point into exactly one region. In principle, pointer types are
annotated with the region name of the region they point into, though in practice we eliminate most
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char?ρ strcpy<ρ, ρ2>(char?ρ d, const char?ρ2 s);
char?ρH strdup<ρ>(const char?ρ s);
char?ρ rstrdup<ρ, ρ2>(region_t<ρ>,const char?ρ2 s);
size_t strlen<ρ>(const char?ρ s);

Figure 1: Cyclone string library prototypes

annotations. Ignoring subtyping, int*ρ describes a pointer to an int that is in the region whose
name is ρ. This invariant—pointers have a particular region—is the basic restriction we impose to
make the undecidable problem of detecting dangling-pointer dereferences tractable. Pointer types
with different region names are different types. A handle for a region corresponding to ρ has the
type region_t<ρ>.

Region names fall into four categories. The region name for the heap is ρH . A block labeled
L (such as L:{int x=0; s}) has name ρL, and refers to the stack region that the block creates.
Similarly, the arguments of a function f are stored in the stack region ρf . Finally, the statement
region r {s} defines region name ρr for the created region. So r has type region_t<ρr>. In all
cases, the scope of a region name corresponds to the lifetime of the corresponding region.

We can now give types to some small examples. If e1 has type region_t<ρ> and e2 has type
τ , then rnew (e1) e2 has type τ*ρ. If int x is declared in block L, then &x has type int*ρL.
Similarly, if e has type τ*ρ, then &*e has type τ*ρ.

Preventing dangling-pointer dereferences To dereference a pointer, safety demands that its
region be live. Our goal is to determine at compile-time that no code follows a dangling pointer.
It appears that no well-typed pointer could be a dangling reference, because pointer types’ region
names must be in scope. For example, this code is ill-typed:

1. int*ρL p;
2. L:{ int x = 0;
3. p = &x;
4. }
5. *p = 42;

The code creates storage for x at line 2 and deallocates it at line 4, so the assignment of &x to p
creates a dangling pointer that is dereferenced in line 5. Cyclone rejects this code because ρL is not
in scope when p is declared. If we change the declaration of p to another region, then the assignment
p = &x fails to type-check because &x has type int*ρL.

However, Cyclone’s advanced features, notably existential and universal polymorphism, conspire
to allow pointers to escape the scope of their regions, just as closures allow pointers to escape in the
original Tofte-Talpin work. Therefore, in general, we cannot rely upon simple scoping mechanisms
to ensure soundness, and must instead track the set of live regions at each control-flow point. To
keep the analysis intra-procedural, we use a novel type-and-effects system to track inter-procedural
liveness requirements. We delay the full discussion of effects until Section 3.

Region Polymorphism Functions in Cyclone are region-polymorphic; they can abstract the ac-
tual regions of their arguments or results. That way, functions can manipulate pointers regardless
of the region they point into, whether it be the stack, the heap, or a dynamic region.

Figure 1 presents some prototypes from the Cyclone string library, including strcpy, strdup,
and strlen, and a region-allocating function rstrdup. The ? is Cyclone notation for a pointer
to a dynamically-sized array. These functions all exhibit region polymorphism. In strcpy, the
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parameters’ region names ρ and ρ2 are abstracted by the syntax <ρ, ρ2>, meaning they can be
instantiated with any actual region name when the function is called. So we can write code like:

L:{ char buf[20];
strcpy<ρL, ρH>(buf,"a heap pointer"); }

Here, the call instantiates ρ2 with the heap region ρH and ρ with the stack region ρL, allowing one
to copy a string from the heap to the stack.

Region polymorphism can also guarantee region equalities of unknown regions by using the same
region names. For example, in strcpy the region names of the first argument and the return value
are the same; so the returned pointer must point to the same region as the first argument. Region
name equalities are also important for dynamic regions. For example, the rstrdup function is a
version of strdup that copies the source string into a dynamic region. In its prototype, we see that
the region name of the returned value ρ matches the region name of the dynamic region handle
region_t<ρ>. In fact, we implement strdup by just calling rstrdup:

char?ρH strdup<ρ>(const char?ρ s) {
return rstrdup<ρH , ρ>(heap_region,s);

}

Polymorphic Recursion It is often valuable to instantiate the region parameters of a recursive
function call with different names than the function’s own arguments. As an example, this contrived
program has a function fact that abstracts a region ρ and takes as arguments a pointer into ρ and
an integer.

void fact<ρ>(int*ρ result, int n) {
L: { int x = 1;

if(n > 1) fact<ρL>(&x,n-1);
*result = x*n; }

}
int g = 0;
int main() { fact<ρH>(&g,6); return g; }

When executed, the program returns the value 720. In main, we pass fact a heap pointer (&g), so
the type of fact is instantiated with ρH for ρ. In contrast, the recursive call instantiates ρ with
ρL, which is the name of the stack region. At run time, the first instance of fact modifies g; each
recursive call modifies the value of x in its caller’s stack frame.

Type Definitions Because struct definitions can contain pointers, Cyclone allows structs to
be parameterized by region names. For example, here is a type for lists of pointers to ints:

struct Lst<ρ1,ρ2> {
int*ρ1 hd;
struct Lst<ρ1,ρ2> *ρ2 tl;

};

Ignoring subtyping, a value of type struct Lst<ρ1,ρ2> will be a list with hd fields that point into
ρ1 and tl fields that point into ρ2. Other invariants are possible: If the type of tl were struct
Lst<ρ2,ρ1>* ρ2, we would describe lists where the regions for hd and tl alternated at each element.

Type abbreviations using typedef can also have region parameters. For example, we can define
region-allocated lists of heap-allocated pointers with:
typedef struct Lst<ρH,ρ> list_t<ρ>;.
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char?ρ strcpy(char?ρ d, const char? s);
char? strdup(const char? s);
char?ρ rstrdup(region_t<ρ>,const char? s);
size_t strlen(const char? s);

Figure 2: Cyclone prototypes minimally-annotated

2.3 Subtyping

While the type system we have described thus far is quite powerful, it is not expressive enough in
some cases. For example, it is common to define a local variable to alternatively hold the value of
one of its arguments:

void f<ρ1, ρ2>(int b, int*ρ1 p1, int*ρ2 p2) {
L: { int*ρL p;

if(b) p = p1; else p=p2;
/* ... do something with p ... */ }

}

In the type system described thus far, the program fails to type-check because neither p1 nor p2 has
type int*ρL. We cannot change the type of p to int*ρ1 or int*ρ2, for then one of the assignments
would fail.

To solve this problem, we observe that if the region corresponding to ρ1 outlives the region
corresponding to ρ2, then it is sound to use a value of type τ*ρ1 where we expect one of type τ*ρ2.
Cyclone supports such coercions implicitly. The last-in-first-out region discipline makes such outlives
relationships common: when we create a region, we know every region currently alive will outlive it.
Simple subtyping based on this outlives relationship allows the above program to type-check.

Region-polymorphic functions can specify outlives relationships among their arguments with
explicit pre-conditions that express partial orders on region lifetimes. In practice, we have not used
this feature, because the local outlives information has sufficed.

To ensure soundness, we do not allow casting τ1*ρ to τ2*ρ, even if τ1 is a subtype of τ2, as this
cast would allow putting a τ2 in a location where other code expects a τ1. (This problem is the usual
one with covariant subtyping on references.) However, Cyclone does allow casts from τ1*ρ to const
τ2*ρ2 when τ1 is a subtype of τ2. To ensure soundness, we must enforce read-only access for const
values (unlike C). This support for “deep” subtyping, when combined with polymorphic recursion,
is powerful enough to allow stack allocation of some recursive structures of arbitrary size.

2.4 Eliminating Annotations

Although Cyclone is explicitly typed in principle, it would be too onerous to fully annotate every
function. Instead, we use a combination of inference and well-chosen defaults to dramatically reduce
the number of annotations needed in practice. We emphasize that our approach to inference is
purely intra-procedural and that prototypes for functions are never inferred. Rather, we use a
default completion of partial prototypes to minimize region annotations. This approach permits
separate compilation.

When writing a pointer type (e.g., int*), the region annotation is optional; the compiler deduces
an appropriate annotation based on context:

1. For local declarations, a unification-based inference engine infers the annotation from the
declaration’s (intra-procedural) uses. This local inference works well in practice, especially
when declarations have initializers.
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2. Omitted region names in argument types are filled in with fresh region names that are implicitly
generalized. So by default, functions are region polymorphic without any region equalities.

3. In all other contexts (return types, globals, type definitions), omitted region names are filled
in with ρH (i.e., the heap). This default works well for global variables and for functions
that return heap-allocated results. However, it fails for functions like strcpy that return one
of their parameters. On the other hand, without looking at the function body, we cannot
determine which parameter (or component of a parameter) the function might return.

In addition, when calling a region-polymorphic function, the programmer can omit the explicit
region-name instantiation and the inference engine discovers it. As a result of these devices, our
fact example can become annotation-free:

void fact(int* result, int n) {
int x = 1;
if(n > 1) fact(&x,n-1);
*result = x*n;

}

Taken another way, the function above, when treated as C code, ports to Cyclone with no additional
annotations. Figure 2 shows the same string library functions as Figure 1, but minimally annotated.
In all cases, the lack of a region annotation on the argument s means the type-checker would insert
a fresh region name for the pointer type, and generalize it. The lack of an annotation on the
return type of strdup defaults to the heap. In total, five region annotations were removed and all
generalization became implicit.

While the default annotations and inference engine reduce the burden on the programmer and
make porting easier, it is still necessary to put in some explicit annotations to express equalities
necessary for safety. For example, if we write:

void f2(int** pp, int* p) {*pp=p;}

then the code elaborates to:

void f2<ρ1, ρ2, ρ3>(int *ρ1*ρ2 pp, int *ρ3 p) {*pp=p;}

which fails to type-check because int*ρ1 6= int*ρ3. The programmer must insert an explicit region
annotation to assert an appropriate equality relation on the parameters:

void f2(int*ρ* pp, int*ρ p) { *pp = p; }

Finally, we employ another technique that dramatically reduces annotations in practice, with
regard to type definitions. we can partially apply parameterized type definitions; elided arguments
are filled in via the same rules used for pointer types. Here is an aggressive use of this feature:

typedef struct Lst<ρ1,ρ2> *ρ2 l_t<ρ1,ρ2>;
l_t heap_copy(l_t l) {
l_t ans = NULL;
for(l_t l2 = l; l2 != NULL; l2 = l2->tl)
ans = new Lst(new *l2->hd,ans);

return ans;
}

Because of defaults, the parameter type is l_t<ρ1,ρ2> and the return type is l_t<ρH,ρH>. Because
of inference, the compiler assigns ans the type l_t<ρH,ρH> and l2 the type l_t<ρ1,ρ2>.
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3 Effects

We argued in Section 2.2 that the scope restrictions on region types prevent pointers from escaping
the scope of their region. In particular, a function or block cannot return or assign a value of type
τ*ρ outside the scope of ρ’s definition, simply because you cannot write down a (well-formed) type
for the result. Indeed, if Cyclone had no mechanisms for type abstraction, this property would hold.

But if there is some way to hide a pointer’s type in a result value, then the pointer could escape
the scope of its region. For instance, if Cyclone had (upwards-escaping) closures, then one could
hide a pointer to a local variable in the closure’s environment, and return the closure outside the
scope of the variable, thereby introducing a dangling pointer. This, in and of itself, is not a problem,
but if the closure is later invoked, then it might dereference the dangling pointer. This is the critical
problem that Tofte and Talpin addresses for functional languages.

Cyclone does not have closures, but it has other typing constructs that hide regions. In particular,
Cyclone provides existential types [17], which suffice to encode closures [16] and simple forms of
objects [5]. Therefore, it is possible in Cyclone for pointers to escape the scope of their regions.

To address this problem, the Cyclone type system keeps track of the subset of regions that are live
at any control-flow point. Following Walker, Crary, and Morrisett [23], we call the set of live regions
the capability. Before dereferencing a pointer, the type system ensures that the associated region
is in the capability. Similarly, before calling a function, Cyclone ensures that regions the function
might access are all in the current capability. To this end, function types carry an effect that records
the set of regions the function might access. The idea of using effects to ensure soundness is due
to Tofte and Talpin (hereafter TT). However, our treatment of effects differs substantially from
previous work.

The first major departure from TT is that we calculate default effects from the function prototype
alone (instead of inferring them from the function body) in order to preserve separate compilation.
The default effect is simply the set of regions that appear in the argument or result types. For
instance, given the prototype:

int*ρ1 f(int*, int*ρ1*);

which elaborates to:

int*ρ1 f<ρ1, ρ2, ρ3>(int*ρ2, int*ρ1*ρ3);

the default effect is {ρ1, ρ2, ρ3}. In the absence of polymorphism, this default effect is a conservative
bound on the regions the function might access. As with region names in prototypes, the programmer
can override the default with an explicit effect. For example, if f never dereferences its first argument,
we can strengthen its prototype by adding an explicit effect as follows:

int*ρ1 f(int*ρ2, int*ρ1*ρ3; {ρ1, ρ3});

In practice, we have found that default effects extremely useful. Indeed, for the 70,000 lines of
Cyclone code we have written thus far, we have written one non-default effect.

The second major departure from TT is that we do not have effect variables. Effect variables are
used by TT for three purposes: (1) to simulate subtyping in a unification-based inference framework,
(2) to abstract the set of regions that a closure might need to access, and (3) to abstract the set of
regions hidden by an abstract type.

In our original Cyclone design, we tried to use TT-style effect variables. However, we found that
the approach does not work well in an explicitly-typed language for two reasons. First, the effect
variables introduced by TT to support effect subtyping could only occur free in one location, and
all effect variables had to be prenex quantified [20]. Their unification algorithm depended crucially
upon these structural invariants. In an explicitly-typed language, we found that enforcing these
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constraints was difficult. Furthermore, the prenex quantification restriction prevented first-class
polymorphic functions, which Cyclone supports.

Second, we found that effect variables appeared in some library interfaces, making the libraries
harder to understand and use. Consider, for instance, an implementation of polymorphic sets:

struct Set<α, ρ, ε> {
list_t<α,ρ> elts;
int (*cmp)(α,α; ε);

}

A Set consists of a list of α elements, with the spine of the list in region ρ. We do not know where
the elements are allocated until we instantiate α. The comparison function cmp is used to determine
set membership. Because the type of the elements is not yet known, the type of the cmp function
must use an effect variable ε to abstract the set of regions that it might access when comparing the
two α values. And this effect variable, like the type and region variable, must be abstracted by the
Set structure.

Now the library might export the Set structure to clients abstractly (i.e., without revealing its
definition):

struct Set<α, ρ, ε>;

The client must somehow discern the connection between α and ε, namely that ε is meant to abstract
the set of regions within α that the hidden comparison function might access.

To simplify the system while solving the problems that effect variables solve, we use a type
operator, regions_of(τ). This novel operator is just part of the type system; it does not exist at
run-time. Intuitively, regions_of(τ) represents the set of regions that occur free in τ . In particular:

regions_of(int) = ∅
regions_of(τ*ρ) = {ρ} ∪ regions_of(τ)
regions_of((τ1, . . . , τn) → τ) =
regions_of(τ1) ∪ . . . ∪ regions_of(τn) ∪ regions_of(τ)

For type variables, regions_of(α) is treated as an abstract set of region variables, much like effect
variables. For example, regions_of(α*ρ) = {ρ} ∪ regions_of(α).

With the addition of regions_of, we can rewrite the Set example as follows:

struct Set<α, ρ> {
list_t<α,ρ> elts;
int (*cmp)(α,α; regions_of(α));

}

Now the connection between the type parameter α and the comparison function’s effect is appar-
ent, and the data structure no longer needs to be parameterized by an effect variable. Moreover,
regions_of(α) is the default effect for int (*cmp)(α,α), so we need not write it.

Now suppose we wish to build a Set<int*ρ1,ρ2> value using some pre-defined comparison func-
tion:

int cmp_ptr<ρ1>(int*ρ1 p1, int*ρ1 p2) {
return (*p1) == (*p2);

}
Set<int*ρ1,ρ2> build_set(list_t<int*ρ1,ρ2> e) {
return Set{.elts = e, .cmp = cmp_ptr<ρ1>};

}
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The default effect for cmp_ptr is {ρ1}. After instantiating α with int*ρ1, the effect of cmp becomes
regions_of(int*ρ1), which equals {ρ1}. As a result, the function build_set type-checks. And
indeed, using any function with a default effect will always succeed. Consequently, programmers
need not explicitly mention effects when designing or using libraries.

In addition, unifying function types becomes somewhat easier when default effects are used
because, given the same argument and result types, two functions always have the same default
effect.

3.1 Interaction with Existentials

As mentioned above, Cyclone supports existential types, which allow programmers to encode closures.
For example, we can give a type for “call-backs” that return an int:

struct IntFn ∃α { int (*func)(α env); α env;};

Here, the call-back consists of a function pointer and some abstracted state that should be passed
to the function. The α is existentially bound: Various objects of type struct IntFn can instantiate
α differently. When a struct IntFn object is created, the type-checker ensures there is a type for
α such that the fields are correctly initialized.

To access the fields of an existential object, we need to “open” them by giving a name to the
bound type variable. For example, we can write (in admittedly alien syntax):

int apply_intfn(struct IntFn pkg) {
let IntFn<β>{.func = f,.env = y} = pkg;
return f(y);

}

The let form binds f to pkg.func with type int (*)(β) and y to pkg.env with type β. So
the function call appears well-typed. However, the effect for f is regions_of(β) and we have no
evidence that these regions are still live, even though β is in scope. Indeed, the regions may not be
live as the following code demonstrates:

int read<ρ>(int*ρ x) { return *x; }
struct IntFn dangle() {
L:{int x = 0;

struct IntFn ans =
<int*ρL>{.func = read<ρL>, .env = &x};

return ans; }
}

Here, the abstracted type α is instantiated with int*ρL because the call-back’s environment is a
pointer to an int x in region ρL. The function for the call-back just dereferences the pointer it is
passed. When packaged as an existential, the int*ρL is hidden and thus the result is well-typed
despite the fact that the call-back has a dangling pointer.

In short, to use struct IntFn objects, we must “leak” enough information to prove a call is
safe. We accomplish this by giving regions_of(α) a bound :

struct IntFn<ρ> ∃α:>ρ { ... };

The bound means regions_of(α) must all outlive ρ. Therefore, if pkg has type struct IntFn<ρ>,
then we can call the func field so long as ρ is live. In practice, this soundly reduces the “effect” of
the call-back to a single region.
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kinds κ ::= T | R
type and region vars α, ρ

region sets ε ::= α1 ∪ · · · ∪ αn ∪ {ρ1, . . . , ρm}
region constraints γ ::= ∅ | γ, ε <: ρ

constructors τ ::= α | int | τ1
ε→ τ2 | τ1 × τ2 | τ ∗ ρ | handle(ρ) | ∀α:κ . γ.τ | ∃α:κ . γ.τ

expressions e ::= xρ | v | e〈τ〉 | (e1, e2) | e.i | ∗e | rnew(e1)e2 |
e1(e2) | &e | e1 = e2 | pack [τ1, e] as τ2

values v ::= i | f | &p | region(ρ) | (v1, v2) | pack [τ1, v] as τ2

paths p ::= xρ | p.i

functions f ::= ρ:(τ1 xρ)
ε→ τ2 = {s} | Λα:κ . γ.f

statements s ::= e | return e | s1; s2 | if (e) s1 else s2 | while (e) s |
ρ:{τ xρ = e; s} | region〈ρ〉 xρ s | ρ:{open [α, xρ] = e; s} | s pop[ρ]

Figure 3: Abstract Syntax of Core Cyclone

4 Formal Soundness

In a separate technical report [13], we have defined an operational model of core Cyclone, formalized
the type system, and proven type soundness. Space constraints prevent us from duplicating the
material here, so we summarize the salient details.

The core includes all of the features relevant to memory management, including stack allocation,
dynamic region allocation, polymorphism, and existentials. The operational semantics is a small-
step, deterministic rewriting relation (→) from machine states to machine states. A machine state
is a triple (G, S, s) consisting of a garbage stack G, a stack S, and a statement s. The stacks are
finite maps from region names (ρ) to regions (R), which in turn are finite maps from locations (x)
to values (v). The garbage stack G is a technical device used to record the deallocated storage so
that the program stays closed despite dangling pointers. Note, however, that the abstract machine
becomes stuck if the program attempts to read or write a location in the garbage stack. The primary
goal of the formalism is to prove that well-typed programs cannot get stuck, and thus the garbage
can be safely reclaimed at any point during the execution.

4.1 Syntax

Figure 3 gives BNF definitions for the syntax of the statements, expressions, and types for Core
Cyclone. Constructors (τ) define syntax for both types and regions. We use a kind discipline to
determine whether a type variable represents a type (T ) or a region (R).

