
Ex
�

perience with Processes and Monitors in Mesa 1

Experience with Processes and Monitors in Mesa1

Butler W. Lampson
Xerox
�

 Palo Alto Research Center

David D. Redell
Xerox Business Systems

Abstract

The use of monitors for describing concurrency has been much discussed in the literature. When
monitors are used in real sy� stems of any size, however, a number of problems arise which have
not been adequately dealt with: the semantics of nested monitor calls; the various ways of
defining the meaning of WAIT; priority scheduling; handling of timeouts, aborts and other
exceptional conditions; interactions with process creation and destruction; monitoring large
numbers of small objects. These problems are addressed by the facilities described here for
concurrent programming in Mesa. Experience with several substantial applications gives us some
confidence in the validity of our solutions.

Key Words and Phrases: concurrency, condition variable, deadlock, module, monitor, operating
system, process, synchronization, task

CR Categories: 4.32, 4.35, 5.24

1. Introduction

In early 1977 we began to design the concurrent programming facilities of Pilot, a new operating
system for a personal computer [18]. Pilot is a fairly large program itself (24,000 lines of Mesa
code). In addition, it must support a variety of quite large application programs, ranging from
database management to inter-network message transmission, which are heavy users of
concurrency; our experience with some of these applications is discussed later in the paper. We
intended the new facilities to be used at least for the following purposes:

Local concurrent programming. An 
�

individual application can be implemented as
�

 a tightly
coupled group of synchronized processes to express the concurrency inherent in the
application.

                                                
1 This paper appeared in Communications of the ACM 23, 2 (F� eb. 1980), pp 105-117. An earlier version was
pres� ented at the 7th ACM Symposium on Operating Systems Principles, Pacific Grove, CA, Dec. 1979. This version
w� as created from the published version by scanning and OCR; it may have errors.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
d
�
istributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date

appear, an	 d notice is given that copying is by permission of the Association for Computing Machinery. To copy
ot
 herwise, or to republish, requires a fee and/or specific permission.



Ex
�

perience with Processes and Monitors in Mesa 2

Global resource sharing. Independent applications can run together on the same machine,
cooperatively sharing the resources; in particular, their processes can share the processor.

Replacing interrupts. 
�

A request for software attention to a device can be handled directly
�

 by
waking up an appropriate process, without going through a separate interrupt mechanism (for
example, a forced branch).

Pilot is closely coupled to the Mesa language [17], which is used to write both Pilot itself and the
applications programs it supports. Hence it was natural to design these facilities as part of Mesa;
this makes them easier to use, and also allows the compiler to detect many


 kinds of errors in their
use� . The idea of integrating such facilities into a language is certainly not new; it goes back at
least as far as PL
�

/1 [1]. Furthermore, the invention of monitors by Dijkstra, Hoare, and Brinch
Hansen [3, 5, 8] provided a very attractive framework for reliable concurrent programming.
There followed a number of papers on the integration of concurrency into programming
lang
�

uages, and at least one implementation [4].

We therefore thoug
�

ht that our task would be an easy one: read the literature, compare the
alternatives offered there, and pick the one most suitable for our needs. This expectation proved
t

o be naive. Because of the large size and wide variety of our applications, we had to address a

number of issues which were not clearly resolved in the published work on monitors. The most
notable among�  these are listed below, with the sections in which they are discussed.

(a) Program structure. Mesa has facilities for organizing programs into modules which
communicate through well-defined interfaces. Processes must fi t into this scheme (see
Section 3.1).

(b) Creating processes. A set of processes fixed at compile-time is unacceptable in such a
general-purpose system (See Section 2). Existing proposals for varying the amount of
concurrency were limited to concurrent elaboration of the statements in a block, in the style
of Algol 68 (except for the rather complex mechanism in PL/1).

(c) Creating monitors. A fi xed number of monitors is also unacceptable, since the number of
synchronizers should be a function of the amount of data, but many of the details of existing
proposals depended on a fix� ed association of a monitor with a block of the program text (see
Section 3.2).

(d) WAIT in a nested monitor call. This issue had been (and has continued to be) the source of a
�

considerable amount of confusion, which we had to resolve in an acceptable manner before
we could proceed (see Section 3.1).