Types include pairs (τ1 × τ2) to model primitive structs. Like structs, pairs are passed by
value (i.e., copy-in/copy-out). They cannot instantiate type variables because we do not duplicate
polymorphic code and values of pair types are larger than other types. Types also include type
variables, universal types, and existential types. The quantifiers can range over types or regions and
include region constraints, which are used to specify partial orders on region lifetimes. A region
constraint (γ) is a list of primitive constraints of the form ε <: ρ where ε is a region set, and ρ is a
region. Intuitively, the constraint means that if you can show any of the regions in ε are live, then
you can assume ρ is live. Region sets can include either region variables (ρ) or the regions_of a
type variable. (We omit the regions_of for conciseness.) Finally, function types include a region
set (ε), which specifies the function’s effect — the set of regions that must be live before calling the
function.
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Statements consist of expressions, return statements, composition, if-statements, and while-
statements. In addition, they include blocks (ρ : {τ xρ = e; s}) for declaring a new stack region and
a variable within that region, dynamic region declarations (region〈ρ〉xρ s), and a mechanism for
opening values of existential type. Finally, statements include a special form “s pop[ρ]” which, when
executed, evaluates s to a terminal state and then deallocates the region ρ. This special form is not
available at the source level, but is used internally by the abstract machine as a marker to indicate
when regions should be deallocated.

Expressions include variables xρ which double as locations. Each variable x lives in a given
region ρ; formally xρ makes this fact explicit. Expressions also include integers, functions, pointer
dereference, function calls, the address-of operator, and assignment as in C. In addition, expressions
include polymorphic instantiation, pairs, projection, rnew, existential packages, region handles, and
paths. Rather than model individual memory locations, paths provide a symbolic way to refer to a
component of a compound object. For instance, if the location xρ contains the value ((3, 4), (5, 6)),
then the path xρ.1 refers to (3, 4), and xρ.1.2 refers to 4.

4.2 Static Semantics

The most important typing judgment is the one for statements. It has the form:

∆; Γ; γ; ε; τ `stmt s

Here, ∆ records the set of type and region variables that are in scope, Γ records the set of value
variables in scope along with their types, γ records partial order constraints on region lifetimes from
∆, ε records the static capability (i.e., which regions in ∆ are considered live), and τ records the
return type for the statement.

The inference rules for deriving this judgment allow dangling pointers to be manipulated, but
they cannot be dereferenced. This is because the rules for pointer dereference require that the region
into which the pointer refers is still live. To establish liveness, it suffices to show that the region
name ρ is in ε. Often, this can be shown directly. When it cannot, we can try to find another region
ρ′ in ε such that the constraint ρ′ :> ρ is in γ. The constraint ensures that ρ outlives ρ′ and since
ρ′ is live, ρ must be also.

The other important judgment for statements is

`ret s

which asserts that the statement will not “fall off”. Rather, if execution of the statement terminates,
then the terminal state will be of the form return(v) for some value v. This judgment is defined
via a simple syntax-directed analysis.

Another important typing judgment is the one that allows us to assert that a garbage stack G
and stack S can be described by the context ∆; Γ; γ:

`heap (G, S) : ∆; Γ; γ

Here, ∆ is the set of region names that are bound in either G or S; Γ records the types of the locations
bound in either G or S; and γ records the relative lifetimes of the regions in S. This judgment is
used to connect assumptions that a statement might make with the reality of the current heap.

With these top-level judgments (informally) defined, we can state the Soundness Theorem for
Core Cyclone:

Theorem 4.1 (Soundness) If:

1. `heap (∅, [ρH 7→ R]) : ∆; Γ; γ,
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2. `ret s,

3. ∆; Γ; γ; {ρH}; int `stmt s, and

4. s contains no pop statements

then either (G, S, s) runs forever or there exists a G′, R′ and i such that (G, [ρH 7→ R], s) →∗

(G′, [ρH 7→ R′], return(i))

In plain English, if we start with an empty garbage heap, and a stack that contains a single heap
region ([ρH 7→ R]) that is well-formed, and if statement s doesn’t fall off, and s is well formed
with respect to the type of the initial heap and promises to return only integers, and s does not
contain pop statements, then the program cannot get stuck from type errors or dangling-pointer
dereferences. Furthermore, if the program terminates, all of the regions it allocated will have been
freed and the program will return an integer. The proof details are available in our companion
technical report [13].

5 Implementing Cyclone Regions

The code-generation and run-time support for Cyclone regions is very simple. Heap and stack
manipulation are exactly as in C. Dynamic regions are represented as linked lists of “pages” where
each page is twice the size of the previous one. A region handle points to the beginning of the list
and the current “allocation point” on the last page, where rnew or rmalloc place the next object.
If there is insufficient space for an object, a new page is allocated. Region deallocation simply frees
each page of the list.

When the garbage collector is included, dynamic-region list pages are acquired from the collector.
The collector supports explicit deallocation, which we use to free regions. It is important to note
that the collector simply treats the region pages as large objects. As they are always reachable from
the stack, they are scanned and any pointers to heap-allocated objects are found, ensuring that
these objects are preserved. The advantage of this interface is its simplicity, but at some cost: At
collection time, every object in every dynamic region appears reachable, and thus no objects within
(or reachable from) dynamic regions are reclaimed.

The code generator ensures that regions are deallocated even when their lifetimes end due to un-
structured control flow. For each intra-procedural jump or return, it is easy to determine statically
how many regions should be deallocated before transferring control. When throwing an exception,
this is no longer the case. Therefore, we store region handles and exception handlers in an integrated
list that operates in a last-in-first-out manner. When an exception is thrown, we traverse the list
deallocating regions until we reach an exception handler. We then transfer control with longjmp.
In this fashion, we ensure that a region is always deallocated when control returns.

6 Experimental Results

One of our central goals has been to minimize the number of required region annotations, to simplify
both writing new code and porting existing code. To evaluate our design, we examined a large body
of Cyclone code, including applications and libraries. In this section, we present our observations,
finding that region annotations impose negligible burden on the application writer, but a somewhat
larger burden on the library writer.
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6.1 Application Code

To understand the overhead of porting C code to Cyclone, and particularly the impact of our region
system, we ported a number of legacy applications and compared the differences in source code
between the original and the Cyclone version. We picked several networking applications because
they are part of the “systems” domain in which controlling data representation is important; these
include a web server (mini_httpd), some web utilities (http_get, http_post, http_ping, and
http_load), and a simple client (finger). We also used some computationally-intense, older C
applications that make heavy use of arrays and pointers; these include cfrac, grobner, and tile.
Finally, we ported the compression utilities cacm and ncompress.

We took two approaches to porting. First, we changed all the programs as little as possible to
make them correct Cyclone programs. Then, for cfrac and mini_httpd, we regionized the code: We
made functions more region polymorphic and, where possible, eliminated heap allocation in favor
of dynamic region allocation with rnew. We also added compiler-checked “not null” annotations to
pointer types where possible to avoid some null checks.

The results of our efforts are summarized in Table 1. For each benchmark program, we show
the number of lines of C and Cyclone code, the differences between the two, the region annotations
required, and a performance comparison of the Cyclone version with or without bounds/null checks.
The + column indicates the number of lines added relative to C, and the - column is the lines
removed. For the annotations, the total column is the number of individual region-related alterations,
including per-variable annotations and occurrences of region r {s} and rnew. The lines column
is the total number of lines in the file that changed due to these annotations. Though not our
focus, we give performance estimates as well. The times are the median running times (n=21) on a
750MHz PentiumIII with 256MRam running Linux kernel 2.2.16-12. The percentage for the Cyclone
programs is time relative to the C version.

There are two interesting results regarding the difficulty of minimal-porting. First, the overall
changes in the programs are relatively small — less than 10% of the program code needed to be
changed. The vast majority of the overall differences arise from pointer-syntax alterations. These
changes are typically easy to make — e.g., the type of strings are changed from char * to char ?.

The most encouraging result is that the number of region annotations is small: only 124 changes
in total for more than 18,000 lines of code, which account for roughly 6% of the total changes.
The majority of these changes were completely trivial, e.g., many programs required adding ρH

annotations to argv so that arguments could be stored in global variables. The program that
required the most changes was grobner. Interestingly, the majority of these changes arose from the
fact that in one place a stack pointer was being stored in a struct type. We therefore parameterized
the struct definition with a region variable, and this parameterization then propagated through
the rest of the code. However, the default annotation still worked in many cases: out of 133 total
variable declarations of the parameterized struct type, only 38 required annotations, or 28%.

The cost of porting a program to use dynamic regions was also reasonable; in this case roughly
13% of the total diffs were region-related. For the web server, we were able to eliminate heap
allocation entirely. Because it is event-driven, handling each request as it comes in, we changed the
main handler function to create a dynamic region and then pass the region handle to its subroutines
in a request structure. After the request is serviced, the region is freed. The majority of the overall
changes arose from moving global variables into the request structure and adding the structure as
a parameter to various functions. This request structure is parameterized by a region, so many of
the functions need annotations to connect the region of the request structure to that of another
argument or return value.

We were less successful in regionizing cfrac. As in the web server, we changed many functions to
allocate using region-handle parameters. It was easy to do dynamic region allocation and deallocation
as part of the algorithm’s main iteration, but for large inputs, it was difficult to keep regions from
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Program LOC diffs annotations performance
C Cyc + - total lines C time (s) checked(s) % unchecked(s) %

cacm 340 359 42 23 0 0 1.77 3.49 97% 3.03 71%
cfrac 4218 4214 132 136 2 2 2.61 17.07 554% 17.07 554%
finger 158 161 18 15 3 3 0.58 0.55 -5% 0.48 -17%
grobner 3244 3377 438 305 71 40 0.07 0.20 186% 0.20 186%
http get 529 529 36 36 4 4 0.28 0.28 0% 0.28 0%
http load 2072 2057 115 130 15 13 89.37 90.22 1% 90.19 1%
http ping 1072 1081 30 21 1 1 0.28 0.28 0% 0.28 0%
http post 607 608 42 41 8 8 0.16 0.16 0% 0.16 0%
matxmult 57 48 3 12 3 1 1.38 1.83 32% 1.38 0%
mini httpd 3005 3022 233 216 4 4 3.71 3.85 4% 3.86 4%
ncompress 1964 1982 120 102 10 9 0.20 0.39 95% 0.38 90%
tile 1345 1366 145 124 2 2 0.48 1.05 116% 0.99 104%

total 18611 18804 1354 1161 124 86 - - - - -

“regionized” versions of benchmarks

cfrac 4218 4110 501 528 158 107 2.61 10.07 286% 8.80 237%
mini httpd 3005 2967 500 522 88 54 3.71 3.83 3% 3.82 3%

total 7223 7174 1001 1050 246 161 - - - - -

Table 1: Porting C code to Cyclone

growing large before deallocation. We conclude that garbage collection is a better match for this
code, but others have had more success with regions [11].

As for performance, we achieve near-zero overhead for network or I/O bound applications such
as the http clients and servers, but we pay a considerable run-time penalty for processor-intensive
benchmarks such as the compression tools. The unusually high overhead for the unregionized cfrac
appears due to poor code generation for *p++ where p has type int?. The regionized port avoids
such expressions. We believe much of the overhead is due to array representation, not regions. We
address this issue further in Section 8.

6.2 Library Code

We have ported a significant subset of the C and Ocaml libraries to Cyclone. Two illustrative cases
are the Cyclone list and string libraries, ported from Ocaml and C respectively. Table 2 summarizes
the region annotations in the interfaces and implementations of these libraries. As a rough measure
of the effectiveness of default region annotations, we also provide results for “maximally annotated”
versions of the interfaces (list-max.h and string-max.h, respectively). The proto column lists the
number of region type annotations that were necessary in function prototypes; the rnew column
lists the number of uses of rnew, and the region column lists the number of uses of dynamic regions.

We found that library code requires more region annotations than application code, but most
of these annotations are for the sake of convenience and generality rather than necessity. Library
functions that perform allocation tend to come in two flavors: a heap allocating function that has
the same signature as the corresponding C or Ocaml function, and a region version that takes an
additional region handle. Most of the annotations occur in the latter, and so were made for the
sake of the convenience of using of the libraries with arbitrary regions. Most of the changes are to
function prototypes; no explicit region annotations were necessary in the bodies of functions. The
maximally annotated interfaces require 2-2.4 times more region annotations; that is, the default
region annotations suffice 50-60% of the time. Most of the non-default region annotations were
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LOC proto rnew region

string.h 139 57 0 0

string-max.h 139 135 0 0

string.cyc 739 68 14 2

list.h 364 85 0 0

list-max.h 364 171 0 0

list.cyc 819 74 38 0

Table 2: Region annotations in libraries

needed to express a “same-region” relationship between arguments and return types or to allow
the function to allocate into an arbitrary region; the remainder were needed in type definitions.
Moreover, no effect annotations whatsoever were necessary.

Most importantly, our applications, such as the compiler, use the libraries extensively and region
instantiation is implicit throughout them. The vast majority of library calls in ported C code require
no changes; malloc, realloc, memcpy, etc., are essentially the only exceptions.

7 Related Work

In this paper, we have concentrated on the region-based type system for Cyclone, which naturally
supports C-style stack allocation, conventional heap allocation, and dynamic region allocation. We
feel that Cyclone is a unique and promising point in the programming-language design-space, but
many other systems share some of these features.

Making C Safe Many systems, including (but not limited to) LCLint [9, 8], SLAM [3], Safe-
C [2], and CCured [19] aim to make C code safe. Some of these systems, such as LCLint, are
meant to be static bug-finding tools. Like Cyclone, they usually require restricted coding idioms or
additional annotations, but unlike Cyclone, they offer no soundness guarantees. In this way, these
static tools reduce false positives. In contrast, Cyclone uses a combination of static analysis (for
memory management) and run-time checks (for bounds violations) to minimize false positives.

Other systems, such as Safe-C and CCured, ensure soundness by rewriting the code and adding
run-time checks. The primary advantage of these systems is that they require (almost) no changes
to the C code, unlike Cyclone. However, they do not preserve the same data representations and life-
times for objects. Furthermore, memory errors are caught at run-time instead of compile time. For
instance, when an object is freed under CCured, the (entire) storage is not immediately reclaimed,
but rather marked as inaccessible. Subsequent accesses check the mark and signal an error when
the object is dereferenced. Ultimately, the “mark” is reclaimed with a garbage collector to avoid
leaks. Furthermore, CCured may implicitly move some stack-allocated objects to the heap to avoid
dangling-pointer dereferences.

Static Regions Tofte and Talpin’s seminal work [22] on implementing ML with regions provides
the foundation for regions in the ML Kit [21]. Programming with the Kit is convenient, as the
compiler automatically infers all region annotations. However, small changes to a program can have
drastic, unintuitive effects on object lifetimes. Thus, to program effectively, one must understand
the analysis and try to control it indirectly by using certain idioms [21]. More recent work for the
ML Kit includes optional support for garbage collection within regions [14].

A number of extensions to the basic Tofte-Talpin framework can avoid the constraints of LIFO
region lifetimes. As examples, the ML Kit includes a reset-region primitive [21]; Aiken et al. provide
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an analysis to free some regions early [1]; and Walker et al. [23, 24] propose general systems for freeing
regions based on linear types. All of these systems are more expressive than our framework. For
instance, the ideas in the Capability Calculus were used to implement type-safe garbage collectors
within a language [25, 18]. However, these systems were not designed for source-level programming.
Rather, they were designed as compiler intermediate languages or analyses and can thus ignore user
issues such as minimizing annotations or providing control to the user.

Two other recent projects, Vault [7] and the work of Henglein et al. [15] aim to provide convenient,
source-level control over memory management using regions. Vault’s powerful type system allows a
region to be freed before it leaves scope and its types can enforce that code must free a region. To
do so, Vault restricts region aliasing and tracks more fine-grained effects. As a result, programming
in Vault requires more annotations. Nevertheless, we find Vault an extremely promising direction
and hope to adapt some of these ideas to Cyclone. Henglein et al. [15] have designed a flexible region
system that does not require LIFO behavior. However, the system is monomorphic and first-order;
it is unclear how to extend it to support polymorphism or existential types.

Regions in C Perhaps the most closely related work is Gay and Aiken’s RC [11] compiler and
their earlier system, C@ [10]. As they note, region-based programming in C is an old idea; they
contribute language support for efficient reference counting to detect if a region is deallocated while
there remain pointers to it (that are not within it). This dynamic system has no a priori restrictions
on regions’ lifetimes and a pointer can point anywhere, so the RC approach can encode more memory-
management idioms. Like Cyclone, they provide pointer annotations. These annotations are never
required, but they are often crucial for performance because they reduce the need for reference-
counting. One such annotation is very similar to our notion of region subtyping.

RC uses reference counting only for dynamic regions. In fact, one annotation enforces that a
pointer never points into a dynamic region, so no reference counting is needed. As a result, RC
allows dangling pointers into the stack or heap. Other kinds of type errors also remain. Indeed, we
found a number of array-bounds bugs in the benchmarks used to evaluate RC, such as grobner.
Finally, RC cannot support the kind of polymorphism that Cyclone does because the RC compiler
must know statically which objects are pointers.

In summary, some of these systems are more convenient to use than Cyclone (e.g., CCured and
the MLKit) but take away control over memory management. Some of the static systems (e.g., the
Capability Calculus) provide more powerful region constructs, but were designed as intermediate
languages and do not have the programming convenience of Cyclone. Other systems (e.g., RC,
Safe-C) are more flexible but offer no static guarantees.

8 Future Work

A great deal of work remains to achieve our goals of providing a tool to easily move legacy code to
a type-safe environment and providing a type-safe language for building systems where control over
data representations and memory management is an issue.

In the near future, we hope to incorporate support for deallocating dynamic regions early. We
have experimented briefly with linear type systems in the style of the Capability Calculus or Vault,
but have found that this approach is generally too restrictive, especially in the context of exceptions.
Instead, we are currently developing a traditional intra-procedural flow analysis to track region
aliasing and region lifetimes. Again, for the inter-procedural case, we expect to add support for
explicit annotations, and to use experimental evidence to drive the choice of defaults.

We also expect to incorporate better support for first-class regions, in the style of RC. The goal
is to give programmers a sufficient range of options that they can use the statically checked regions
most of the time, but fall back on the dynamically checked regions when needed.
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In addition to enhancements to the region framework, work is needed in other areas. For instance,
we have seen run-time overheads ranging from 1 to 3x for the benchmarks presented here. For
compute-intensive micro-benchmarks, we have seen performance range from 1 to 10x, depending on
the architecture and C compiler. We are currently working to identify the bottlenecks, but an obvious
problem is that we perform all array-bounds checks at run-time. For example, when we disabled
bounds checks for a matrix multiply program, overhead dropped from 30% to 0%. Fortunately,
array-bounds-check elimination is a well-studied issue, and we feel confident that we can adapt a
simple, but effective approach to avoid much of this cost.

The other key area we are investigating is data representation: To support dynamically sized
arrays and array-bounds checks, we tag such arrays with implicit size information. Similarly, to
support type-safe, discriminated unions, we add implicit tags. We are adapting ideas from DML [27]
and Xanadu [26] to give programmers control over the placement of these tags. We hope this will
make it easier to interface with legacy C code or devices that do not expect these tags on the data.
However, we have found that the DML framework does not easily extend to imperative languages
such as C. In particular, there are subtle issues involving existential types and the address-of (&)
operator [12].
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9 Full Formal Language

We now present our full formal language and a syntactic proof of type soundness. We begin with
a presentation of the language (syntax, dynamic semantics, and static semantics) and then proceed
to the proof. The proof appears in “bottom-up” order, so we try to give some intuition for each
lemma’s purpose, but in the end, the most important intuition is to realize why each part of the
static semantics is needed for a strong enough induction hypothesis to establish soundness.

The dynamic semantics defines a small-step rewriting relation from machine states to machine
states. A machine state has the form (G, S, s), where G is the garbage heap, S is the live heap, and
s is the current program. No rule allows accessing G’s contents; it is just a technical device to keep
S and s closed. Both G and S are actually stacks of regions. That is, we impose more order on G
and S than on a conventional heap.

The most relevant (but quite minor) aspect of Cyclone that we do not bother to model is that it
is impossible to allocate into a “stack region” after the region has been created. We can make this
fact true by not allowing initial programs to have explicit region handles, but we do not establish a
strong enough induction hypothesis to prove—absolutely formally—that this restriction suffices.

9.1 Syntax

Figure 4 presents the syntax for the full formal language.
Types and regions are joined into a single syntactic class of constructors (τ) and distinguished

using a kind structure. In particular, if τ has kind T then it is a type, whereas if τ has kind R then
it is a region name. Note that the only constructors of kind R are variables. We use ρ to range
over region variables (also known as region names) and we use α to range over type variables, but
we also use α when the kind is unknown.

In addition, types may be boxed types. Boxed types (B) are those types whose values fit into
a machine word. Both int and pointer types (τ@ρ) are boxed types, as are existential or universal
types that are boxed. In particular, tuples are not considered to be boxed types. Type variables (α)
may only be introduced as boxed types. The box-type distinction is made in Cyclone because all
box-types are represented uniformly; compilation thus does not require code duplication or run-time
type information.