(e) Except
�

ions. A re
�

alistic system must have timeouts, and it must have a way to abort a process
(see Section 4.1). Mesa has an UNW

�
IND mechanism for abandoning part of a sequential

computation in an orderly way, and this must interact properly with monitors (see Section
3.3).

(f) Scheduling
�

. The precise semantics of waiting on a condition variable had been discussed [10]
but not ag
�

reed upon, and the reasons for making any particular choice had not been
articulated (see Section 4). No attention had been paid to the interaction between monitors
and priority scheduling of processes (see Section 4.3).



Ex
�

perience with Processes and Monitors in Mesa 3

(g) Input-Output. The details of fitting I/O devices into the framework of monitors and condition
variables had not been fully�  worked out (see Section 4.2).

Some of these points have also been made by Keedy [12], who discusses the usefulness of
monitors in a modern general-purpose mainframe operating system. The Modula language [21]
addresses (b) and (g), but in a more limited context than ours.

Before settling on the monitor scheme described below, we considered other possibilities. We
felt that our first task was to choose either shared memory (that is, monitors) or message passing
as our basic interprocess communication paradigm.

Message passing has been used (without language support) in a number of operating systems; for
a recent proposal to embed messages in a language, see [9]. An analysis of the differences
between such schemes and those based on monitors was made by
�

 Lauer and Needham [14]. They
conclude that, given certain mild restrictions on programming style, the two schemes are duals
under the transformation�

message ������� � !�!
process  � "$#&%('*)+#&,
send/reply  - . /0/*132�4653782:9

Since our work is based on a language whose main tool of program structuring is the procedure,
it wa
�

s considerably easier to use a monitor scheme than to devise a message-passing scheme
properly�  integrated with the type system and control structures of the language.

Within the shared memory
�

 paradigm, we considered the possibility of adopting a simpler
primitive�  synchronization facility  than monitors. Assuming the absence of multiple processors,
the simplest form of mutual ex


clusion appears to be a non-preemptive scheduler; if processes
only yield the processor voluntarily, then mutual exclusion is insured between yield points. In its
simplest form, this approach tends to produce very delicate programs, since the insertion of a
y; ield in a random place can introduce a subtle bug in a previously correct program. This danger
can be alleviated by the addition of a modest amount of “syntactic sugar” to delineate critical
sections within which the processor must not be yielded (for example, pseudo monitors). This
sugared form of non-preemptive scheduling can provide extremely efficient solutions to simple
problems, but was nonetheless rejected for four reasons:�

(1) W
�

hile we were willing to accept an implementation that would not work on multiple
processors, we did not want to embed this restriction in our basic semantics.�

(2) A separate preemptive mechanism is needed any
�

way, since the processor must respond to
time


-critical events (for example, I/O interrupts) for which voluntary process switching is
clearly too sluggish. With preemptive process scheduling, interrupts can be treated as
ordinary process wakeups, which reduces the total amount of machinery needed and
eliminates the awkward situations that tend to occur at the boundary between two scheduling
re< gimes.

(3) The use of non-preemption as mutual ex
�

clusion restricts programming generality within
critical sections; in particular, a procedure that happens to yield the processor cannot be
called. In large systems where modularity is essential, such restrictions are intolerable.



Ex
�

perience with Processes and Monitors in Mesa 4

(4) The Mesa concurrency facilities function in a virtual memory environment. The use of non-
pre� emption as mutual exclusion forbids multiprogramming across page faults, since that
would effectively insert preemptions at arbitrary points in the program.

For mutual exclusion with a preemptive scheduler, it is necessary to introduce explicit locks, and
machinery�  that makes requesting processes wait when a lock is unavailable. We considered
casting our locks as semaphores, but decided that, compared with monitors, they exert too little
structuring discipline on concurrent programs. Semaphores do solve several different problems
with a single mechanism (for example, mutual exclusion, producer/consumer) but we found
similar economies in our implementation of monitors and condition variables (see Section 5.1).

W
�

e have not associated any protection mechanism with processes in Mesa, except what is
implicit in the type system of the language. Since the system supports only one user, we feel that
the considerable protection offered by


 the strong typing of the language is sufficient. This fact
contributes substantially to the low cost of process operations.