A region-set (ε) is a set of type variables. We identify region-sets up to associativity, commutativ-
ity, idempotence of ∅, and removal of repeated elements. In other words, we treat them as abstract
sets and exploit any necessary algebraic laws as a result. We also blur the distinction between α
and {α} as syntactically convenient. In function types, a region-set serves as an effect and in a
typing context it serves as a capability, so we use the terms “region-set”, “effect”, and “capability”
interchangeably. We write α ] ε for the effect α ∪ ε where α 6∈ ε. Intuitively, the meaning of α ∈ ε
depends on the kind of α. For region variables, it means the variable is in the effect (or capability)
that the set represents. For type variables, it means all the regions that α “mentions” are in the
effect (or capability). This intuition is formalized with the definition of regions(τ) and the definition
of substitution, which we present later.

A region-constraint (γ) is a collection of atomic constraints of the form ε <: ρ. The order is
unimportant. The intuitive meaning is that every element of ε outlives ρ. Therefore, liveness of ρ
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kinds κ ::= T | B | R
type and region vars α, ρ

region sets ε ::= ∅ | α | ε1 ∪ ε2
region constraints γ ::= ∅ | γ, ε <: ρ

constructors τ ::= α | int | τ1
ε→ τ2 | τ1 × τ2 | τ@ρ | handle(ρ) |

∀α:κ . γ.τ | ∃α:κ . γ.τ

identifiers x
expressions e ::= xρ | v | e〈τ〉 | (e1, e2) | e.i | ∗e | new(e1)e2 |

e1(e2) | &e | e1 = e2 | call{s} | pack [τ1, e] as τ2

values v ::= i | f | &p | region(ρ) | (v1, v2) | pack [τ1, v] as τ2

paths p ::= xρ | p.i

functions f ::= ρ:(τ1 xρ)
ε→ τ2 = {s} | Λα:κ . γ.f

statements s ::= e | return e | s1; s2 | if (e) s1 else s2 | while (e) s |
ρ:{τ xρ = e; s} | region〈ρ〉 xρ s |
ρ:{open [α, xρ] = e; s} | s pop[ρ]

regions R ::= ∅ | R[x 7→ v]
region stacks G, S ::= ∅ | S[ρ 7→ R]

type variable contexts ∆ ::= • | ∆, α:κ
value variable contexts Γ ::= • | Γ, xρ : τ

contexts C ::= ∆; Γ; γ; ε

Figure 4: Syntax of Core Cyclone IL
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suffices to establish the liveness of any element in ε. As we show later, we use γ to define a semantic
outlives relationship ⇒ that is essentially the reflexive, transitive closure of the constraints in γ.

The constructors τ include:

• α, which represents a type variable or a region name, depending on its kind (which is deter-
mined from a type-variable context ∆)

• int, which describes integers

• τ1
ε→ τ2, which describes functions from τ1 to τ2 with effect ε. Note that our “unboxed”

product types make the restriction to a single parameter a non-issue: Passing a pair does not
require allocation.

• τ1 × τ2, which describes “unboxed” pairs. That is, the “size” of such an object is the “size”
of τ1 plus the “size” of τ2. Such values are “passed by copy”, as is clear from the dynamic
semantics.

• τ@ρ, describes pointers to τ values living in the region described by ρ. We use @ because, as
in Cyclone, these values are not allowed to be NULL. (We are not modeling NULL.)

• handle(ρ) describes a handle for (allocating into) the region described by ρ.

• ∀α:κ . γ.τ describes polymorphic values. Intuitively, α must be instantiated with a type such
that the constraints in γ are true. (Presumably γ is empty or mentions α, but neither is
actually required.) The syntax for expressions happens to restrict polymorphism to functions.
That is, τ will either be a function type or another universal type. Note that α could stand
for a region name or a boxed type, as determined by κ.

• ∃α:κ.γ.τ describes existential packages. Intuitively, the “witness type” in the package is such
that instantiating α with it makes the constraints in γ true. As with universal types, α could
range over region names or boxed types.

The expressions e include:

• xρ, identifiers. We use identifiers for two purposes: identifiers in programs (as usual) and
references into the heap. This reuse reduces the number of language constructs; by implicitly
relying on α-conversion when we allocate space for xρ at run-time due to a binding occurrence,
we can assume xρ has never been used before. The ρ describes the region where x is (or will
be) allocated. We just find it convenient to annotate identifiers this way, rather than looking
up “region of x” from the context.

• i, integer constants.

• f , function bodies: Λα:κ . γ.f abstracts α in f ; if well-formed, it has a universal type as
described above. The innermost f has the form ρ:(τ1 xρ)

ε→ τ2 = {s}, which has type τ1
ε→ τ2.

The function body is s. In the body, xρ refers to the function parameter, which has type τ1.

• region(ρ), a handle into the region named ρ. Intuitively, these constructs do not appear in
source programs. When we create a “growable region” ρ, we bind an identifier to region(ρ).

• e〈τ〉, type application. The term e should evaluate to a polymorphic expression.

• (e1, e2), pairs.

• e.i, pair projection. i must be 1 or 2.
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• ∗e, pointer dereference, as in C.

• new(e1)e2, allocates e2 into a fresh location in the region for which the result of e1 is a handle.

• e1(e2), function call, as in C.

• &e, address-of, as in C.

• e1 = e2, assignment, as in C.

• call{s} need not appear in source programs. A function call translates to this construct, so
that the call-stack is represented in the syntax of the program as it is rewritten.

• pack [τ1, e] as τ2, an existential package with type τ2 and witness type τ1.

The semantics distinguishes left-hand-sides and right-hand-sides, as in C. Top-level expressions
are right-hand-sides. A subexpression inherits the “sidedness” of its containing expression, except:

• In &e, e is a left-hand-side (see DR9, below).

• In ∗e, e is always a right-hand-side (see DL2, below).

• In e1 = e2, e1 is a left-hand-side (see DR9, below).

These rules are just the rules for C, which carefully distinguishes left and right, adapted to our
formal language. The point is that the evaluation of &e1 and e1 = e2 is not concerned with the
value at the location e1, but rather with the location itself. Values (v) are the terminal results of
evaluating right-hand sides. Paths (p) are the terminal results of evaluating left-hand sides. A path
is just an identifier followed by some number of projections. Most expression forms make no sense
as left-hand-sides (e.g., integer constants); the static semantics forbids them.

Most of the statement forms (expressions, return, sequence, conditional, loop) are just as in C.
The three local-binding forms are less familiar:

• ρ:{τ xρ = e; s} declares local variable x, whose scope is s. x lives in a “stack region” ρ, which
is deallocated when control leaves s. If τ is a pair type, then we can model multiple local
variables in the same region with pairing. The outer ρ is redundant syntax, but it serves to
emphasize that we are binding a region name and an identifier.

• region〈ρ〉 xρ s creates a new “growable” region and binds xρ to its handle. As with the
previous form, we are binding ρ and x.

• ρ:{open [α, xρ] = e; s} is just like the first form except that we also do an existential “unpack”
or “open”. In s, α is bound and stands for the witness type. e should, of course, evaluate to
an existential package. This form binds ρ, α, and x.

Finally, s pop[ρ] should not appear in source programs. Its meaning is to execute s and then deal-
locate the region ρ. We will prove that ρ is always the most-recently-allocated region and that
deallocating it does not violate type soundness.

A stack (G or S) is an ordered map from region names (ρ) to regions R. In other words, we
have partitioned the heap into an ordered live heap S and the garbage heap G. The order on G is
irrelevant, but there was no reason to use a different construct for it. A region R is an unordered
map from locations (x as explained above) to values v.

A typing context includes a ∆ (giving type variables kinds), a Γ (giving value variables types),
a γ (reflecting the known outlives ordering), and an ε (reflecting the current capability).
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(DS1) (G, S, v; s) stmt−→ (G, S, s)

(DS2) (G, S, if (0) s1 else s2)
stmt−→ (G, S, s2)

(DS3) (G, S, if (i) s1 else s2)
stmt−→ (G, S, s1) (i 6= 0)

(DS4) (G, S, while (e) s) stmt−→ (G, S, if (e) {s; while (e) s} else 0)

(DS5) (G, S, return v; s) stmt−→ (G, S, return v)

(DS6) (G, S[ρ 7→ R], return v pop[ρ]) stmt−→ (G[ρ 7→ R], S, return v)

(DS7) (G, S[ρ 7→ R], v pop[ρ]) stmt−→ (G[ρ 7→ R], S, v)

(DS8a) (G, S, ρ:{τ xρ = v; s}) stmt−→ (G, S[ρ 7→ {x 7→ v}], s pop[ρ]) (ρ 6∈ Dom(S) ∪Dom(G))

(DS8b) (G, S, region〈ρ〉xρ s) stmt−→ (G, S[ρ 7→ {x 7→ region(ρ)}], s pop[ρ]) (ρ 6∈ Dom(S)∪Dom(G))

(DS8c) (G, S, ρ:{open [α, xρ] = pack [τ1, v] as∃α:κ.γ.τ2; s})
stmt−→ (G, S, ρ:{τ2[τ1/α]xρ = v; s[τ1/α]})

(DS9)

(G, S, e) rhs−→ (G′, S′, e′)

(G, S, e) stmt−→ (G′, S′, e′)

(G, S, return e) stmt−→ (G′, S′, return e′)

(G, S, if (e) s1 else s2)
stmt−→ (G′, S′, if (e′) s1 else s2)

(G, S, ρ:{τ xρ = e; s}) stmt−→ (G′, S′, ρ:{τ xρ = e′; s})
(G, S, ρ:{open [α, xρ] = e; s}) stmt−→ (G, S, ρ:{open [α, xρ] = e′; s})

(DS10)

(G, S, s) stmt−→ (G′, S′, s′)

(G, S, s; s2)
stmt−→ (G′, S′, s′; s2)

(G, S, s pop[ρ]) stmt−→ (G′, S′, s′ pop[ρ])

Figure 5: Statement Rewriting
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(DR1) (G, S1[ρ 7→ R]S2, xρ)
rhs−→ (G, S1[ρ 7→ R]S2, R(x))

(DR2) (G, S, (Λα:κ . γ.f)〈τ〉) rhs−→ (G, S, f [τ/α])

(DR3) (G, S, (v1, v2).i)
rhs−→ (G, S, vi)

(DR4) (G, S, ∗(&p)) rhs−→ (G, S, p)

(DR5) (G, S1[ρ 7→ R]S2, new(region(ρ)) v) rhs−→ (G, S1[ρ 7→ R[x 7→ v]]S2,&xρ) (x 6∈ Dom(R))

(DR6) (G, S, (ρ:(τ ′ xρ)
ε→ τ = {s})(v)) rhs−→ (G, S, call{ρ:{τ ′ xρ = v; s}})

(DR7) (G, S, call{return v}) rhs−→ (G, S, v)

(DR8)

(G, S1[ρ 7→ R[x 7→ va]]S2, xρ.i1.i2 . . . in = vb)
rhs−→

(G, S1[ρ 7→ R[x 7→ update(va, [i1, i2, . . . , in], vb)]]S2, vb)

where update(va, [ ], vb) = vb

update((v1, v2), [1, i1, · · · , in], v) = (update(v1, [i1, · · · , in], vb), v2)
update((v1, v2), [2, i1, · · · , in], v) = (v1,update(v2, [i1, · · · , in], vb))

(DR9)

(G, S, e) lhs−→ (G′, S′, e′)

(G, S,&e) rhs−→ (G′, S′,&e′)

(G, S, e = e2)
rhs−→ (G′, S′, e′ = e2)

(DR10)

(G, S, s) stmt−→ (G′, S′, s′)

(G, S, call{s}) rhs−→ (G′, S′, call{s′})

(DR11)

(G, S, e) rhs−→ (G′, S′, e′)

(G, S, e〈τ〉) rhs−→ (G′, S′, e′〈τ〉)

(G, S, (e, e2))
rhs−→ (G′, S′, (e′, e2))

(G, S, (v, e)) rhs−→ (G′, S′, (v, e′))

(G, S, ∗e) rhs−→ (G′, S′, ∗e′)

(G, S, e.i) rhs−→ (G′, S′, e′.i)

(G, S, new(e) e2)
rhs−→ (G′, S′, new(e′) e2)

(G, S, new(v) e) rhs−→ (G′, S′, new(v) e′)

(G, S, e(e2)
rhs−→ (G′, S′, e′(e2))

(G, S, v(e)) rhs−→ (G′, S′, v(e′))

(G, S, p = e) rhs−→ (G′, S′, p = e′)

(G, S, pack [τ1, e] as τ2)
rhs−→ (G′, S′, pack [τ1, e

′] as τ2)

Figure 6: Right-Hand-Side Expression Rewriting
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(DL1) (G, S, ∗(&p)) lhs−→ (G, S, p)

(DL2)

(G, S, e) lhs−→ (G′, S′, e′)

(G, S, e.i) lhs−→ (G′, S′, e′.i) (DL3)

(G, S, e) rhs−→ (G′, S′, e′)

(G, S, ∗e) lhs−→ (G′, S′, ∗e′)

Figure 7: Left-Hand-Side Expression Rewriting

9.2 Dynamic Semantics

Three mutually inductive judgments (Figures 5, 6, and 7) define the dynamic semantics. Rules DS9,
DS10, DR9, DR10, DR11, DL2, and DL3 are congruence rules. They show why the judgments
are mutually inductive. We state without proof that the dynamic semantics is deterministic; it is
syntax-directed.

We use an allocation-style semantics for term variables, but we use substitution for type variables,
written c[τ/α] for some construct c (for example, an expression) in which we substitute τ for α. For
now, a rough intuition of substitution suffices, but we explain below that the definition is non-
standard because of the case where a type variable α appears in a region-set ε. Although we do not
formally prove it, the semantics clearly enjoys a type-erasure property: Types are not actually used
at run-time; we substitute them just to prove type preservation.

The remaining rules for statement evaluation are described as follows:

• DS1 discards the first part of a sequence after we are done evaluating it.

• DS2 and DS3 reduce conditionals to the appropriate branch.

• DS4 “unrolls” a loop to an equivalent expression.

• DS5 discards the second part of a sequence when the first part returns.

• DS6 and DS7 deallocate the region named ρ. Notice that these rules apply only when ρ names
the most recently allocated region. (S is ordered and newer regions appear on the right.) We
leave the entire region R in G as a matter of convenience, but no code will ever access G. The
type-preservation argument just uses the fact that we can give a consistent type to G and that
new regions names will be unique (not in the domain of G).

• DS8a allocates a new region for a local binding and rewrites the statement to one that first
evaluates the inner statement and then deallocates the region. α-conversion ensures that the
side-condition can always be satisfied.

• DS8b allocates a new region, puts a handle for the region in the region itself, and is otherwise
quite similar to DS8a. Note this rule does not model Cyclone as accurately as the others
because region handles in Cyclone are stack-allocated. The important point is that handles
are in some region (not stored magically); the exact region is less interesting.

• DS8c unpacks an existential package, by substituting the witness type for the bound type
variable and rewriting to a local binding (so that DS8a will apply to the result).

The remaining rules for right-hand-side evaluation are described as follows:

• DR1 is variable lookup. Notice how the region annotation on identifiers is used.
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• DR2 is type application; we use a substitution approach for type variables.

• DR3 is pair projection.

• DR4 is pointer dereference. Notice how the normal-form for pointers is &p for some path p.

• DR5 is dynamic allocation. α-conversion ensures the side-condition can always be satisfied.
Notice how the handle indicates the region and the result is a pointer to an identifier and the
identifier indicates the region.

• DR6 is function call. Notice how we use the call{s} form to encode the call-stack in the term
language. The clever use of the local binding will cause the next step to allocate a region for
the actual parameter and bind it to the formal. (For recursive functions, the side-condition in
rule DS8a ensures that we use distinct storage for each activation.)

• DR7 shows how functions return: Once a return statement is the top-level statement of a call
(thanks to DS5 and DS6), we replace the call with the result v.

• DR8 is assignment. It is complicated because assignment can update part of a location (when
the location is a (nested) pair and the left-hand-side has a non-empty list of fields). The
definition uses the auxiliary inductive definition of update to encode the fact that we update
exactly the part of the value that the path xρ.i1. · · · .in refers to.

Notice that no left-hand-side rule applies for p.i; this is a terminal configuration for left-hand-
sides. The only true left-hand reduction is DL1; it is the left-hand-side equivalent of DR4. In both
cases, the expression after the step is a path p. The interesting difference is that, as a left-hand-side,
no rule applies for p (it is a terminal left-hand-side), but as a right-hand-side, either DR1 or DR3
applies.

We now return to (type) substitution, which was used in DR2 and DS8c. It is formally defined
in Figures 8 and 9, but we find an informal description far more illuminating. The substitution of
types for type variables through statements, expressions, and other types is completely standard,
except for what it means to substitute through an ε or a γ, as occurs in the cases for function types
and quantified types. In these cases, we use regions(τ), which is an auxiliary function from types to
region-sets defined in Figure 10. The idea is to replace α with the region names and type variables
in the type for which we are substituting.

However, this substitution won’t work if we have a constraint of the form ε <: ρ and we are
substituting a τ for ρ such that regions(τ) is not a singleton set. (In the case where it is a singleton set,
we’re just abusing notation to avoid defining substitution twice.) However, we only ever substitution
one region-name for another (all types of kind R are region names), so we can leave substitution
undefined in other cases. Our Substitution Lemmas distinguish as necessary the kind of the variable
for which we are substituting.

An obvious question is why we didn’t relax the form of constraints to ε1 <: ε2 to avoid this issue.
The answer is subtle: We wanted to support transitivity when using constraints to determine outlives
relationships. In fact, we use transitivity in a substitution lemma needed in our type-preservation
proof. So if we have α1 <: α2 and α2 <: α3, then we would like to conclude α1 <: α3. But if we could
substitute int for for α2, we would have α1 <: ∅ and ∅ <: α3. Under a reasonable interpretation of
<:—that everything on the left outlives everything on the right—our constraints are now useless.
We cannot conclude α1 <: α3, which would make type preservation break. By restricting the right
side of <: to region names, we can preserve transitivity under substitution.
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Region Sets:

∅[ε/α] = ∅
α[ε/α] = ε
α[ε/β] = α
(ε1 ∪ ε2)[ε3/α] = ε1[ε3/α] ∪ ε2[ε3/α]

Region Constraints:
∅[ε/α] = ∅
(γ, ε <: ρ)[ρ′/ρ] = γ[ρ′/ρ], ε[ρ′/ρ] <: ρ′

(γ, ε <: ρ)[ε′/α] = γ[ε′/α], ε[ε/α] <: ρ

Note that γ[ε/ρ] is not defined if γ = γ1, ε <: ρ, γ2. Type substitution is undefined if the type contains
such a γ and the substituted type is not of the form ρ′.

Constructors:

α[τ/α] = τ
β[τ/α] = β
int[τ/α] = int

(τ1
ε→ τ2)[τ/α] = τ1[τ/α]

ε[regions(τ)/α]→ τ2[τ/α]
(τ1 × τ2)[τ/α] = τ1[τ/α]× τ2[τ/α](τ1@ρ)[ρ′/ρ] = τ1[ρ′/ρ]@ρ′

(τ1@ρ)[τ/α] = τ1[τ/α]@ρ
handle(ρ)[ρ′/ρ] = handle(ρ′)
handle(ρ)[τ ′/α] = handle(ρ)
(∀β:κ . γ.τ1)[τ/α] = ∀β:κ . γ[regions(τ)/α].τ1[τ/α]
(∃β:κ . γ.τ1)[τ/α] = ∃β:κ . γ[regions(τ)/α].τ1[τ/α]

Note that type substitution of τ for ρ in τ ′ is undefined if τ is not ρ′ for some ρ′ and τ ′ contains a
type of the form τ ′′@ρ or handle(ρ).
Note that substitution through terms and contexts of τ (not of the form ρ′) for a region variable is
undefined by extension of the earlier considerations.