2. Processes

Mesa cast
=

s the creation of a new process as a special procedure activation that executes
concurrently with its caller. Mesa allows any > procedure (ex� cept an internal procedure of a
monitor; see Section 3.1) to be invoked in this way, at the caller’s discretion. It is possible to later
retrieve the results returned by<  the procedure. For example, a keyboard input routine might be
invoked as a normal procedure by writing:

buffer  ReadLine[terminal]

but since 
�

ReadLine is likely to wait for input, its caller might wish instead to compute
concurrently:

p?  FORK ReadLine
�

[terminal];
... <concurrent computation> ...
buffer  JOIN p? ;

Here the types are

ReadLine: PROCEDURE [Device] RETURNS [Line];
p? : PROCESS RETURNS [Line

�
];

The rendezvous between the return from ReadLine tha


t terminates the new process and the join
in the old process is provided automatically
�

. ReadLine 
�

is the
�

 root procedure of the new process.�

This scheme has a number of important properties.

(h) It treats a process as a first class value in the language, which can be assigned to a variable or
an array element, passed as a parameter, and in general treated exactly like any other value. A
process value is like a pointer value or a procedure value that refers to a nested procedure, in�
t

hat it can become a dangling reference if the process to which it refers goes away.

(i) The method for passing parameters to a new process and retrieving its results is exactly the
same as the corresponding method for procedures, and is subject to the same strict type



Ex
�

perience with Processes and Monitors in Mesa 5

checking. Just as PROCEDURE is a generator for a family of types (depending on the argument
and result types), so PROCESS is a similar generator, slightly simpler since it depends only on
re< sult types.

(j) No special declaration is needed for a procedure that is invoked as a process. Because of the
@

implementation of procedure calls and other g
�

lobal control transfers in Mesa [13], there is no
extra execution cost for this generality.

(k) The cost of creating and destroying a process is moderate, and the cost in storage is only
twic


e the minimum cost of a procedure instance. It is therefore feasible to program with a
large number of processes, and to vary the number quite rapidly. As Lauer and Needham [14]
point out, there are many�  synchronization problems that have straightforward solutions using
monitors only when obtaining a new process is cheap.

Many patterns of process creation are possible. A common one is to create a det
A

ached process�
that never returns a result to its creator, but instead functions quite independently


. When the root
procedure � p?  of a detached process returns, the process is destroyed without any fuss. The fact that
no one�  intends to wait for a result from p?  can be expressed by executing:

Detach[p? ]

From the point of view of the caller, this is similar to freeing a dynamic variable—it is generally
an error to make any further use of the current value of p? , since the process, running
asynchronously, may complete its work and be destroyed at any time. Of course the design of the
prog� ram may be such that this cannot happen, and in this case the value of p ? can still be useful as
a parameter to the Abort operation (see Section 4.1).

This remark illustrates a general point: Processes offer some new opportunities to create dangling
references. A process variable itself is a kind of pointer, and must not be used after the process is<
destroyed. Furthermore, parameters passed by reference to a process are pointers, and if they
ha
B

ppen to be local variables of a procedure, that procedure must not return until the process is
destroyed. Like most implementation languages, Mesa does not provide any protection against
dangling references, whether connected with processes or not.

The
�

 ordinary Mesa facility  for exception handling uses the ordering established by procedure
calls to control the processing of exceptions. Any block may have an attached exception handler.
The bl
�

ock containing the statement that causes the exception is given the first chance to handle it,
then its enclosing


 block, and so forth until a procedure body is reached. Then the caller of the
procedure is g� iven a chance in the same way. Since the root procedure of a process has no caller,
it must be prepared to handle any
�

 exceptions that can be generated in the process, including
exceptions generated by the procedure itself. If it fails to do so, the resulting error sends control
to the


 debugger, where the identity of the procedure and the exception can easily be determined
by
�

 a programmer. This is not much comfort, however, when a system is in operational use. The
pract� ical consequence is that while any procedure suitable for forking can also be called
sequentially, the converse is not generally true.



Ex
�

perience with Processes and Monitors in Mesa 6

3. Monitors

W
�

hen several processes interact by sharing data, care must be taken to properly synchronize
access to the data. The idea behind monitors is that a proper vehicle for this interaction is one
that unifies


• the sy


nchronization,

• t

he shared data,

• the body


 of code which performs the accesses.