Value Variable Contexts:
•[τ/α] = •
(Γ, xρ : τ ′)[ρ′/ρ] = Γ[ρ′/ρ], xρ′ : τ ′[ρ′/ρ] This case never occurs.
(Γ, xρ : τ ′)[τ/α] = Γ[τ/α], xρ : τ ′[τ/α]

Figure 8: Substitution, part I (the kind of α may be B or R)
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Expressions:

xρ[ρ′/ρ] = xρ′ This case never occurs.
xρ[τ/α] = xρ

i[τ/α] = i

(ρ:(τ1 xρ)
ε→ τ2 = {s})[τ/α] = (ρ:(τ1[τ/α]xρ)

ε[regions(τ)/α]→ τ2[τ/α] = {s[τ/α]})
(Λβ:κ . γ.f)[τ/α] = Λβ:κ . γ[regions(τ)/α].f [τ/α]
region(ρ)[ρ′/ρ] = region(ρ′) This case never occurs.
(e〈τ ′〉)[τ/α] = e[τ/α]〈τ ′[τ/α]〉
(e1, e2)[τ/α] = (e1[τ/α], e2[τ/α])
e.i[τ/α] = e[τ/α].i
(∗e)[τ/α] = ∗(e[τ/α])
(new(e1)e2)[τ/α] = new(e1[τ/α])e2[τ/α]
(e1(e2))[τ/α] = e1[τ/α])(e2[τ/α])
(&e)[τ/α] = &(e[τ/α])
(e1 = e2)[τ/α] = e1[τ/α] = e2[τ/α]
call{s}[τ/α] = call{s[τ/α]}
(pack [τ1, e] as τ2)[τ/α] = pack [τ1[τ/α], e[τ/α]] as τ2[τ/α]

Statements:

(return e)[τ/α] = return (e[τ/α])
(s1; s2)[τ/α] = s1[τ/α]; s2[τ/α]
(if (e) s1 else s2)[τ/α] = if (e[τ/α]) s1[τ/α] else s2[τ/α]
(while (e) s)[τ/α] = while (e[τ/α]) s[τ/α]
(ρ:{τ ′ xρ = e; s})[τ/α] = ρ:{τ ′[τ/α] xρ = e[τ/α]; s[τ/α]}
(region〈ρ〉 xρ s)[τ/α] = region〈ρ〉 xρ s[τ/α]
(ρ:{open [β, xρ] = e; s})[τ/α] = ρ:{open [β, xρ] = e[τ/α]; s[τ/α]}
(s pop[ρ])[ρ′/ρ] = s[ρ′/ρ] pop[ρ′] This case never occurs.
(s pop[ρ])[τ/α] = s[τ/α] pop[ρ]

Figure 9: Substitution, part II (the kind of α may be B or R)

regions(α) = α
regions(int) = ∅

regions(τ1
ε→ τ2) = ε

regions(τ1 × τ2) = regions(τ1) ∪ regions(τ2)
regions(τ@ρ) = ρ ∪ regions(τ)

regions(handle(ρ)) = ρ
regions(∀α:κ . γ.τ) = regions(τ)− α
regions(∃α:κ . γ.τ) = regions(τ)− α

Figure 10: Regions-Of
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9.3 Static Semantics

Well-formed programs obey several invariants, which we enforce with separate judgments. We begin
with the more conventional-looking “type-checking” judgments for statements and expressions. After
extending these judgments to heaps (G and S) and machine states, we have a system that prevents
type errors (such as treating an int as a function) and prevents dangling pointers. But that is not
enough to prove that programs deallocate all of their regions and that functions always diverge or
return (as opposed to “fall off the end” as is possible—and unsafe—in C). We therefore add other
judgments for these invariants. Finally, we present some technical judgments used but not discussed
in detail, namely kind-checking and context well-formedness.

9.3.1 Statement and Expression Type-Checking

As with the dynamic semantics, we have three mutually inductive judgments for statements (Figure
11), right-hand-side expressions (Figures 12 and 13), and left-hand-side expressions (Figure 14). We
begin by explaining the form of each judgment and then describe the individual rules.

In each judgment, we have a ∆, Γ, γ, and ε in the context. These describe the type variables
(and region names) in scope, the value variables in scope, the outlives relationships assumed true,
and the regions assumed live, respectively. To see that all of these constructs are necessary, consider
(informally for the moment) type-checking ∗xρ. We need to know that ρ is a region-name (via ∆)
for a region that outlives (via γ) something that we know is live (via ε) and that xρ is a pointer (via
Γ). (We also need to know xρ points into a live region.) Each judgment has a slightly different form:

• ∆; Γ; γ; ε; τ `stmt s means s is well-typed even though statements do not have types (or have
type unit if you prefer). The τ in the context is used to type-check return statements: It is
the return type for the function body being type-checked (int for the top-level program).

• ∆; Γ; γ; ε `rhs e : τ means e is a well-typed right-hand-side expression of type τ .

• ∆; Γ; γ; ε `lhs e : τ@ρ means e is a well-typed left-hand-side expression of type τ in the region
named ρ.

The point is that right-hand-sides do not have region names (“the region of 42” makes no sense), but
left-hand-sides do have region names (the path to which the expression evaluates will begin with an
identifier with the region name). Of course, right-hand-sides with pointer types have a region name
in their type. In fact, to type-check &e as a right-hand-side, the region name from type-checking e
as a left-hand-side is the region name with which we annotate the pointer type for &e.

We now describe each of the rules for type-checking statements:

• SS1 through SS5 are mostly just congruence rules. Notice that in SS2 we use the τ in the
context as the required type for the expression returned. Also, loop and conditional guards
must have type int.

• SS6 requires that ρ is a region-name and adds ρ to the capability used to type-check s. The
point is that ρ should not be in the capability except in s because the associated region will be
deallocated after s executes. As we will see, we type-check whole programs under the empty
capability—only descending under the pop form provides access to a region. Well, actually we
start with an initial capability for the region holding the program’s “static data”, which the
program does not deallocate.

• SS7 through SS9 each add a region ρ and a term variable xρ for type-checking the contained
statement s. The new region will be deallocated before any live region, so we add ε <: ρ to γ.
The new region remains live throughout the execution of s, so we add ρ to ε. The type of xρ is
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(SS1)
∆; Γ; γ; ε `rhs e : τ ′ ∆ `con τ :T

∆; Γ; γ; ε; τ `stmt e

(SS2)
C `rhs e : τ

C; τ `stmt return e

(SS3)
C; τ `stmt s1 C; τ `stmt s2

C; τ `stmt s1; s2

(SS4)
C `rhs e : int C; τ `stmt s1 C; τ `stmt s2

C; τ `stmt if (e) s1 else s2

(SS5)
C `rhs e : int C; τ `stmt s

C; τ `stmt while (e) s

(SS6)
∆; Γ; γ; ε ] ρ; τ `stmt s ∆ `con ρ:R

∆; Γ; γ; ε; τ `stmt s pop[ρ]

(SS7)

∆; Γ; γ; ε `rhs e : τ ′ ∆ `con τ :T
(∆, ρ:R); (Γ, xρ:τ ′); (γ, ε <: ρ); (ε ∪ ρ); τ `stmt s

∆; Γ; γ; ε; τ `stmt ρ:{τ ′ xρ = e; s} (ρ 6∈ Dom(∆), xρ 6∈ Dom(Γ))

(SS8)

`ctxt ∆; Γ; γ; ε ∆ `con τ :T
(∆, ρ:R); (Γ, xρ:handle(ρ)); (γ, ε <: ρ); (ε ∪ ρ); τ `stmt s

∆; Γ; γ; ε; τ `stmt region〈ρ〉xρ s (ρ 6∈ Dom(∆), xρ 6∈ Dom(Γ))

(SS9)

∆; Γ; γ; ε `rhs e : ∃α:κ . γ1.τ1 ∆ `con τ :T
(∆, ρ:R, α:κ); (Γ, xρ:τ1); (γ, ε <: ρ, γ1); (ε ∪ ρ); τ `stmt s

∆; Γ; γ; ε; τ `stmt ρ:{open [α, xρ] = e; s} (ρ, α 6∈ Dom(∆), xρ 6∈ Dom(Γ))

Figure 11: Statement Typing Rules
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(SR1)
γ `ei ε ⇒ ρ `ctxt ∆; Γ; γ; ε

∆; Γ; γ; ε `rhs xρ : Γ(xρ)

(SR2)
∆; Γ; γ; ε `rhs e : τ@ρ1 γ `ei ρ2 ⇒ ρ1

∆; Γ; γ; ε `rhs e : τ@ρ2

(SR3)
`ctxt C

C `rhs i : int

(SR4)
∆ `con ρ : R `ctxt ∆; Γ; γ; ε

∆; Γ; γ; ε `rhs region(ρ) : handle(ρ)

(SR5)

C `rhs e1 : τ1 C `rhs e2 : τ2

C `rhs (e1, e2) : τ1 × τ2

(SR6)
C `rhs e : τ1 × τ2

C `rhs e.i : τi

(SR7)
∆; Γ; γ; ε `rhs e : τ@ρ γ `ei ε ⇒ ρ

∆; Γ; γ; ε `rhs ∗e : τ

(SR8)

γ `ei ε ⇒ ρ
∆; Γ; γ; ε `rhs e1 : handle(ρ) ∆; Γ; γ; ε `rhs e2 : τ

∆; Γ; γ; ε `rhs new(e1) e2 : τ@ρ

Figure 12: Right-Hand-Side Expression Typing Rules (Part I)
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(SR9)
C `lhs e : τ@ρ

C `rhs &e : τ@ρ

(SR10)
∆; Γ; γ; ε `lhs e1 : τ@ρ ∆; Γ; γ; ε `rhs e2 : τ γ `ei ε ⇒ ρ

∆; Γ; γ; ε `rhs e1 = e2 : τ

(SR11)
C; τ `stmt s `ret s

C `rhs call{s} : τ

(SR12)

∆; Γ; γ; ε `rhs e1 : τ2
ε1→ τ ∆; Γ; γ; ε `rhs e2 : τ2

γ `ei ε ⇒ ε1

∆; Γ; γ; ε `rhs e1(e2) : τ

(SR13)

∆ `con τ1 : κ γ `ord γ1[regions(τ1)/α]
∆; Γ; γ; ε `rhs e : τ2[τ1/α]

∆; Γ; γ; ε `rhs pack [τ1, e] as∃α:κ . γ1.τ2 : ∃α:κ . γ1.τ2 (α 6∈ Dom(∆), κ 6= T )

(SR14)

∆; Γ; γ; ε `rhs e : ∀α:κ . γ1.τ2

∆ `con τ1 : κ γ `ord γ1[regions(τ1)/α]

∆; Γ; γ; ε `rhs e〈τ1〉 : τ2[τ1/α]

(SR15)

∆ `con τ1
ε1→ τ2 `ctxt ∆; Γ; γ; ε

(∆, ρ:R); (Γ, xρ:τ1); (γ, ε1 <: ρ); (ε1 ] ρ); τ2 `stmt s `ret s
(ρ 6∈ Dom(∆))

∆; Γ; γ; ε `rhs ρ:(τ1xρ)
ε1→ τ2 = {s} : τ1

ε1→ τ2

(SR16)
(∆, α:κ); Γ; (γ, γ1); ε `rhs e : τ ∆, α:κ `rc γ1 `ctxt ∆; Γ; γ; ε

∆; Γ; γ; ε `rhs Λα:κ . γ1.e : ∀α:κ . γ1.τ (α 6∈ Dom(∆), κ 6= T )

Figure 13: Right-Hand-Side Expression Typing Rules (Part II)

(SL1)
`ctxt C

C `lhs xρ : Γ(xρ)@ρ (SL2)
C `rhs e : τ@ρ

C `lhs ∗e : τ@ρ

(SL3)
C `lhs e : (τ1 × τ2)@ρ

C `lhs e.i : τi@ρ

Figure 14: Left-Hand-Side Expression Typing Rules
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the expected one for each rule. Finally, in SS9 we also add γ1, the constraints ensured by the
existential type, to the context when type-checking s. The typing rule for creating existential
types ensures these constraints are true, so it is sound to use them. (We cannot use them
elsewhere because they may mention α, which is added to ∆ only when type-checking s.)

We now describe the type-checking rules for right-hand expressions. Several of the rules use
antecedents of the form γ `ei ε1 ⇒ ε2 (where ε1 or ε2 may be a single region-name ρ). The formal
rules for this judgment are presented later. Informally, it means that under constraints γ, having
capability ε1 suffices for establishing capability ε2. In other words, if everything in ε1 is live, then
everything in ε2 is live. Similarly, we have γ1 `ord γ2, which means every constraint in γ2 is provable
given γ1.

Turning to the individual rules:

• SR1: To type-check a variable, we need to establish that its region is live under the current
capability (because the dynamic semantics will “read” from the region). The result is from Γ.

• SR2: This rule is subsumption, allowing subtyping on pointers based on the outlives relation-
ship of regions. Specifically, if we can establish that ρ1 outlives ρ2, then it is sound to cast from
τ@ρ1 to τ@ρ2. Note that this cast is not deep; pointer types are invariant in τ . (This point
is subtle for the heap. Safety comes from the fact that we will pick one type for each heap
location, so different aliases are unable to view it at different types. Only right-hand-sides may
be cast; all aliases “use the same cast”.)

• SR3 through SR6 are self-explanatory. As expected, the region-name for a handle appears in
its type.

• SR7 is much like SR1; we need to know that the region that the expression’s evaluation will
access is live.

• SR8 is what we would expect for allocation; the result type is a pointer into the handle’s
region. Notice that we must know the handle’s region; the region-name for the handle to
which e1 evaluates must be known at compile-time. Of course, the region must be live.

• SR9 and SR10 use the judgment for left-hand-sides appropriately. Notice that SR9 does not
require the region to be live (we permit dangling pointers, just not following them) whereas
SR10 does require the region to be live (because assignment “writes” to the region).

• SR11 uses the statement judgment and requires that the statement cannot “fall off the end”.

• SR12 is for function calls. As should be expected, the current capability must be sufficient to
demonstrate the function’s effect. Otherwise, the call’s execution could access dead regions.

• SR13 introduces existential types. The only non-standard feature is the requirement that the
constraint γ1 in the result type is ensured by the current constraint γ (when using the witness
type for α). Constraints never become false (the region lifetime ordering is unchangeable), so
this assumption is what allows the open construct to assume the constraints of the package it
opens.

• SR14 is the elimination form for universal types. It is the dual of SR13. The only non-
standard feature is the obligation to show that the current constraint suffices to prove the
constraint in the universal type. This assumption is what allows us to assume the constraint
when type-checking the body of a polymorphic expression.
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(SH)

G = [ρ′1 7→ R′
1, . . . , ρ

′
m 7→ R′

m] S = [ρ1 7→ R1, . . . , ρn 7→ Rn]
∆ = ρ′1:R, . . . , ρ′m:R, ρ1:R, . . . , ρn:R

γG = ε1 <: ρ′1, . . . , εm <: ρ′m γS = ρ1 <: ρ2, ρ2 <: ρ3, . . . , ρn−1 <: ρn

γ = γG, γS ∆ `rc γ
Γ = ΓG ] ΓS ∆ `vctxt Γ

∆; Γ; γ `stack G : ΓG ∆; Γ; γ `stack S : ΓS

`heap (G, S) : ∆; Γ; γ

(SStk1) ∆; Γ; γ `stack ∅ : •

(SStk2)
∆; Γ; γ `stack S : Γ1 ∆; Γ; γ `rgn ρ 7→ R : Γ2

∆; Γ; γ `stack S[ρ 7→ R] : Γ1 ] Γ2 (ρ 6∈ Dom(S))

(SRgn1) ∆; Γ; γ `rgn ρ 7→ ∅ : •

(SRgn2)
∆; Γ; γ `rgn ρ 7→ R : Γ1 ∆; Γ; γ; ∅ `rhs v : τ ∅ `epop v

∆; Γ; γ `rgn ρ 7→ R[x 7→ v] : Γ1, xρ:τ (xρ 6∈ Dom(Γ1))

Figure 15: Machine-Level Typing Rules

• SR15 is for function bodies. These bodies must return a value of the appropriate type.
They assume the explicit effect is live (the current capability). Furthermore, the parameter
xρ is in a live region ρ that every other live region outlives. Note that our formal language
actually permits “nested functions” and “downward funargs” even though Cyclone does not.
In Cyclone, this rule would only be used for a “top-level” function, so ∆ and ε would have only
the heap’s region-name and Γ would have only the code and static data. (γ would be empty.)
Also note, as usual, that we do not require γ `ei ε ⇒ ε1 (if we did, top-level functions that
took non-heap pointers couldn’t type-check). The implication is necessary only when calling
a function (rule SR12).

• SR16 is for universal introduction. It is the dual of SS9. When type-checking the contained
expression, we can assume the constraints in γ1. The other assumptions are just technical
well-formedness conditions (e.g., γ1 cannot mention type variables not in ∆).

The rules for left-hand-sides are straightforward. Notice that none of them explicitly require a
region to be live: Evaluating left-hand-sides does not read memory unless there is a dereference, in
which case (rule SL2), the assumption uses `rhs, which will require the necessary capability.

9.3.2 Heap Type-Checking

The heap is a collection of dead regions (G) and a collection of live regions (S) with a fixed ordering.
The heap must be well-typed and provide a context under which the current program is well-typed.
The relevant rules are in Figure 15.

Because the heap can contain cycles, we need to assume the heap’s context when type-checking
the heap’s contents. For this reason, `stack and and `rgn have a ∆, Γ, and γ in their contexts.
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(SRet1) `ret return e (SRet2)
`ret s1

`ret s1; s2

(SRet3)
`ret s2

`ret s1; s2 (SRet4)
`ret s1 `ret s2

if (e) s1 else s2

(SRet5)

`ret s

`ret ρ:{τ ′ xρ = e; s}
`ret region〈ρ〉xρ s
`ret ρ:{open [α, xρ] = e; s}
`ret s pop[ρ]

Figure 16: Statement Must-Return Rules

These judgments “collect” the types of all the values in the heap in their result, if you will. In order
to prevent the assumption of nonexistent heap values, SH requires that the values collected exactly
equal (up to reordering) the assumed Γ.

The context for `stack and `rgn does not need a capability ε because the heap contains only
values (not expressions requiring evaluation) and only evaluation requires access to regions. Put
another way, heap objects can be in dead regions (or point to dead regions), so long as the program
does not access the objects (or dereference them).

Rule SH takes a heap (G, S) and “produces” the appropriate ∆, Γ, and γ. The Γ comes from
`stack and `rgn as just described. ∆ is simply the region names in G and S; as expected, the
heap has no free type variables. The interesting part is γ. Because of the stack-like discipline of
regions, we can assume ρi <: ρi+1 when ρi+1 is to the right of ρi in S. In other words, regions to
the left of S outlive regions to the right. Type-checking garbage regions may also require outlives
relationships (though this point is mostly technical because the garbage regions are inaccessible).
Because a garbage region is already dead, it is sound to assume that any region outlives a garbage
region. That is why ε1, . . . , εm are unconstrained (provided they are closed under ∆).

When we type-check a top-level statement s (such as in the assumption of Type and Pop Preser-
vation), we use the context that the conclusion of SH provides.

9.3.3 Return- and Pop-Checking

Progress requires that programs do not get stuck during evaluation. A function that “falls off the
end” without returning would be stuck because we would have an “active position” of the form
call{v}, (or at top-level, just v). Instead, we insist that all execution paths of a function body
(and the top-level program) either diverge or reach a return statement. A simple syntax-directed
judgment for statements suffices (but of course is conservative). It appears in Figure 16. We have
already seen its uses (rules SR11, and SR15). It also used to ensure that top-level programs return.

More interesting is proving that Cyclone, in some sense, prohibits memory leaks. One way to say
this is that if a program terminates, it deallocates all the regions it allocates. To state this formally,
we introduce the mutually inductive judgments S `spop s and S `epop e in Figures 17 and 18

If S `spop s (and similarly for expressions), then execution of s will deallocate exactly the regions
in S, and in the correct order. The order comes from the fact that rule SP9 requires the popped
region to be on the left of S—all other regions in S must be popped first by s (which is evaluated
before the deallocation caused by the pop statement).
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(SP1)
S `epop e

S `spop e (SP2)
S `epop e

S `spop return e

(SP3)
S `spop s1 ∅ `spop s2

S `spop s1; s2

(SP4)
S `epop e ∅ `spop s1 ∅ `spop s2

S `spop if (e) s1 else s2

(SP5)
∅ `epop e ∅ `spop s

∅ `spop while (e) s (SP6)
S `epop e ∅ `spop s

S `spop ρ:{τ xρ = e; s}

(SP7)
∅ `spop s

∅ `spop region〈ρ〉 xρ s

(SP8)
S `epop e ∅ `spop s

S `spop ρ:{open [α, xρ] = e; s}

(SP9)
S `spop s

[ρ 7→ R]S `spop s pop[ρ]

Figure 17: Statement Pop Rules

(SE1) ∅ `epop xρ (SE2) ∅ `epop i (SE3) ∅ `epop region(ρ)

(SE4)

∅ `spop s

∅ `epop ρ:(τ1 xρ)
ε→ τ2 = {s} (SE5)

∅ `epop e

∅ `epop Λα:κ . γ.e

(SE6)

S `epop e

S `epop e〈τ〉
S `epop e.i
S `epop ∗e
S `epop &e
S `epop pack [τ1, e] as τ2

(SE7)

S `epop e1 ∅ `epop e2

S `epop (e1, e2)
S `epop new(e1)e2

S `epop e1(e2)
S `epop e1 = e2

(SE8)

∅ `epop v S `epop e2

S `epop (v, e2)
S `epop new(v)e2

S `epop v(e2)
S `epop v = e2

(SE9)
S `spop s

S `epop call{s}

Figure 18: Expression Pop Rules
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(ST1) ∆ `con α : ∆(α) (ST2) ∆ `con int : B

(ST3)
∆ `con τ : B
∆ `con τ : T (ST4)

∆ `con ρ : R
∆ `con handle(ρ) : B

(ST5)

∆ `con τ1 : T ∆ `con τ2 : T ∆ `rset ε

∆ `con τ1
ε→ τ2 : T

(ST6)
∆ `con τ1 : T ∆ `con τ2 : T

∆ `con τ1 × τ2 : T (ST7)
∆ `con τ : T ∆ `con ρ : R

∆ `con τ@ρ : B

(ST8)

∆, α:κ `rc γ ∆, α:κ `con τ : T
∆ `con ∀α:κ . γ.τ : T
∆ `con ∃α:κ . γ.τ : T (κ 6= T )

(SC1) `tvars ∅ (SC2)
`tvars ∆ α 6∈ Dom(∆)

`tvars ∆, α : κ

(SC3) ∆ `rset ∅ (SC4)
α ∈ Dom(∆)

∆ `rset α (SC5)
∆ `rset ε1 ∆ `rset ε1

∆ `rset ε1 ∪ ε2

(SC6) ∆ `rc ∅ (SC7)
∆ `rc γ ∆ `rset ε ∆(ρ) = R

∆ `rc γ, ε <: ρ

(SC8) ∆ `vctxt • (SC9)
∆ `vctxt Γ ∆ `con ρ:R ∆ `con τ :T ∀ρ′, xρ′ 6∈ Dom(Γ)

∆ `vctxt Γ, xρ:τ

(SC10)
`tvars ∆ ∆ `vctxt Γ ∆ `rc γ ∆ `rset ε

`ctxt ∆; Γ; γ; ε

Figure 19: Type and Context Well-Formedness
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(SC11) γ `vi α ⇒ α (SC12)
α ∈ ε

γ1, ε <: ρ, γ2 `vi ρ ⇒ α

(SC13)
γ `vi α1 ⇒ α2 γ `vi α2 ⇒ α3

γ `vi α1 ⇒ α3

(SC14)
for all α2 ∈ ε2 there exists α1 ∈ ε1 such that γ `vi α1 ⇒ α2

γ `ei ε1 ⇒ ε2

(SC15) γ `ord ∅ (SC16)
γ `ord γ′ γ `ei ρ ⇒ ε

γ `ord γ′, ε <: ρ

Figure 20: Capability Entailment

The judgments are actually more restrictive than “all regions must be deallocated in the correct
order”. In fact, all the deallocations must occur due to pop statements that contain the active
position. So there is no way to derive [ρ 7→ R] `spop if (e) s1 pop[ρ] else s2 pop[ρ].

Notice that a value (such as a function body) can never contain an explicit pop statement. We
prove this formally, but it is obvious from inspection of the rules.

Using the run-time construct S in the context of a compile-time check is a bit sloppy, but it
is not a problem: All that the judgments use is the order of the region-names in S. Furthermore,
for type-checking “initial programs” (which is all we ever actually do; the rest is for proving type
preservation), the judgments degenerate to “this program has no explicit pop statements”, which is
trivial to check.

9.3.4 Technical Details

Only a few judgments remain unexplained. Figure 19 contains several judgments for ensuring ∆, Γ,
γ, and ε are well-formed. These judgments simply require that a ∆ contains distinct type variables
and that the other constructs do not mention type variables not in their context. In the case of Γ,
we further require that the kind of the type of variables is not R, which makes no sense. We also
require that Γ contains distinct identifiers.

Figure 19 also defines `con, which assigns kinds to types. All of the rules are straightforward.
Note that we explicitly prohibit quantifying over “wide types” like products.

Figure 20 defines `vi, `ei, and `ord, each in terms of the previous one. If γ `vi α1 ⇒ α2, then γ
shows that α2 outlives α1. Put another way, if α1 is live, then α2 is live. The rules just formalize the
reflexive (SC11), transitive (SC13) closure of the syntactic constraints in γ (SC12). We extend
`vi to γ `ei ε1 ⇒ ε2 with SC14. This rule need not be stronger (such as allowing γ ` ε ⇒ α2

for some hypothetical `) because of the strict ordering of all regions—using more than one α1 ∈ ε1
cannot help given the form of γ. Finally γ `ord γ′ extends `ei to γ′ in the natural way.

10 Theorems

In this section, we prove type soundness. The lemmas are presented in “bottom-up” order so that
any necessary assumptions have already been proven. The lemmas mostly follow the conventional
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structure of a syntactic type-soundness argument, but some features of our language (notably the
non-standard definition of substitution, the use of identifiers for heap locations, the modeling of C’s
“aggregate assignment”, and the distinction of left- and right-hand-sides) can make it easy to “lose
the forest for the trees”. Therefore, we first give a “top-down” overview of the argument.

Many of the theorems have mutually recursive clauses for statements, right-hand-sides and left-
hand-sides. In our summary, we mention only the statement clause; the other parts are clearly
necessary to prove the statement clause.

We want to prove that a well-formed initial machine state does not “get stuck”: either the
program runs forever or it returns an integer. Moreover, we want to prove that it deallocates all the
regions it allocates. Two preservation lemmas and one progress lemma make this theorem an easy
corollary.

Return Preservation just ensures that the “must-return” property (`ret) of a well-typed program
is preserved under evaluation.

The other preservation lemma (Type and Pop) is much more interesting. It assumes a well-formed
heap in which the live regions can be partitioned into S1S2 such that Dom(S1) is the capability for
type-checking the statement s and S2 contains exactly the regions that execution of s deallocates (if
it terminates). The conclusion asserts that the heap after the step to s′ has live regions of the form
S′

1S
′
2 where Dom(S′

1) = Dom(S1), s′ type-checks under the same capability as s, and s′ deallocates
all the regions in S′

2. Note that S′
2 might have more regions or fewer regions than S2. The point is

that, at top-level, S2 is all the live regions the program must deallocate and S1 is just the program’s
static data, which is never deallocated. The stronger formulation with S1 and S2 is necessary for
type-checking pop statements.

The Progress Lemma is more conventional. It says that well-typed machines states either are
terminal configurations or can take a step. The lemma needs to partition the live regions in S1S2 like
Type and Pop Preservation because “well-typed programs” assume a certain collection of regions
S1 remain live while deallocating another collection of regions S2. We cannot just put all the
region-names in the capability because of the rule for type-checking pop statements.

As usual, the proof of Progress depends on a Canonical Forms Lemma, which describes the
forms of values of particular types. For example, to know that v1(v2) is not stuck, we must know
that values of function types are functions. Two other lemmas address some technical issues that
the structure of our heap causes. First, the Canonical Paths Lemma says that a well-typed path
with a live region-annotation corresponds to a location in the live heap that contains a value of
the correct type. This conclusion is used for Progress on right-hand-side identifiers (because access
to G is forbidden) and assignment (because Update Progress requires the “old value” to have the
correct type). Second, Update Progress proves that for a well-typed assignment, the auxiliary update
function always applies.

The Constraint Progress Lemma is used to prove the Canonical Paths Lemma. Essentially, it
says that regions presumed to outlive live regions are live. The γ used to type-check the heap
establishes this fact.

The Values Effectless Lemma is used in case SS6 of Progress and in many cases of Type and Pop
Preservation. In part, this Lemma proves that if S `epop v, then S = ∅. That suffices to show, as is
necessary in SS6, that the region to be deallocated must be the right-most (most recently allocated)
region in the live heap.

We now turn to the auxiliary lemmas for proving Type and Pop Preservation. Substitution
Lemmas 10, 12, and 13 are used in the cases where the dynamic step substitutes a type for a type-
variable (or region-name). The other Substitution Lemmas are all for proving Substitution Lemma
10. The interesting part is Lemmas 6 and 7, in which we substitute a region-set ε or a region-name ρ
for a type-variable or region-name, respectively, and establish that all outlives derivations (in terms
of a γ through which we do the substitution) are preserved. The Regions-Of Lemma is needed for
Substitution Lemma 4.
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The Useless Substitution Lemma addresses a complication caused by overloading identifiers as
heap locations: The Substitution Lemma says that a statement s continues to type-check after
substituting (for example) τ for α throughout the context and s. But the context for “top-level”
programs comes from the heap, so we cannot type-check s[τ/α] under a different context. But α
does not occur in the context that comes from the heap, so the substitution is irrelevant (or useless)
for the context. (In a conventional presentation, the context for a top-level program is empty, so
the same result is trivial.)

The Term Weakening Lemma serves its usual purpose: After we extend the heap, we type-check
the old heap elements and the resulting program under a stronger context. The point of Weakening
is that nothing fails to type-check as a result. To prove this result, we need the Context Weakening
Lemmas for all the static-semantics rules that use the judgments mentioned in these lemmas.

The Context Well-Formedness Lemma is just a technical fact that alleviates our need to con-
stantly mention that we assume all contexts are well-formed.

The Values Effectless Lemma allows us to move a value into the heap, even though heap locations
are type-checked under empty capabilities.

The Path Substitution Lemma is needed to establish preservation when an expression of the form
(∗(&xρ)).i1. · · · .in rewrites to v.i1. · · · .in.

Finally, we need Update Preservation to establish that a well-typed assignment leaves the
assigned-to location with a value of the same type that it had before the assignment.

Lemma 10.1 (Context Well-Formedness)
Let C = ∆;Γ; γ; ε.

1. If `heap (G, S) : ∆; Γ; γ, then ∆ `vctxt Γ and ∆ `rc γ.

2. If C `lhs e : τ , then `ctxt C and ∆ `con τ :T .

3. If C `rhs e : τ , then `ctxt C and ∆ `con τ :T .

4. If C; τ `stmt s, then `ctxt C and ∆ `con τ :T .

Proof:

The first part is by inspection of rule SH. The rest are by simultaneous induction on the derivations
of C `lhs e : τ , C `rhs e : τ , and C; τ `stmt s. There are no difficult cases; explicit well-formedness
pre-conditions are in the rules to avoid them.

Lemma 10.2 (Context Weakening)

1. If ∆ `rset ε and `tvars ∆,∆′, then ∆,∆′ `rset ε.

2. If ∆ `rc γ and `tvars ∆,∆′, then ∆,∆′ `rc γ.

3. If ∆ `con τ :κ and `tvars ∆,∆′, then ∆,∆′ `con τ :κ.

4. If ∆ `vctxt Γ and `tvars ∆,∆′, then ∆,∆′ `vctxt Γ.

5. If `ctxt ∆; Γ; γ; ε and `tvars ∆,∆′, then `ctxt ∆,∆′; Γ; γ; ε.

6. If γ `vi α1 ⇒ α2 and γ′ `ord γ, then γ′ `vi α1 ⇒ α2.

7. If γ `ei ε1 ⇒ ε2 and γ′ `ord γ, then γ′ `ei ε1 ⇒ ε2.

8. If γ `ord γ′′ and γ′ `ord γ, then γ′ `ord γ′′.
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Proof:

In each case, by induction on the derivation of the first assumption. The only interesting case is
for part 6, rule SC12. In this case, the assumption γ′ `ord γ must have been derived with SC16,
which has strong enough hypotheses to derive the desired result.

Lemma 10.3 (Term Weakening)
Suppose:

1. `ctxt ∆∆′; ΓΓ′; γ′; ε′

2. γ′ `ord γ

3. γ′ `ei ε′ ⇒ ε

Then:

1. If ∆; Γ; γ; ε `lhs e : τ , then ∆∆′; ΓΓ′; γ′; ε′ `lhs e : τ .

2. If ∆; Γ; γ; ε `rhs e : τ , then ∆∆′; ΓΓ′; γ′; ε′ `rhs e : τ .

3. If ∆; Γ; γ; ε; τ `stmt s, then ∆∆′; ΓΓ′; γ′; ε′; τ `stmt s.

4. If ∆; Γ; γ; ε `rgn R : Γ′′, then ∆∆′; ΓΓ′; γ′; ε′; τ `rgn R : Γ′′.

5. If ∆; Γ; γ; ε `stack S : Γ′′, then ∆∆′; ΓΓ′; γ′; ε′; τ `stack S : Γ′′.

Proof:

In each case, by induction on the derivation of the first assumption, appealing to Context Weakening
as necessary. (The first three cases are proved simultaneously.)

Lemma 10.4 (Regions-Of Lemmas)

1. If ∆ `con τ : κ, then ∆ `rset regions(τ) and regions(τ) ⊆ Dom(∆).

2. If ∆ `con τ : R, then regions(τ) = ρ for some ρ.

Proof:

Part (1) is by induction on the derivation of ∆ `con τ : κ. The only interesting case is ST8. If
τ ′ is the type under the quantifier, then the induction hypothesis provides ∆, α:κ `rset regions(τ ′)
and regions(τ ′) ⊆ Dom(∆). We can write regions(τ ′) as either ε or ε ∪ α where α 6∈ ε. So inversion
on SC5 and the definition of regions give the desired result. Part (2) is by inspection of the `con
judgment.

Lemma 10.5 (Substitution)

1. If ∆, α:κ `rset ε and ∆ `rset ε′, then ∆ `rset ε[ε′/α].

Proof:

The proof is by induction on the derivation of ∆, α:κ `rset ε. There are only three cases: SC3,
SC4, and SC5.
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2. If ∆, α:T `rc γ and ∆ `rset ε, then ∆ `rc γ[ε/α].

Proof:

The proof is by induction on the derivation of ∆, α:T `rc γ. There are only two cases: SC6
and SC7.

3. If ∆, ρ:R `rc γ and ∆ `con ρ′:R, then ∆ `rc γ[ρ′/ρ].

Proof:

This proof is similar to the previous one.

4. If ∆, α:κ′ `con τ : κ and ∆ `con τ ′ : κ′, then ∆ `con τ [τ ′/α] : κ.

Proof:

The proof is by induction on the derivation of ∆, α:κ′ `con τ : κ and by inspecting rules ST1
to ST8. For ST5 and ST7, we need the Regions-Of Lemma to establish that the substitution
is defined and the result is derivable.

5. If ∆, α:κ `vctxt Γ and ∆ `con τ : κ, then ∆ `vctxt Γ[τ/α].

Proof:

The proof is by induction on the derivation of ∆, α : κ `vctxt Γ. There are only two cases:
SC8 and SC9.

6. If ∆ `rc γ, γ `vi α1 ⇒ α2, and ∆ `con α3 : T , then
γ[ε/α3] `ei α1[ε/α3] ⇒ α2[ε/α3].

Proof:

The proof is by induction on the derivation of γ `vi α1 ⇒ α2.

Case SC11: By the definition of this rule, α1 = α2. Then α1[ε/α3] = α2[ε/α3]. Clearly, for all
α ∈ α2[ε/α3], α ∈ α1[ε/α3], so γ[ε/α3] `vi α ⇒ α. By SC14, γ[ε/α3] `ei α1[ε/α3] ⇒ α2[ε/α3].

Case SC12: By definition of this rule,

α ∈ ε0
γ1, ε0 <: ρ, γ2 `vi ρ ⇒ α

In this rule, α1 = ρ, α2 = α. Since ∆ `rc γ, α1 = ρ : R and α1 6= α3. If α2 6= α3, we can
derive α2 ∈ ε0[ε/α3] from α2 ∈ ε0. By applying SC12 again we get γ[ε/α3] `vi α1 ⇒ α2. If
α2 = α3, α2[ε/α3] = ε. Since α2 ∈ ε0, ε ⊆ ε0[ε/α3]. ∀α0 ∈ ε, α0 ∈ ε0[ε/α3]. By SC12 ρ ⇒ α0.
By SC14, ρ ⇒ ε. So γ[ε/α3] `ei α1 ⇒ α2[ε/α3].

Case SC13:
γ `vi α1 ⇒ α0 γ `vi α0 ⇒ α2

γ `vi α1 ⇒ α2

By induction hypothesis, γ[ε/α3] `ei α1[ε/α3] ⇒ α0[ε/α3], and γ[ε/α3] `ei α0[ε/α3] ⇒
α2[ε/α3]. By inversion of SC14, we know that ∀α ∈ α2[ε/α3], there exists α′ ∈ α0[ε/α3],
such that γ[ε/α3] `vi α′ ⇒ α. Similarly, ∀α′ ∈ α0[ε/α3], there exists α′′ ∈ α1[ε/α3], such that
γ[ε/α3] `vi α′′ ⇒ α′. By applying SC13 again, we have γ[ε/α3] `vi α′′ ⇒ α. By applying
SC14 again, we have γ[ε/α3] `ei α1[ε/α3] ⇒ α2[ε/α3]

7. If ∆ `rc γ, γ `vi α1 ⇒ α2, and ∆ `con ρ : R, then
γ[ρ′/ρ] `ei α1[ρ′/ρ] ⇒ α2[ρ′/ρ].

Proof:
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The proof for this lemma is similar to the previous one. The only difference is for SC12: We
need to consider the case where ρ is substituted.

8. If ∆ `rc γ, γ `ei ε1 ⇒ ε2, and ∆ `con α3 : T , then
γ[ε/α3] `ei ε1[ε/α3] ⇒ ε2[ε/α3].

Proof:

We can only derive γ `ei ε1 ⇒ ε2 from rule SC14. By inversion of this rule, we have ∀α2 ∈ ε2,
there exists α1 ∈ ε1 such that γ `vi α1 ⇒ α2. Our proof is by induction on the structure of
the region set ε2.

Case 1: ε2 = α2. γ `vi α1 ⇒ α2. So by Lemma 6, γ[ε/α3] `ei α1[ε/α3] ⇒ α2[ε/α3]. Since
α1 ∈ ε1, α1[ε/α3] ⊆ ε1[ε/α3]. By rule SC14, γ[ε/α3] `ei ε1[ε/α3] ⇒ ε2[ε/α3].

Case 2: ε2 = ε3 ∪ ε4. By rule SC14, γ `ei ε1 ⇒ ε2 means γ `ei ε1 ⇒ ε3 and γ `ei ε1 ⇒ ε4.
By induction hypothesis, γ[ε/α3] `ei ε1[ε/α3] ⇒ ε3[ε/α3] and γ[ε/α3] `ei ε1[ε/α3] ⇒ ε4[ε/α3].
By rule SC14, it is obvious that γ[ε/α3] `ei ε1[ε/α3] ⇒ (ε3 ∪ ε4)[ε/α3].

9. If ∆ `rc γ, γ `ei ε1 ⇒ ε2, and ∆ `con ρ : R, then
γ[ρ′/ρ] `ei ε1[ρ′/ρ] ⇒ ε2[ρ′/ρ].

Proof:

This proof is similar to the previous one.

10. If ∆, α:T `rc γ, ∆ `rset ε, and γ `ord γ′, then γ[ε/α] `ord γ′[ε/α].
If ∆, ρ:R `rc γ, ∆ `con ρ′ : R, and γ `ord γ′, then γ[ρ′/ρ] `ord γ′[ρ′/ρ].

Proof:

The proof is by induction on the derivation of γ `ord γ′. There are only two cases: SC15 and
SC16.

11. If ∆, α:κ; Γ; γ; ε `rhs e : τ and ∆ `con τ ′ : κ, then
∆; Γ[τ ′/α]; γ[regions(τ ′)/α]; ε[regions(τ ′)/α] `rhs e[τ ′/α] : τ [τ ′/α].
If ∆, α:κ; Γ; γ; ε `lhs e : τ and ∆ `con τ ′ : κ, then
∆; Γ[τ ′/α]; γ[regions(τ ′)/α]; ε[regions(τ ′)/α] `lhs e[τ ′/α] : τ [τ ′/α].
If ∆, α:κ; Γ; γ; ε; τ `stmt s and ∆ `con τ ′ : κ, then
∆; Γ[τ ′/α]; γ[regions(τ ′)/α]; ε[regions(τ ′)/α]; τ [τ ′/α] `stmt s[τ ′/α].

Note that substitution of τ ′ through e, by definition, uses regions(τ ′) whenever a region-
constraint or region-set is encountered.

Proof:

By simultaneous induction on the derivations of ∆, α:κ; Γ; γ; ε `rhs e : τ , ∆, α:κ; Γ; γ; ε `lhs e :
τ , and ∆, α:κ; Γ; γ; ε; τ `stmt s. Proceed by cases on the last rule of the derivation.

Cases SS1–SS5: These cases are just proof by induction.

Case SS6: This is a simple proof by induction. Notice that ρ in pop[ρ] is always a region
name, but not a region type variable.

Cases SS7–SS9: These are all simple proofs by induction. Notice that ρ 6∈ Dom(∆), so
ρ 6= α3, so the substitution of α3 will not affect the occurrences of ρ.

Cases SR1–SR16: The proof for these cases is by induction. We need to use other substitu-
tion lemmas throughout the proof.
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Cases SL1–SL3: The proof for these cases is by induction.

12. If S `epop e, then S `epop e[τ/α].
If S `spop s, then S `spop s[τ/α].

Proof:

The proof is trivial. Clearly expression and statement pop rules do not refer to type variables.

13. If `ret s, then `ret s[τ/α].

Proof:

The proof is trivial. Clearly statement must-return rules do not refer to type variables.