The
�

 data is prot? ected by
�

 a monitor, C and can only be accessed within the body of a monitorC
procedure. ? There are two kinds of monitor procedures: entry procedures, which can be called
from outside the monitor, and 
D

internal procedures, which can only be called from monitor
proc� edures. Processes can only perform operations on the data by calling entry procedures. The
monitor ensures that at most one process is executing a monitor procedure at a time; this process
is sa
�

id to be in the


 monitor. If a process is in the monitor, any other process that calls an entry
procedure will be delay� ed. The monitor procedures are written textually next to each other, and
nex� t to the declaration of the protected data, so that a reader can conveniently survey all the
references to the data.

As long as any order of calling the entry procedures produces meaningful results, no additional
synchronization is needed among the processes sharing the monitor. If a random order is not
acceptable, other provisions must be made in the program outside the monitor. For example, an
unbounded buffer with � Put 

E
and Get procedures imposes no constraints (of course a � Get may�  have

to wait, but this is taken care of within the monitor, as described in the nex


t section). On the
other hand, a tape unit with Reserve, Read, Write, and Release operations requires that each
process ex� ecute a Reserve 

�
first and a 
D

Release 
�

last. A second process ex
�

ecuting a Reserve 
�

will be
delayed by the monitor, but another process doing a Read without a prior Reserve will produce
chaos. Thus monitors do not solve all the problems of concurrent programming; they are
intended, in part, as primitive building blocks for more complex scheduling policies. A
discussion of such policies and how to implement them using monitors is beyond the scope of
this paper.


3.1
F

Monitor modules

I
G
n Mesa the simplest monitor is an instance of a module, C which is the basic unit of global

prog� ram structuring. A Mesa module consists of a collection of procedures and their global data,
and in sequential programming is used to implement a data abstraction. Such a module has
PUBLIC procedures that constitute the external interface to the abstraction, and PRIVATE proce-
dures that are internal to the implementation and cannot be called from outside the module; its
data is normally entirely private. A MONI

H
TOR module differs only slightly. It has three kinds of

procedures: � entry, internal (private), and external (non-monitor procedures). The first two are the
monitor procedures, and execute with the monitor lock held. For example, consider a simple
storage allocator with two entry procedures, Alloc

I
ate and Free, 

J
and an external procedure

Expand t

hat increases the size of a block.



Ex
�

perience with Processes and Monitors in Mesa 7

St
K

orageAllocator: ML ONITOR = BEG
M

IN

avaiN lableStorage: INTEGER:
morO eAvailable: CONDITION:

Allo
P

cate: EQ NTRY PROCEDURE [sizeR : INS TEGER

RETURNS [pT : POINTER] = 
U

BEGIN

UNT
V

IL avaiN lableStorage W sizeR
DO WAI

X
T morO eAvailable ENDLOOP;

p T Y remove chunk of size words & update avaiN lableStorage>Z
EN
Q

D;

Free: ENTRY PROCEDURE [pT : POINTER, � Si
K

ze: INTEGER] = 
U

BEGIN

 <put back chunk of size words & update avaiN lableStorage>;Z
NOT
[

IFY moreAvailable END;

Expand:PUBLIC PROCEDURE [pOlT d: POINTER, � sizeR : INTEGER] 
U

RETURNS [pNT ew: POINTER] = 
U

BEGIN

pNT ew  Allo
P

cate[sizeR ];
U

<copy\  contents from old block to new block>;
Fr
]

ee[pOlT d] 
U

EN
Q

D;

END.

A Mesa module is normally used to package a collection of related procedures and protect their
private data from ex� ternal access. In order to avoid introducing a new lexical structuring
mechanism, we chose LO make the scope of a monitor identical to a module. Sometimes,
however, procedures t
B

hat belong in an abstraction do not need access to any shared data, and
hence need not be entry
B

 procedures of the monitor; these must be distinguished somehow.

For example, two asynchronous processes clearly must not execute in the Allocate or Free
procedures at the same time; hence, these must be entry�  procedures. On the other hand, it is
unnecessary�  to hold the monitor lock during the copy in Expand, even though this procedure
log
�

ically belongs in the storage allocator module; it is thus written as an external procedure. A
more complex�  monitor might also have internal procedures, which are used to structure its
computations, but which are inaccessible from outside the monitor. These do not acquire and
rel< ease the lock on call and return, since they can only be called when the lock is already held.