Lemma 10.6 (Useless Substitution)

1. If α 6∈ Dom(∆) and ∆ `rset ε, then ε[regions(τ)/α] = ε.

2. If α 6∈ Dom(∆) and ∆ `rc γ, then γ[regions(τ)/α] = γ.

3. If α 6∈ Dom(∆) and ∆ `con τ ′:κ, then τ ′[τ/α] = τ ′.

4. If α 6∈ Dom(∆) and ∆ `vctxt Γ, then Γ[τ/α] = Γ.

Proof:

In each case, by induction on the derivation of the second assumption, using the definition of
substitution.

Lemma 10.7 (Path Substitution)
Let C = ∆;Γ; γ; ε. If C `lhs xρ.i1.i2. · · · .in : τ@ρ, then there exists a τ ′ such that Γ(xρ) = τ ′ and
for all e such that C `rhs e : τ ′, C `rhs e.i1.i2. · · · .in : τ .

Proof:

The proof is by induction on n. When n = 0, we have C `lhs xρ : τ@ρ, which must follow from rule
SL1. Thus, τ ′ = τ = Γ(xρ) and from the assumptions, C `rhs e : τ .

Now assume that the lemma holds for all values up to n − 1. We have as an assumption C `lhs
xρ.i1.i2. · · · .in−1.in : τ@ρ. This can only hold via SL3 and thus C `lhs xρ.i1.i2. · · · .in−1 : (τ1×τ2)@ρ
such that τ = τin . From the induction hypothesis, we can therefore conclude that there exists a τ ′

such that Γ(xρ) = τ ′ and that for all e such that C `rhs e : τ ′, C `rhs e.i1.i2. · · · .in−1 : τ1 × τ2.
Then using SR6, we can conclude C `rhs e.i1.i2. · · · .in−1.in : τ .

Lemma 10.8 (Values Effectless)

1. S `epop p implies S = ∅.

2. S `epop v implies S = ∅.

3. If ∆; Γ; γ; ε `lhs p : τ , then ∆; Γ; γ; ∅ `lhs p : τ .

4. If ∆; Γ; γ; ε `rhs v : τ , then ∆; Γ; γ; ∅ `rhs v : τ .

5. If ∆; Γ; γ; ε `lhs p : τ and ∆ ` ε′, then ∆; Γ; γ; ε′ `lhs p : τ .
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6. If ∆; Γ; γ; ε `rhs v : τ and ∆ ` ε′, then ∆; Γ; γ; ε′ `rhs v : τ .

Proof:

Each of the parts follows by a straightforward induction. Note that only elimination or allocation
forms actually use ε to show that a region or set of regions is accessible and that these are not values
(or paths). Also note that verifying the constraints on an existential package does not depend upon
ε. Part (5) is a corollary to part (3) using Weakening (since γ `ei ε′ ⇒ ∅). Similarly, part (6) is a
corollary to part (4).

Lemma 10.9 (Return Preservation)

If `ret s and (G, S, s) stmt−→ (G′, S′, s′), then `ret s′.

Proof:

By induction on the derivation of (G, S, s) stmt−→ (G′, S′, s′).

case DS1: (G, S, v; s1)
stmt−→ (G′, S′, s1). Now `ret v; s1 holds must hold via SRet2, for we cannot

derive `ret v. Therefore, we have `ret s1.

cases DS2,DS3: (G, S, if (0) s1 else s2)
stmt−→ (G, S, s2). Now `ret if (0) s1 else s2 must

follow from SRet4. Therefore, `ret s2. The DS3 case is similar.

case DS4: (G, S, while (e) s1)
stmt−→ (G, S, if (e) {s1; s} else 0). This case is trivial because we

cannot derive `ret s.

case DS5, DS6:

(G, S, return v; s1
stmt−→ (G, S, return v) or (G, S, return v pop[ρ]) stmt−→ (G′, S′, return v). These

cases follow trivially since SRet1 allows us to conclude `ret return v.

case DS7: We cannot have `ret v pop[ρ] for this requires `ret v.

case DS8: These cases follow directly from inversion of SRet5, and then using SRet5 with the
`ret s pop[ρ] conclusion to establish the result.

case DS9: These cases follow trivially as changes to a sub-expression do not impact whether or not
`ret holds.

case DS10: These cases follow directly from the induction hypothesis.

Lemma 10.10 (New-Region Preservation)
Let S = [ρ1 7→ R1, . . . ρn 7→ Rn]. Suppose:

• `heap (G, S) : ∆; Γ; γ

• `heap (G, S[ρ 7→ R]) : ∆′; Γ′; γ, ρn <: ρ

Then γ, ρn <: ρ `ord γ, Dom(S) <: ρ.

Proof:
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By (SC16), we must show γ, ρn <: ρ `ord γ and γ, ρn <: ρ `ei Dom(S) <: ρ. The former
is a trivial induction over the size of γ using SC15 and SC14, which in turn uses (SC12) for
each element in a constraint’s effect. For the latter, by SC16 and SC14, it suffices to show that
γ, ρn <: ρ `vi ρ ⇒ ρn−i for 0 ≤ i ≤ n − 1. We use induction on i. For i = 0, the constraint
ρn <: ρ and rule (SC12) suffices. For i > 0, we know by induction that γ, ρn <: ρ `vi ρ ⇒ ρn−(i−1).
Furthermore, SH and the assumptions ensure that γ contains the constraint ρn−i <: ρn−(i−1), so
by SC12, γ, ρn <: ρ `vi ρn−(i−1) ⇒ ρn−i. So by SC13, we are done.

Lemma 10.11 (Projection)
Suppose C `rhs v.i.i1. · · · .in : τ . Then v = (v1, v2) for some v1 and v2, and C `rhs vi.i1. · · · .in : τ .

Proof:

We argue by induction on n. When n = 0 we have C `rhs v.i : τ . We now argue by an inner
induction on the derivation of this fact that v = (v1, v2) and C `rhs vi : τi. There are two cases to
consider:

case SR6: We have:
C `rhs v : τ1 × τ2

C `rhs v.i : τi

From the Canonical Forms lemma, we can therefore conclude v = (v1, v2). By inversion, we then
have C ` vi : τi.

case SR2: We have:
∆; Γ; γ; ε `rhs v.i : τ ′@ρ1 γ `ei ρ2 ⇒ ρ1

∆; Γ; γ; ε `rhs v.i : τ ′@ρ2

where τi = τ ′@ρ2. From the first premise and the inner induction hypothesis, v = (v1, v2)
and ∆; Γ; γ; ε `rhs vi : τ ′@ρ1. Therefore, using the second premise and SR6 we can conclude
∆; Γ; γ; ε `rhs vi : τ ′@ρ2. This completes the inner induction and the case for n = 0.

Suppose the lemma holds up through n − 1 and let C `rhs v.i.i1. · · · .in−1.in : τ . Again, we argue
by an inner induction on the derivation of this fact. Again, the derivation can end with one of two
cases:

case SR6: We have:
C `rhs v.i.i1. · · · .in−1 : τ1 × τ2

C `rhs v.i.i1. · · · .in−1.in : τin

The result follows from the premise and the outer induction hypothesis.

case SR2: We have:

∆; Γ; γ; ε `rhs v.i.i1. · · · .in−1.in : τ ′@ρ1 γ `ei ρ2 ⇒ ρ1

∆; Γ; γ; ε `rhs v.i.i1. · · · .in−1.in : τ ′@ρ2

where τin
= τ ′@ρ2. From the first premise and the inner induction hypothesis, we have v = (v1, v2),

and ∆; Γ; γ; ε `rhs vi.i1. · · · .in−1.in : τ ′@ρ1. Therefore, using the second premise and SR6 we can
conclude ∆; Γ; γ; ε `rhs vi.i1. · · · .in−1.in : τ ′@ρ2.

Lemma 10.12 (Lookup Preservation)
Suppose:

1. `heap (G, S1S2) : ∆; Γ; γ
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2. γ `ei Dom(S1) ⇒ ρ, and

3. ∆; Γ; γ; Dom(S1) `rhs xρ : τ .

Then S1S2 = Sa[ρ′ 7→ R[x 7→ v]Sb for some Sa, ρ′, R, v, and Sb and ∆; Γ; γ; Dom(S1) `rhs v : τ .

Proof:

By induction on the derivation ∆; Γ; γ; Dom(S1) `rhs xρ : τ . The proof must end with an application
of SR1 or SR2.

case SR1: Then Γ(xρ) = τ and we can show ∆; Γ; γ; Dom(S1) `lhs x : τ@ρ. From this, and
assumptions (1) and (2), the result follows using the Canonical Paths lemma and weakening.

case SR2: The derivation ends with:

∆; Γ; γ; Dom(S1) `rhs e : τ ′@ρ1 γ `ei ρ2 ⇒ ρ1

∆; Γ; γ; Dom(S1) `rhs x : τ ′@ρ2

where τ = τ ′@ρ2. The result then follows from the first premise and the induction hypothesis, using
the second premise and SR2 to establish that the value has type τ ′@ρ2.

Lemma 10.13 (Update Preservation)
Suppose

1. update(va, [in, in−1, . . . , i2, i1], vb) = v

2. ∆; Γ; γ; ∅ `rhs va : τ

3. ∆; Γ; γ; ε `rhs va.in.in−1. · · · .i2.i1 : τ ′

4. ∆; Γ; γ; ε `rhs vb : τ ′

Then ∆; Γ; γ; ε `rhs v : τ .

Proof:

By induction on n. For n = 0, we have from (2) and (3) that τ = τ ′. Furthermore, update(va, [], vb) =
vb. The result then follows from (4).

Suppose the lemma holds for all values up through n − 1. Without loss of generality, assume that
in = 1. Then from the definition of update, it must be that va = (v1, v2) for some values v1 and v2

and v = (update(v1, [in−1, . . . , i2, i1], vb), v2). From (2) and inversion of the SR rules, we know that
τ = τ1×τ2 and that ∆; Γ; γ; ∅ `rhs vi : τi. By Projection, we know ∆;Γ; γ; ∅ `rhs v1.in−1, . . . , i1 : τ ′.
So by the induction hypothesis, we then have ∆; Γ; γ; ε `rhs update(v1, [in−1, . . . , i2, i1], vb) : τ1.
Therefore, by SR5 we have ∆; Γ; γ; ε `rhs v : τ1 × τ2.

Definition 10.14 (Extensions)

1. If Dom(∆′) ⊇ Dom(∆) and ∆ and ∆′ agree on Dom(∆), then ∆′ extends ∆.

2. If Dom(Γ′) ⊇ Dom(Γ) and Γ and Γ′ agree on Dom(Γ), then Γ′ extends Γ.

3. If γ′ = γ, γ′′, then γ′ extends γ.
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4. If S = [ρ1 7→ R1, . . . , ρn 7→ Rn] and S′ = [ρ1 7→ R′
1, . . . , ρn 7→ R′

n], then S′ extends S. (We
could require each R′

i to have a larger domain than Ri, but this fact will follow from the heap
type-checking under an extended Γ.)

Lemma 10.15 (Type and Pop Preservation)

1. If

• `heap (G, S1S2) : ∆; Γ; γ

• ∆; Γ; γ; Dom(S1); τ `stmt s

• S2 `spop s

• (G, S1S2, s)
stmt−→ (G′, S′, s′)

Then there exists S′ and ∆′,Γ′, γ′ extending ∆,Γ, γ respectively such that

• S′ = S′
1S

′
2 and S′

1 extends S1

• `heap (G′, S′) : ∆′; Γ′; γ′

• ∆′; Γ′; γ′; Dom(S′
1); τ `stmt s′

• S′
2 `spop s′

2. If

• `heap (G, S1S2) : ∆; Γ; γ

• ∆; Γ; γ; Dom(S1) `rhs e : τ

• S2 `epop e

• (G, S1S2, e)
rhs−→ (G′, S′, e′)

Then there exists S′ and ∆′,Γ′, γ′ extending ∆,Γ, γ respectively such that

• S′ = S′
1S

′
2 and S′

1 extends S1

• `heap (G′, S′) : ∆′; Γ′; γ′

• ∆′; Γ′; γ′; Dom(S′
1) `rhs e′ : τ

• S′
2 `epop e′

3. If

• `heap (G, S1S2) : ∆; Γ; γ

• ∆; Γ; γ; Dom(S1) `lhs e : τ

• S2 `epop e

• (G, S1S2, e)
lhs−→ (G′, S′, e′)

Then there exists S′ and ∆′,Γ′, γ′ extending ∆,Γ, γ respectively such that

• S′ = S′
1S

′
2 and S′

1 extends S1

• `heap (G′, S′) : ∆′; Γ′; γ′

• ∆′; Γ′; γ′; Dom(S′
1) `lhs e′ : τ
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• S′
2 `epop e′

Proof:

By simultaneous induction on the derivations of ∆; Γ; γ; Dom(S1); τ `stmt s, ∆; Γ; γ; Dom(S1) `rhs
e : τ , and ∆; Γ; γ; Dom(S1) `lhs e : τ@ρ, proceeding by cases on the last rule in the derivation.

case SS1: The derivation ends with:

∆; Γ; γ; Dom(S1) `rhs e : τ ′ ∆ `con τ :T
∆; Γ; γ; Dom(S1); τ `stmt e

The only dynamic rule that applies is DS9. Thus, (G, S1S2, e)
rhs−→ (G′, S′, e′). Inversion on S2 `spop

e (rule SP1) provides S2 `epop e. So by induction (the right-hand-side expression part), SS1 (with
Context Weakening to show ∆′ `con τ :T ), and SP1, we can derive all the results we need.

case SS2: The derivation ends with:

∆; Γ; γ; Dom(S1) `rhs e : τ

∆; Γ; γ; Dom(S1); τ `stmt return e

The only dynamic rule that applies is DS9. The argument is analogous to case SS1, using SS2 and
SP2 in place of SS1 and SP1.

case SS3: The derivation ends with:

∆; Γ; γ; Dom(S1); τ `stmt s1 ∆; Γ; γ; Dom(S1); τ `stmt s2

∆; Γ; γ; Dom(S1); τ `stmt s1; s2

Inversion on S2 `spop s1; s2 (rule SP3) provides S2 `spop s1, and ∅ `spop s2.

If s1 = v, then only dynamic rule DS1 applies. By Values Effectless and inversion on S2 `spop v
(rule SP1), we know S2 = ∅, so S2 `spop s2. Along with ∆; Γ; γ; Dom(S1); τ `stmt s2 and the
original assumptions, we can conclude everything we need by letting G′ = G, S′ = S1S2, ∆ = ∆′,
Γ′ = Γ, γ′ = γ, and s′ = s2.

If s1 = return v, then only dynamic rule DS5 applies. From ∆; Γ; γ; Dom(S1); τ `stmt s1, S2 `spop
s1, and the original assumptions, we can conclude everything we need by letting G′ = G, S′ = S1S2,
∆ = ∆′, Γ′ = Γ, γ′ = γ, and s′ = s1.

Else s1 is not terminal, in which case only dynamic rule DS10 applies. Thus, (G, S1S2, s1; s2)
stmt−→

(G′, S′, s′1; s2). So by induction (the statement part), SS3 (with Term Weakening and Dom(S′
1) =

Dom(S1) to type-check s2 under the new context), and SP3 (using ∅ `spop s2), we can derive all
the results we need.

case SS4: The derivation ends with

∆; Γ; γ; Dom(S1) `rhs e : int ∆; Γ; γ; Dom(S1); τ `stmt s1 ∆; Γ; γ; Dom(S1); τ `stmt s2

∆; Γ; γ; Dom(S1); τ `stmt if (e) s1 else s2

Inversion on S2 `spop if (e) s1 else s2 (rule SP4) provides S2 `epop e, ∅ `spop s1, and ∅ `spop
s2.

If e = 0, then only dynamic rule DS2 applies. By Values Effectless and S2 `epop 0, we know
S2 = ∅, so S2 `spop s2. Along with ∆; Γ; γ; Dom(S1); τ `stmt s2 and the original assumptions, we
can conclude everything we need by letting G′ = G, S′ = S1S2, ∆ = ∆′, Γ′ = Γ, γ′ = γ, and s′ = s2.
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If e = i 6= 0, then only dynamic rule DS3 applies. The argument is analogous to when e = 0,
replacing s2 with s1.

Else only dynamic rule DS9 applies, in which case we know (G, S1S2, if (e) s1 else s2)
stmt−→

(G′, S′, if (e′) s1 else s2). So by induction (the right-hand expression part), SS4 (with Term
Weakening and Dom(S′

1) = Dom(S1) to type-check s1 and s2 under the new context), and SP3
(using ∅ `spop s1 and ∅ `spop s2), we can derive all the results we need.

case SS5: The derivation ends with

∆; Γ; γ; Dom(S1) `rhs e : int ∆; Γ; γ; Dom(S1); τ `stmt s1

∆; Γ; γ; Dom(S1); τ `stmt while (e) s1

Inversion on S2 `spop while (e) s (rule SP5) provides S2 = ∅, ∅ `epop e, and ∅ `spop s1. Only
dynamic rule DS4 applies. Letting G′ = G, S′ = S1S2, ∆ = ∆′, Γ′ = Γ, γ′ = γ, and s′ =
if (e) {s1; while (e) s1} else 0, we need to show C; τ `stmt if (e) {s1; while (e) s1} else 0
where C = ∆;Γ; γ; Dom(S1). We do so as follows:

C `rhs e : int
C; τ `stmt s1 C; τ `stmt while (e) s1

C; τ `stmt s1; while (e) s1

C `rhs 0 : int
C; τ `stmt 0

C; τ `stmt if (e) {s1; while (e) s1} else 0

We also must show ∅ `spop if (e) {s1; while (e) s1} else 0:

∅ `epop e

∅ `spop s1 ∅ `spop while (e) s1

∅ `spop s1; while (e) s1

∅ `epop 0
∅ `spop 0

∅ `spop if (e) {s1; while (e) s1} else 0

case SS6: The derivation ends with:

∆; Γ; γ; Dom(S1) ] ρ; τ `stmt s1 ∆ `con ρ:R
∆; Γ; γ; Dom(S1); τ `stmt s1 pop[ρ]

Inversion on S2 `spop s1 pop[ρ] (rule SP9) provides S2 = [ρ 7→ R]S3 for some R and S3 `spop s1.

If s1 = v, then only dynamic rule DS7 applies. By Values Effectless and inversion on S3 `spop v
(rule SP1), we know S3 = ∅. By inversion on ∆; Γ; γ; Dom(S1) ] ρ; τ `stmt v (rule SS1), we know
∆; Γ; γ; Dom(S1) ] ρ `rhs v : τ ′. So by Values Effectless, ∆; Γ; γ; Dom(S1) `rhs v : τ ′, and then by
SS1, ∆; Γ; γ; Dom(S1); τ `stmt v. Letting G′ = G[ρ 7→ R], S′

1 = S1, and S′
2 = ∅, all that remains is

showing `heap (G′, S1∅) : ∆; Γ; γ. Note that we do not change the typing context. From inversion
(SH) on the assumption `heap (G, S1S2) : ∆; Γ; γ, we know we have a derivation of the form:

G = [ρ′1 7→ R′
1, . . . , ρ

′
m 7→ R′

m] S1[ρ 7→ R] = [ρ1 7→ R1, . . . , ρn 7→ Rn][ρ 7→ R]
∆ = ρ′1:R, . . . , ρ′m:R, ρ1:R, . . . , ρn:R, ρ:R

γG = ε1 <: ρ′1, . . . , εm <: ρ′m γS = ρ1 <: ρ2, ρ2 <: ρ3, . . . , ρn−1 <: ρn, ρn <: ρ
γ = γG, γS ∆ `rc γ

Γ = ΓG ] ΓS ∆ `vctxt Γ
∆; Γ; γ `stack G : ΓG ∆; Γ; γ `stack S1[ρ 7→ R] : ΓS

`heap (G, S1[ρ 7→ R]) : ∆; Γ; γ

By inversion (SStk2) on ∆; Γ; γ `stack S1[ρ 7→ R] : ΓS , we know ∆; Γ; γ `stack S1 : Γ′
S , ∆; Γ; γ `rgn

ρ 7→ R : Γρ, and ΓS = Γ′
S ] Γρ. From the second fact and the assumption ∆; Γ; γ `stack G : ΓG,
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SStk2 lets us conclude ∆; Γ; γ `stack G[ρ 7→ R] : ΓG ] Γρ. By reordering on variable contexts,
Γ = (ΓG ] Γρ) ] Γ′

S . Letting γ′G = γG, ρn <: ρ (or γG if S1 = ∅) and γ′S = ρ1 <: ρ2, ρ2 <:
ρ3, . . . , ρn−1 <: ρn, reordering on constraints gives us γ = γ′G, γ′S . Finally, reordering on type
contexts gives us ∆ = ρ′1:R, . . . , ρ′m:R, ρ:R, ρ1:R, . . . , ρn:R. Putting all this together, we can derive
what we want:

G[ρ 7→ R] = [ρ′1 7→ R′
1, . . . , ρ

′
m 7→ R′

m][ρ 7→ R] S1 = [ρ1 7→ R1, . . . , ρn 7→ Rn]
∆ = ρ′1:R, . . . , ρ′m:R, ρ:R, ρ1:R, . . . , ρn:R

γ′G = ε1 <: ρ′1, . . . , εm <: ρ′m, ρn <: ρ γ′S = ρ1 <: ρ2, ρ2 <: ρ3, . . . , ρn−1 <: ρn

γ = γ′G, γ′S ∆ `rc γ
Γ = (ΓG ] Γρ) ] Γ′

S ∆ `vctxt Γ
∆; Γ; γ `stack G[ρ 7→ R] : ΓG ] Γρ ∆; Γ; γ `stack S1 : Γ′

S

`heap (G[ρ 7→ R], S1) : ∆; Γ; γ

If s1 = return v, then the argument is analogous to the previous one, using SS2 and SP2 in place
of SS1 and SP1.

Else s1 is not terminal, in which case only dynamic rule DS10 applies. Thus, (G, S1S2, s1 pop[ρ] stmt−→
(G′, S′, s′1 pop[ρ]). Let S4 = S1[ρ 7→ R]. Then by the induction hypothesis, there exist G′, S′

4

extending S4, S′
3, and ∆′, Γ′, γ extending ∆, Γ, γ respectively such that

• S′ = S′
4S

′
3

• `heap (G′, S′) : ∆′; Γ′; γ′

• ∆′; Γ′; γ; Dom(S′
4); τ `stmt s′1

• S′
3 `spop s′1

By the definition of extension, S′
4 = S′

1[ρ 7→ R′] for some S′
1 and R′ and, furthermore, S′

1 extends
S1. Letting S′

2 = [ρ 7→ R′]S′
3, we have `heap (G′, S′

1S
′
2) : ∆′; Γ′; γ′. By SP9, S′

2 `spop s′1 pop[ρ].
Finally, Dom(S′

4) = Dom(S′
1) ] ρ, so by SS6 (using Context Weakening to show ∆′ `con ρ:R), we

have
∆′; Γ′; γ; Dom(S′

1); τ `stmt s′1 pop[ρ].

case SS7: The derivation ends with

∆; Γ; γ; Dom(S1) `rhs e : τ ′ ∆ `con τ :T
(∆, ρ:R); (Γ, xρ:τ ′); (γ, Dom(S1) <: ρ); (Dom(S1) ∪ ρ); τ `stmt s1

∆; Γ; γ; Dom(S1); τ `stmt ρ:{τ ′ xρ = e; s1} (ρ 6∈ Dom(∆), xρ 6∈ Dom(Γ))

Inversion on S2 `spop ρ:{τ ′ xρ = e; s1} (rule SP6) provides S2 `epop e and ∅ `epop s1.

If e = v, then only dynamic rule DS8a applies. Let G′ = G, S′
1 = S1, S′

2 = [ρ 7→ {x 7→ v}], ∆′ =
∆, ρ:R, and Γ′ = Γ, xρ:τ ′. If S1S2 = [ρ1 7→ R1, . . . , ρn 7→ Rn], then let γ′ = γ, ρn <: ρ. (If S1S2 = ∅,
which wouldn’t actually happen, let γ′ = γ.) By Values Effectless, S2 `epop v means S2 = ∅, so
S2 `spop s1. So by SP9, S′

2 `spop s1 pop[ρ], as needed. Next we show `heap (G′, S1S
′
2) : ∆′; Γ′; γ′.

By assumption, there must be a derivation of the form:

G = [ρ′1 7→ R′
1, . . . , ρ

′
m 7→ R′

m] S1 = [ρ1 7→ R1, . . . , ρn 7→ Rn]
∆ = ρ′1:R, . . . , ρ′m:R, ρ1:R, . . . , ρn:R

γG = ε1 <: ρ′1, . . . , εm <: ρ′m γS = ρ1 <: ρ2, ρ2 <: ρ3, . . . , ρn−1 <: ρn

γ = γG, γS ∆ `rc γ
Γ = ΓG ] ΓS ∆ `vctxt Γ

∆; Γ; γ `stack G : ΓG ∆; Γ; γ `stack S1 : ΓS

`heap (G, S1) : ∆; Γ; γ
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Furthermore, by Term Weakening, our original inversion, and Values Effectless, we know that
∆′; Γ′; γ′; ∅ `rhs v : τ ′. We also know ∅ `epop v. So by SRgn2 and SRgn1, we know ∆′; Γ′; γ′ `rgn
ρ 7→ {x 7→ v} : xρ:τ ′. By Term Weakening, we also have ∆′; Γ′; γ′ `stack G : ΓG and ∆′; Γ′; γ′ `stack
S1 : ΓS . So by Sstk2, we have ∆′; Γ′; γ′ `stack S1S

′
2 : ΓS , xρ:τ ′. From Weakening and our

original inversion, we know ∆′ `con τ ′:T . Because ∆ `vctxt Γ, Weakening and SC9 ensures
∆′ `vctxt Γ′. Similarly, we can show that ∆′ `rc γ′. Putting all this together, SH gives us that
`heap (G′, S′) : ∆′; Γ′; γ′. Furthermore, that means New-Region Preservation Lemma applies, so
γ′ `ord γ, Dom(S1) <: ε. So by Term Weakening and our original inversion, ∆′; Γ′; γ′; (Dom(S1) ∪
ρ `stmt s1. So by SS6, ∆′; Γ′; γ′; Dom(S1) `stmt s1 pop[ρ], which is our last obligation.

Else e is not a value, in which case only dynamic rule DS9 applies. By induction (the right-hand-
side expression part), SS7 (with Term Weakening to show (∆′, ρ:R); (Γ′, xρ:τ ′); (γ′,Dom(S′

1) <:
ρ); (Dom(S′

1) ∪ ρ); τ `stmt s1 and Context Weakening to show ∆′ `con τ :T ), and SP6 (using
∅ `epop s1), we can derive all the results we need.

case SS8: We use almost the same argument as in the previous case when e was a value v. We
use region(ρ) for v and handle(ρ) for τ ′. We know S2 = ∅ directly from SP7. Because the
inversion of the typing judgment uses SS8 and SP7, we cannot use the same argument to show
∆′; Γ′γ′ `rhs v : τ ′ and ∅ `epop region(ρ). However, these both follow immediately: The former
follows from ∆′ = ∆, ρ:R, SR4, ST1, and Context Wellformedness. The latter follows immediately
from SE3. The rest of the argument is the same.

case SS9: The derivation ends with:

∆; Γ; γ; Dom(S1) `rhs e : ∃α:κ . γ1.τ2 ∆ `con τ :T
(∆, ρ:R, α:κ); (Γ, xρ:τ2); (γ, Dom(S1) <: ρ, γ1); (Dom(S1) ∪ ρ); τ `stmt s1

∆; Γ; γ; Dom(S1); τ `stmt ρ:{open [α, xρ] = e; s1} (ρ, α 6∈ Dom(∆), xρ 6∈ Dom(Γ))

Inversion of S2 `spop ρ:{open [α, xρ] = e; s1} (rule SP8) provides S2 `epop e and ∅ `spop s.

If e = v1, then only dynamic rule DS8c applies, so v1 = pack [τ1, v] as τp. By inversion (rule
SR13), we know τp = ∃α:κ . γ1.τ2, ∆; Γ; γ; Dom(S) `rhs v : τ2[τ1/α], γ `ord γ1[regions(τ1)/α], and
∆ `con τ1:κ. Weakening this last fact gives ∆, ρ:R `con τ1:κ. So by Substitution, we have

(∆, ρ:R); (Γ, xρ:τ2)[τ1/α]; (γ, Dom(S) <: ρ, γ1)[regions(τ1)/α];
(Dom(S) ∪ ρ)[regions(τ1)/α]; τ [τ1/α] `stmt s1[τ1/α]

By `heap (G, S) : ∆; Γ; γ and inversion on SH, we know α 6∈ Dom(S), ∆ `rc γ, and ∆ `vctxt Γ.
Furthermore, Context Well-Formedness ensures that ∆ `con τ :T . Hence Useless Substitution lets
us simplify to

(∆, ρ:R); (Γ, xρ:τ2[τ1/α]); (γ, Dom(S) <: ρ, γ1[regions(τ1)/α]);
(Dom(S) ∪ ρ); τ `stmt s1[τ1/α]

Moreover, we already claimed γ `ord γ1[regions(τ1)/α], so an induction on the size of γ can show
γ, Dom(S) <: ρ `ord γ, Dom(S) <: ρ, γ1[regions(τ1)/α]. So by Term Weakening, we have:

(∆, ρ:R); (Γ, xρ:τ2[τ1/α]); (γ, Dom(S) <: ρ); (Dom(S) ∪ ρ); τ `stmt s1[τ1/α]

So by SS7, we can derive: ∆; Γ; γ; ε; τ `stmt ρ:{τ2[τ1/α]xρ = v; s1}
Now, by inversion on S2 `epop e (rule SE6), we have S2 `epop v. So by Substitution, ∅ `spop
s1[τ1/α]. So by SP8, S2 `spop ρ:{τ2[τ1/α]xρ = v; s1}.
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Letting G′ = G, S′ = S1S2 and leaving typing context unchanged, we are done because

(G, S1S2, ρ:{open [α, xρ] = pack [τ1, v] as∃α:κ . γ.τ2; s1})
stmt−→

(G, S1S2, ρ:{τ2[τ1/α]xρ = v; s1}).
Finally, if e is not a value then only dynamic rule DS9 applies. By induction (the right-hand-side
expression part), SS9 (with Term Weakening to show (∆′, ρ:R, α:κ); (Γ′, xρ:τ1); (γ′,Dom(S′

1) <:
ρ, γ1); (Dom(S′

1) ∪ ρ); τ `stmt s1 and Context Weakening to show ∆′ `con τ :T ), and SP8 (using
∅ `epop s1), we can derive all the results we need.

case SR1: The derivation ends with:

γ `ei Dom(S1) ⇒ ρ `ctxt ∆; Γ; γ; Dom(S1)
∆; Γ; γ; Dom(S1) `rhs xρ : Γ(xρ)

The only dynamic rule that applies is DR1. Thus, (G, Sa[ρ 7→ R]Sb, xρ)
rhs−→ (G, Sa[ρ 7→ R]Sb, v)

where R(x) = v and S1S2 = Sa[ρ 7→ R]Sb. From the assumptions, we can use the Lookup Preser-
vation lemma to show ∆; Γ; γ; Dom(S1) `rhs v : τ . Using S2 `epop x and inversion, we know that
S2 = ∅. From the Values Effectless lemma part 3, ∅ `epop v.

case SR2: The derivation ends with:

∆; Γ; γ; Dom(S1) `rhs e : τ@ρ1 γ `ei ρ2 ⇒ ρ1

∆; Γ; γ; Dom(S1) `rhs e : τ@ρ2

From the first premise and the induction hypothesis, if (G, S1S2, e)
rhs−→ (G′, S′

1S
′
2, e

′) then (a)
`heap (G, S′

1S
′
2) : ∆′; Γ′; γ′, (b) ∆′; Γ′; γ′; Dom(S′

1) `rhs e′ : τ@ρ1, and (c) S′
2 `epop e′ where ∆′, Γ′,

and γ′ extend ∆, Γ, and γ respectively and S′
1 extends S1. It remains to show that γ′ `ei ρ2 ⇒ ρ1

for then using SR2 we have ∆′; Γ′; γ′; Dom(S1) `rhs e′ : τ@ρ2. This follows since γ′ extends γ and
γ `ei ρ2 ⇒ ρ1.

cases SR3, SR4: Trivial since (G, S, e) is terminal.

case SR5: The derivation ends with:

∆; Γ; γ; Dom(S1) `rhs ei : τi

∆; Γ; γ; Dom(S1) `rhs (e1, e2) : τ1 × τ2

There are two dynamic rules that might apply depending upon whether or not e1 is a value.

Suppose e1 is not a value. Then we have (G, S1S2, (e1, e2))
rhs−→ (G′, S′

1S
′
2, (e

′
1, e2)) via DR11, and

thus (G, S1S2, e1)
rhs−→ (G′, S′

1S
′
2, e

′
1). By the induction hypothesis, we have ∆′, Γ′, and γ′ which ex-

tend ∆, Γ, and γ respectively such that (a) `heap (G′, S′
1S

′
2) : ∆′; Γ′; γ′, (b) ∆′; Γ′; γ′; Dom(S′

1) `rhs
e′1 : τ1, and (c) S′

2 `epop e′1. By Term Weakening, we then have ∆′; Γ′; γ′; Dom(S′
1) `rhs e2 : τ2

(since Dom(S′
1) = Dom(S1)) and then by SR5 we have ∆′; Γ′; γ′; Dom(S′

1) `rhs (e′1, e2) : τ1 × τ2.
Since S2 `epop (e1, e2), by inversion, we have ∅ `epop e2. Thus, by SE7 S′

2 `epop (e′1, e2).

Suppose e1 is a value v. Then we have (G, S1S2, (v, e2))
rhs−→ (G′, S′

1S
′
2, (v, e′2)) via DR11, and thus

(G, S1S2, e2)
rhs−→ (G′, S′

1S
′
2, e

′
2). By the induction hypothesis, we have ∆′, Γ′, and γ′ which extend ∆,

Γ, and γ respectively such that (a) `heap (G′, S′
1S

′
2) : ∆′; Γ′; γ′, (b) ∆′; Γ′; γ′; Dom(S′

1) `rhs e′2 : τ2,
and (c) S′

2 `epop e′2. By Term Weakening, we then have ∆′; Γ′; γ′; Dom(S′
1) `rhs v : τ1 (since

Dom(S′
1) = Dom(S1)) and then by SR5 we have ∆′; Γ′; γ′; Dom(S1) `rhs (v, e′2) : τ1 × τ2. By the

Values Effectless Lemma, ∅ `epop v and thus using SE8 we have S′
2 `epop (v, e′2).
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case SR6: The derivation ends with:

∆; Γ; γ; Dom(S1) `rhs e : τ1 × τ2

∆; Γ; γ; Dom(S1) `rhs e.i : τi

There are two cases depending upon whether or not e is a value. If e is not a value, then

(G, S1S2, e.i)
rhs−→ (G′, S1S

′
2, e

′.i) via DR11. In this case, the result follows from the premise,
induction hypothesis and SR6.

Suppose e = v. Then (G, S1S2, v.i) rhs−→ (G, S1S2, vi) via DR3 where v = (v1, v2) for some val-
ues v1 and v2. By inversion and the fact that ∆; Γ; γ; Dom(S1) `rhs (v1, v2) : τ1 × τ2, we have
∆; Γ; γ; Dom(S1) `rhs vi : τi. By the Values Effectless Lemma and the fact that S2 `epop (v1, v2),
we know that S2 = ∅. Again, from the Values Effectless Lemma, we then have S2 `epop vi.

case SR7: The derivation ends with:

∆; Γ; γ; Dom(S1) `rhs e : τ@ρ γ `ei Dom(S1) ⇒ ρ

∆; Γ; γ; Dom(S1) `rhs ∗e : τ

There are two cases depending upon whether or not e is a value. If e is not a value, then

(G, S1S2, ∗e)
rhs−→ (G′, S′

1S
′
2, ∗e′) via DR11. In this case, the result follows from the premise, induc-

tion hypothesis, Context Weakening (to show γ′ `ei Dom(S′
1) ⇒ ρ), and SR7.

Suppose e is a value. Then (G, S1S2, ∗e)
rhs−→ (G, S1S2, p) where e = &p. From the Values Effectless

lemma, it is clear that S2 = ∅ and S2 `epop p. From the premise, we have ∆; Γ; γ; Dom(S1) `rhs
&p : τ@ρ. We argue by an inner induction on this derivation that ∆; Γ; γ; Dom(S1) `rhs p : τ . The
derivation must end with either SR2 or SR9. In the former case, the result follows from the inner
induction hypothesis and the SR2 rule. In the latter case, we have:

∆; Γ; γ; Dom(S1) `lhs p : τ@ρ

∆; Γ; γ; Dom(S1) `rhs &p : τ@ρ

Now from Canonical Forms, we know p = xρ.i1.i2. · · · .in for some xρ, and i1, i2, . . . , in. From
the Path Substitution lemma, we know there exists a τ ′ such that Γ(xρ) = τ ′. From the sec-
ond premise of the original conclusion, we have γ `ei Dom(S1) ⇒ ρ. Therefore, from SR1
we have ∆; Γ; γ; Dom(S1) `rhs xρ : τ ′. Then from the Path Substitution lemma, we know that
∆; Γ; γ; Dom(S1) `rhs p : τ@ρ.

case SR8: The derivation ends with:

γ `ei Dom(S1) ⇒ ρ
∆; Γ; γ; Dom(S1) `rhs e1 : handle(ρ) ∆; Γ; γ; Dom(S1) `rhs e2 : τ

∆; Γ; γ; Dom(S1) `rhs new(e1) e2 : τ@ρ

If e1 is not a value, then only dynamic rule DR11 applies. Furthermore, inverting S2 `epop
new(e1) e2 (rule SE7) provides S2 `epop e1 and ∅ `epop e2. So by induction, SR8 (with Term Weak-
ening to show ∆′; Γ′; γ′; Dom(S′

1) `rhs e2 : τ and Constraint Weakening to show γ′ `ei Dom(S′
1) ⇒

ρ), and SE7 (using ∅ `epop e2), we can derive all the results we need.

Similarly, if e1 is a value but e2 is not a value, then only dynamic rule DR11 applies. Furthermore,
inverting S2 `epop new(e1) e2 (rule SE8) provides ∅ `epop e1 and ∅ `epop e2. So by induction, SR8
(with Term Weakening to show ∆′; Γ′; γ′; Dom(S′

1) `rhs e1 : handle(ρ) and Constraint Weakening
to show γ′ `ei Dom(S′

1) ⇒ ρ), and SE8 (using ∅ `epop e2), we can derive all the results we need.
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Finally, if e1 = v1 and e2 = v2, then only dynamic rule DR5 applies. So v1 = region(ρ), S1S2 =

Sa[ρ 7→ R]Sb, and (G, S1S2, e)
rhs−→ (G, Sa[ρ 7→ R[x 7→ v]]Sb,&xρ). Inversion of S2 `epop e provides

(via rule SE8) that S2 `epop v2, so by Values Effectless, S2 = ∅. Let G′ = G, S′
1 = Sa[ρ 7→

R[x 7→ v]]Sb, S′
2 = ∅. ∆′ = ∆, Γ′ = (Γ, xρ 7→ τ), and γ′ = γ. Note that Context Well-formedness

and our original derivation ensure ∆′ `vctxt Γ′, so `ctxt ∆′; Γ′; γ′; Dom(S′
1). Therefore, rules SL1

and SR9 suffice to show ∆′; Γ′; γ; Dom(S′
1) `rhs &xρ : τ . Rules SE1 and SE6 suffice to show

∅ `epop &xρ. All that remains is showing `heap (G, S′
1) : ∆′; Γ′; γ′. This follows from inversion of

`heap (G, S1) : ∆; Γ; γ and a tedious inversion of its ∆; Γ; γ `stack S : ΓS premise, showing that
adding [x 7→ v] to R makes the heap well-typed under Γ′. (For all other heap elements, the original
derivation and Term Weakening suffice.) We omit the uninteresting details.

case SR9: The derivation ends with:

∆; Γ; γ; Dom(S1) `lhs e : τ@ρ

∆; Γ; γ; Dom(S1) `rhs &e1 : τ@ρ

Then the only dynamic rule that applies is DR9. And by inversion of S2 `epop e1 (rule SE6),
S2 `epop e1. So by the induction hypothesis (the left-hand-side part) and SR9, we can derive
∆′; Γ′; γ′; Dom(S′

1) `rhs e′ : τ@ρ. Similarly, the induction hypothesis and SE6 ensure that §′2 `epop
e′.

case SR10: The derivation ends with:

∆; Γ; γ; Dom(S1) `lhs e1 : τ@ρ ∆; Γ; γ; Dom(S1) `rhs e2 : τ γ `ei Dom(S1) ⇒ ρ

∆; Γ; γ; Dom(S1) `rhs e1 = e2 : τ

If e1 is not a value, then only dynamic rule DR9 applies. By inversion of S2 `epop e (rule SE7),
we know S `epop e1 and ∅ `epop e2. So by induction (the left-hand-side part), SR10 (with
Term Weakening and Dom(S′

1) = Dom(S1) to type-check e2 and Context Weakening to ensure
γ `ei Dom(S′

1) ⇒ ρ), and SE7 (using ∅ `epop e2), we can derive all the results we need.

Similarly, if e1 is a value and e2 is not a value, then only DR11 applies. By inversion of S2 `epop e
(rule SE8, we know ∅ `epop e1 and S2 `epop e2. So by induction (the right-hand-side part), SR10
(with Term Weakening and Dom(S′

1) = Dom(S1) to type-check e1 and Context Weakening to ensure
γ `ei Dom(S′

1) ⇒ ρ), and SE8 (using ∅ `epop e1), we can derive all the results we need.

Finally, if e1 = p = xρ.i1. · · · .in and e2 = v, then only rule DR8 applies. Then by inversion of
S2 `epop p = v (rule SE8) and Values Effectless, we know S2 = ∅. So S1 = Sa[ρ 7→ R[x 7→
va]]Sb, which by inversion of the heap typing (using stack and region rules appropriately) ensures
∆; Γ; γ; ∅ `rhs va : τ ′. So by Update Preservation, ∆; Γ; γ; ∅ `rhs update(va, [i1, . . . , in], v) : τ ′.
Hence the the derivation we used to show ∆; Γ; γ; ∅ `rhs va : τ ′ can be “redone” with ∆; Γ; γ; ∅ `rhs
update(va, [i1, . . . , in], v) : τ ′ in its place to type-check the new heap with the same ∆, Γ, and γ. Our
other obligations: ∆; Γ; γ; Dom(S′

1) `rhs v : τ and ∅ `epop v are immediate from earlier conclusions.

case SR11: The derivation ends with:

∆; Γ; γ; Dom(S1); τ `stmt s `ret s

∆; Γ; γ; Dom(S1) `rhs call{s} : τ

If s is terminal, then only dynamic rule DR7 applies, so s = return v for some v. By inversion
of ∆; Γ; γ; Dom(S1); τ `stmt s (rule SS2), ∆; Γ; γ; Dom(S1) `rhs v : τ . By inversion of S2 `epop
call{return v} (rules SE9 and SP2) we know S2 `epop v. So leaving the heap and context
unchanged, we can derive all the results we need.

56



If s is not terminal, then only dynamic rule DR10 applies. Then by induction (the statement part),
Return Preservation, and SR11, we can derive ∆′; Γ′; γ′; Dom(S′

1) `rhs call{s′} : τ . Similarly, by
induction and SE9, we can derive S′

2 `epop call{s′}.

case SR12: The derivation ends with:

∆; Γ; γ; Dom(S1) `rhs e1τ2
ε1→ τ ∆; Γ; γ; Dom(S1) `rhs e2 : τ2 γ `ei Dom(S1) ⇒ ε1

∆; Γ; γ; Dom(S1) `rhs e1(e2) : τ

If e1 or e2 is not a value, the argument is very much like the analogous cases in the proof of case
SR10; we omit the details.

So assume e1 and e2 are values. Then only dynamic rule DR6 applies. So e1 = ρ:(τ ′ xρ)
ε1→ τ = {s}

(where inversion on the typing of e1 (rule SR15 ensures the effect is ε1) and e2 = v). Then we can
derive:

∆; Γ; γ; Dom(S1) `rhs v : τ ′ ∆ `con τ :T
(∆, ρ:R); (Γ, xρ:τ ′); (γ, Dom(S1) <: ρ); (Dom(S1) ∪ ρ); τ `stmt s

∆; Γ; γ; Dom(S1); τ `stmt ρ : {τ ′ xρ = v; s}
`ret s

`ret ρ : {τ ′ xρ = v; s}
∆; Γ; γ; Dom(S1) `rhs call{ρ : {τ ′ xρ = v; s}} : τ

We can discharge all the assumptions:

• ∆; Γ; γ; Dom(S1) `rhs v : τ ′ is from our original inversion.

• ∆ `con τ :T is from our original inversion and Context Well-formedness.

• (∆, ρ:R); (Γ, xρ:τ ′); (γ, Dom(S1) <: ρ); (Dom(S1) ∪ ρ); τ `stmt s is from inversion of
∆; Γ; γ; Dom(S1) `rhs e1 : τ2

ε1→ τ (rule SR15), the assumption γ `ei Dom(S1) ⇒ ε1 from our
original inversion, and Term Weakening.

• `ret s is from inversion of ∆; Γ; γ; Dom(S1) `rhs e1 : τ2
ε1→ τ (rule SR15).

Inversion of S2 `epop e1(e2) provides (using rules SE8 and SE4 that S2 `spop e2 and ∅ `spop s. By
Values Effectless, S2 = ∅. So leaving the heap and context unchanged, we can prove all the desired
results.

case SR13: The derivation ends with:

∆ `con τ1 : κ γ `ord γ1[regions(τ1)/α]
∆; Γ; γ; Dom(S1) `rhs e1 : τ2[τ1/α]

∆; Γ; γ; Dom(S1) `rhs pack [τ1, e1] as∃α:κ . γ1.τ2 : ∃α:κ . γ1.τ2 (α 6∈ Dom(∆), κ 6= T )

The only dynamic rule that applies is DR11. Inversion of S2 `epop e provides (via rule SE6) that
S2 `epop e1. So by induction (the right-hand-side part), Context Weakening (to show ∆′ `con τ1:κ
and γ `ord γ1[regions(τ1)/α]), and SR13, we can show ∆′; Γ′; γ′; Dom(S′

1) `rhs e′ : ∃α:κ . γ1.τ2.
And induction and SE6 shows that S′

2 `epop e′.

case SR14: The derivation ends with:

∆; Γ; γ; Dom(S1) `rhs`rhs e1 : ∀α:κ . γ1.τ2

∆ `con τ1 : κ γ `ord γ1[regions(τ1)/α]

∆; Γ; γ; Dom(S1) `rhs e1〈τ1〉 : τ2[τ1/α]

Inversion on S2 `epop e (rule SE6) provides S2 `epop e1.
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If e1 is not a value then only dynamic rule DR11 applies. By the induction hypothesis, SR14,
Context Weakening (to show ∆′ `con τ1:κ and γ′ `ord γ1[regions(τ1)/α], and SE6, we can derive
all the results that we need.

If e1 is a value, then only DR2 applies, so v = Λα:κ . γ1.f (where inversion on type-checking e1

(rule SR16) requires κ and γ1). Furthermore, the inversion provides:

• (∆, α:κ); Γ; (γ, γ1); Dom(S1) `rhs f : τ2

• ∆, α:κ `rc γ1

• `ctxt ∆; Γ; γ; Dom(S1)

So by Substitution (noting that ∆ `con τ1:κ), we know

∆; Γ[τ1/α]; (γ, γ1)[regions(τ1)/α]; Dom(S1)[regions(τ1)/α] `rhs f [τ1/α] : τ2[τ1/α]

By inversion of `ctxt ∆; Γ; γ; Dom(S1) and Useless Substitution, we can simplify to

∆; Γ; (γ, γ1[regions(τ1)/α]); Dom(S1) `rhs f [τ1/α] : τ2[τ1/α]

And by γ `ord γ1[regions(τ1)/α] we can show γ `ord γ, γ1[regions(τ1)/α], so by Term Weakening,

∆; Γ; γ; Dom(S1) `rhs f [τ1/α] : τ2[τ1/α]

Now, by inversion on S2 `epop e1 (rule SE5), we know S2 `epop f . So by Substitution, S2 `epop
f [τ1/α]. Leaving the heap and typing context unchanged, we are done because e′ = f [τ1/α].

case SR15, SR16, SL1: Trivial because (G, S, e) is terminal

case SL2: The derivation ends with:

∆; Γ; γ; Dom(S1) `rhs e : τ@ρ

∆; Γ; γ; Dom(S1) `lhs e1 : τ@ρ

If e1 = v, then only dynamic rule DL1 applies. That means v = &p, so by inversion (rule SR9),
∆; Γ; γ; Dom(S1) `lhs p : τ@ρ. By inversion of S2 `epop e (two uses of SE6), we know S2 `epop p.
Leaving the heap and context unchanged, we are done.

If e1 is not a value, then only dynamic rule DL3 applies. By inversion of S2 `epop e (rule SE6),
S2 `epop e1. So by the induction hypothesis (the right-hand-side part) and SL9, we can derive
∆′; Γ′; γ′; Dom(S′

1) `rhs e′ : τ@ρ. Similarly, the induction hypothesis and SE6 ensure that S′
2 `epop

e′.

case SL3: The derivation ends with

∆; Γ; γ; Dom(S1) `rhs e1 : (τ1 × τ2)@ρ

∆; Γ; γ; Dom(S1) `lhs e1.i : τi@ρ

Only dynamic rule DL2 can apply. By inversion of S2 `epop e (rule SE6), S2 `epop e1. So by
the induction hypothesis and SL3, we can derive ∆′; Γ′; γ′; Dom(S′

1) `rhs e′ : τ@ρ. Similarly, the
induction hypothesis and SE6 ensure that S′

2 `epop e′.

Lemma 10.16 (Constraint Progress)
Suppose:

1. `heap (G, S) : ∆; Γ; γ
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2. γ `vi ρ1 ⇒ ρ2

3. ρ1 ∈ Dom(S)

Then ρ2 ∈ Dom(S).

Proof:

By induction on the derivation of γ `vi ρ1 ⇒ ρ2.

case SC11: The derivation ends with γ `vi ρ ⇒ ρ (i.e., ρ1 = ρ2 = ρ). From (3), it follows that
ρ ∈ Dom(S).

case SC13: The derivation ends with:

γ `vi ρ1 ⇒ ρ γ `vi ρ ⇒ ρ2

γ `vi ρ1 ⇒ ρ2

By induction on the first premise, we have ρ ∈ Dom(S). Then by induction on the second premise,
we have ρ2 ∈ Dom(S).

case SC12: The derivation ends with:

ρ2 ∈ ε

γ1, ε <: ρ1, γ2 `vi ρ1 ⇒ ρ2

Therefore, γ = γ1, ε <: ρ1, γ2 for some γ1, γ2, and ε. By (1) and inversion of the SH rule, it then
follows that either (a) ε <: ρ1 ∈ γS where the constraints in γS are all of the form ρa <: ρb such that
ρa, ρb ∈ Dom(S), or else (b) ε <: ρ1 ∈ γG where the constraints in γG are all of the form εa <: ρb

and ρb ∈ Dom(G). But since Dom(G) ∩Dom(S) = ∅ and (3), ε <: ρ1 6∈ γG. Therefore, ε <: ρ1 ∈ γS

and we can conclude that ε = ρ2 and ρ2 ∈ Dom(S).

Lemma 10.17 (Canonical Forms)
Suppose `heap (G, S) : ∆; Γ; γ, Dom(S) = ε1 ] ε2, and ∆; Γ; γ; ε1 `rhs v : τ . Then:

1. if τ = int then v = i for some integer i.

2. if τ = τ1
ε→ τ2 then v = ρ:(τ1 xρ)

τ2→ s = {} for some ρ, xρ, and s.

3. if τ = τ1 × τ2 then v = (v1, v2) for some values v1 and v2.

4. if τ = τ@ρ then v = &p for some path p.

5. if τ = handle(ρ) then v = region(ρ).

6. if τ = ∀α:κ . γ.τ , then v = Λα:κ . γ.f for some function f .

7. if τ = ∃α:κ . γ.τ , then v = pack [τ ′, v] as∃α:κ . γ.τ for some τ ′ and v.

Proof:

By the definition of values and inspection of the SR rules.

Lemma 10.18 (Canonical Paths)
Suppose:

1. `heap (G, S) : ∆; Γ; γ
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2. Dom(S) = ε1 ] ε2,

3. γ `ei ε1 ⇒ ρ, and

4. ∆; Γ; γ; ε1 `lhs p : τ@ρ.

Then:

1. p is of the form xρ.i1.i2. · · · .in for some i1, i2, . . . , in where n ≥ 0,

2. S = S1[ρ 7→ R[x 7→ v]]S2 for some S1, S2, R, and v,

3. ∆; Γ; γ; ∅ `rhs v : τ ′ for some τ ′, and

4. ∆; Γ; γ; ∅ `rhs v.i1.i2. · · · .in : τ .

Proof:

By inspection of the SL rules, p must be of the form xρ.i1.i2. · · · .in for some n ≥ 0. From (3)
and inversion of rule SC14, we know that there exists a ρ′ in ε1 such that γ `vi ρ′ ⇒ ρ. From
this fact and assumptions (1) and (2), we can use the Constraint Progress lemma to conclude that
ρ ∈ Dom(S). Therefore, S = S1[ρ 7→ R]S2 for some S1, S2, and R.

Using the Path Substitution lemma, we know that there exists a τ ′ such that Γ(xρ) = τ ′. From
assumption (1) and inversion of the SH rule, we have ∆; Γ; γ `stack S1[ρ 7→ R]S2 : ΓS and that
Γ = ΓG ] ΓS . By induction on the length of S2 using inversion of the SStk2 rule, we can show
that ΓS = ΓS1 ] ΓR ] ΓS2 and that ∆; Γ; γ `rgn ρ 7→ R : ΓR. By induction on the length of
R using inversion of the SRgn2 rule, we can show that R = R1[x 7→ v]R2, ΓR(xρ) = τ ′, and
∆; Γ; γ; ∅ `rhs v : τ ′. Using Weakening, we can conclude that ∆; Γ; γ; ε1 `rhs v : τ ′. From this
and the fact that ∆; Γ; γ; ε1 `lhs p : τ@ρ, we can use the Path Substitution lemma to conclude
∆; Γ; γ; ∅ `rhs v.i1.i2. · · · .in : τ .

Lemma 10.19 (Update Progress)
Suppose

1. ∆; Γ; γ; ∅ `rhs va : τ

2. ∆; Γ; γ; ε `rhs va.in.in−1. · · · .i2.i1 : τ ′

Then update(va, [in, in−1, . . . , i2, i1], vb) = v for some value v.

Proof:

The proof is by induction on n. When n = 0 we have update(va, [], vb) = vb. Suppose the lemma
holds for all values up to n−1. By the Projection lemma, we have va = (v1, v2) and that ∆; Γ; γ; ε `rhs
vin

.in−1. · · · .i2.i1 : τ . So by the induction hypothesis, we have update(vin
, [in−1, . . . , i2, i1], vb) = v

for some value v. Thus, if in = 1 we have update((v1, v2), [1, in−1, . . . , i2, i1], vb) = (v, v2) and if
in = 2 we have update((v1, v2), [2, in−1, . . . , i2, i1], vb) = (v1, v).

Lemma 10.20 (Progress)
Suppose `heap (G, S1S2) : ∆; Γ; γ. Then:

1. If ∆; Γ; γ; Dom(S1); τ `stmt s and S2 `spop s, then either s is terminal (s = v or s = return v

for some v) or there exist G′, S′, s′ such that (G, S1S2, s)
stmt−→ (G′, S′, s′).
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2. If ∆; Γ; γ; Dom(S1) `rhs e : τ and S2 `epop e, then either e = v for some v or there exist

G′, S′, e′ such that (G, S1S2, e)
rhs−→ (G′, S′, e′).

3. If ∆; Γ; γ; Dom(S1) `lhs e : τ and S2 `epop e, then either e = p for some p or there exist

G′, S′, e′ such that (G, S1S2, e)
lhs−→ (G′, S′, e′).

Proof:

By simultaneous induction on the derivations of ∆; Γ; γ; Dom(S1); τ `stmt s, ∆; Γ; γ; Dom(S1) `rhs
e : τ , and ∆; Γ; γ; Dom(S1) `lhs e : τ@ρ. Most of the cases are straightforward applications of
the induction hypotheses or follow from the Canonical Forms lemma. The interesting cases, shown
below, involve situations where we must show that a needed region has not yet been deallocated, or
where we use the “`ret” judgment to ensure that functions eventually return.

case SS6: The derivation ends with:

∆; Γ;Dom(S1) ] ρ; τ `stmt s

∆; Γ; γ; Dom(S1); τ `stmt s pop[ρ]

Using the assumption S2 `spop s pop[ρ] and inversion, we know that S2 = [ρ 7→ R]S′
2 for some

S′
2 and S′

2 `spop s. Therefore, S1S2 = (S1[ρ 7→ R])S′
2 and the induction hypothesis applies

to s. If (G, S1S2, s)
stmt−→ (G, S1S

′
2, s

′), then using DS10, we can derive (G, S1S
′
2, s pop[ρ]) stmt−→

(G′, S1S
′
2, s

′ pop[ρ]). Suppose, therefore, s is terminal. Since S1S2 is of the form S1[ρ 7→ R]S′
2, if we

can show S′
2 is empty we can use DS6 or DS7 to show that (G, S1[ρ 7→ R], s pop[ρ]) stmt−→ (G[ρ 7→

R], S1, s). But since S′
2 `spop s and s is terminal, Values Effectless ensures that S′

2 = ∅.

case SR1: The derivation ends with:

γ `ei Dom(S1) ⇒ ρ `ctxt ∆; Γ; γ; ε1
∆; Γ; γ; Dom(S1) `rhs xρ : Γ(xρ)

It suffices to show that S1S2 = Sa[ρ 7→ R[x 7→ v]]Sb for some Sa, Sb, R, and v, for then rule DR1
applies. This follows from the assumptions and the Canonical Paths lemma.

case SR7: The derivation ends with:

∆; Γ; γDom(S1) `rhs e : τ@ρ γ `ei Dom(S1) ⇒ ρ

∆; Γ; γ; Dom(S1) `rhs ∗e : τ

By the induction hypothesis, e = v for some value v or else (G, S1S2, e)
rhs−→ (G′, S′, e′). In the

latter case, we can use rule DR11 to show (G, S1S2, ∗e)
rhs−→ (G′, S′, ∗e′). So suppose e = v.

Then by the Canonical Forms lemma, v = &p for some path p. Then by rule DR4, we have

(G, S1S2, ∗(&p)) rhs−→ (G, S1S2, p).

case SR10: The derivation ends with:

∆; Γ; γ; Dom(S1) `lhs e1 : τ@ρ ∆; Γ; γ; Dom(S1) `rhs e2 : τ γ `ei Dom(S1) ⇒ ρ

∆; Γ; γ; Dom(S1) `rhs e1 = e2 : τ

By the induction hypothesis either e1 is a path p or else (G, S1S2, e1)
lhs−→ (G′, S′, e′1). In the latter

case, we can use rule DR9 to show (G, S1S2, e1 = e2)
rhs−→ (G′, S′, e′1 = e2). So suppose e1 = p.
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Then using the induction hypothesis, either e2 is a value v2 or else (G, S1S2, e2)
rhs−→ (G′, S′, e′2).

Again, in the latter case we can use rule DR11 to show (G, S1S2, p = e2)
rhs−→ (G′, S′, p = e′2). So

suppose e2 = v2. By the Canonical Paths lemma, we know that p = xρ.i1.i2. · · · .in, S1S2 = Sa[ρ 7→
R[x 7→ v1]]Sb, ∆; Γ; γ; ∅ `rhs v1 : τ ′ for some τ ′, and ∆; Γ; γ; ∅ `rhs v1.i1.i2. · · · .in : τ . Then from
the Update Progress lemma, we have that update(v1, [i1, i2, . . . , in], v2) is defined. Consequently we
can use rule DR8 to show:

(G, S1S2, e1 = e2)
rhs−→ (G, Sa[ρ 7→ R[x 7→ update(v1, [i1, i2, . . . , in], v2)]]Sb, v2)

case SR11: The derivation ends with:

∆; Γ; γ; Dom(S1); τ ` s `ret s

∆; Γ; γ; Dom(S1) ` call{s} : τ

By the induction hypothesis, s is either terminal or else (G, S1S2, s)
stmt−→ (G′, S′, s′). In the latter

case, we can use rule DR10 to show (G, S1S2, call{s})
rhs−→ (G′, S′, call{s′}). So suppose s is

terminal. Then using inversion and `ret s, we can conclude that s must be of the form return v.

Therefore, we can use DR7 to conclude (G, S1S2, call{return v}) rhs−→ (G, S1S2, v).

As usual, Preservation and Progress suffice to prove syntactic type-soundness. In order to allow
(mutually) recursive functions, we state the theorem in terms of a program s executing under an
initial region ρH :

Theorem 10.21 (Soundness) If:

1. `heap (∅, [ρH 7→ R]) : ∆; Γ; γ,

2. `ret s,

3. ∆; Γ; γ; {ρH}; int `stmt s, and

4. s contains no pop statements

then either (G, [ρH 7→ R], s) runs forever or there exist G′, R′ and i such that (G, [ρH 7→ R], s) →∗

(G′, [ρH 7→ R′], return(i))

Proof:

First we notice that part (4) implies (or is just the informal version of) ∅ `spop s. So letting
S1 = [ρH 7→ R] and S2 = ∅, Preservation and Progress apply. By induction on the num-
ber of evaluation steps, using Preservation and Progress at each step (both will apply because
of Preservation), either (G, [ρH 7→ R], s) runs forever or there exists a G′, S′ and i such that
(G, [ρH 7→ R], s) →∗ (G′, S′, return(i)). Furthermore, S′ = S′

1S
′
2 where S′

1 extends (again by in-
duction, since the definition implies transitivity) [ρH 7→ R]. Finally, S′

2 `spop return(i), so S′
2 = ∅.

The definition of extends for stacks yields the desired result.
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