If no suitable block is available, Allocate makes its caller wait on the condition variable�
moreAvailable. Free C does a NOTIFY to this variable whenever a new block becomes available;
this c


auses some process waiting on the variable to resume execution (see Section 4 for details).
The WAIT releases the monitor lock, which is reacquired when the waiting process reenters the
monitor. I� f a WAIT is done in an internal procedure, it still releases the lock. If, however, the
monitor calls some other procedure which is outside the monitor module, the lock is not released,
even if the other procedure is in (or calls) another monitor and ends up doing a WAIT. The same
rule is adopted in Concurrent Pascal [< 4].

To understand the reasons for this, consider the form of a correctness argument for a program
using�  a monitor. The basic idea is that the monitor maintains an invariant that is alway


s true of

its data, except when some process is executing in the monitor. Whenever control leaves the
monitor, this invariant must be established. In return, whenever control enters the monitor the
invariant can be assumed. Thus an entry
�

 procedure must establish the invariant before returning,
and a monitor procedure must establish it before doing a WAIT. The invariant can be assumed at



Ex
�

perience with Processes and Monitors in Mesa 8

t

he start of an entry procedure, and after each WAIT. Under these conditions, the monitor lock

ensures that no one can enter the monitor when the invariant is false. Now, if the lock were to be
rel< eased on a WAIT done in another monitor which happens to be called from this one, the
invariant would have to be established before making the call which leads to the WA

^
IT. Since in

general there is no way to know whether a call outside the monitor will lead to a WA
^

IT, the
invariant would have to be established before every such call. The result would be to make
calling such procedures hopelessly cumbersome.

An a
�

lternative solution is to allow an outside block to be


 written inside a monitor, with the
following meaning: on entry to the block the lock is released (and hence the invariant must be
established); within the block the protected data is inaccessible; on leaving the block the lock is
reacquired. This scheme allows the state represented by the execution environment of the
monitor to be maintained during the outside call, and imposes a minimal burden on the
prog� rammer: to establish the invariant before making the call. This mechanism would be easy to
add to Mesa; we have left it out because we have not seen convincing examples in which it
significantly simplifies the program.

If an entry procedure generates an exception in the usual way, the result will be a call on the
exception handler from within the monitor, so that the lock will not be released. In particular, this
means that the ex� ception handler must carefully avoid invoking that same monitor, or a deadlock
will result. To avoid this restriction, the entry procedure can restore the invariant and then
execute

RETURN WITH ERROR[(arguments)]

which returns from the entry procedure, thus releasing the lock, and then generates the exception.

3.2
F

Monitors and deadlock

There are three patterns of pairwise deadlock that can occur using monitors. In practice, of
course, deadlocks often involve more than two processes, in which case the actual patterns
observed tend to be more complicated; conversely, it is also possible for a single process to
deadlock with itself (for example, if an entry procedure is recursive).

The si
�

mplest form of deadlock takes place inside a single monitor when two processes do a WA
^

IT,
each expecting to be awakened by the other. This represents a localized bug in the monitor code
and is usually easy to locate and correct.

A more subtle form of deadlock can occur if there is a cyclic calling pattern between two
monitors. Thus if monitor M calls an entry procedure in N, 

_
and N 

_
calls one in M, each will wait

for the other to release the monitor lock. This kind of deadlock is made neither more nor less
D

serious by the monitor mechanism. It arises whenever such cyclic dependencies are allowed to
occur in a program, and can be avoided in a number of ways. The simplest is to impose a partial
ordering on resources such that all the resources simultaneously possessed by any process are
totally


 ordered, and insist that if resource r precedes 5 i� n the ordering, then r cannot be acquired
la
�

ter than 5. 
`

Whe
�

n the resources are monitors, this reduces to the simple rule that mutually
recursive monitors must be avoided. Concurrent Pascal [4] makes this check at compile time;
Mesa cannot do so because it has procedure variables.
=



Ex
�

perience with Processes and Monitors in Mesa 9

A more serious problem arises if M calls N, 
_

and N 
_

then waits for a condition which can only


occur when another process enters N 
_

throug


h M and makes the condition true. In this situation, N
_

will be unlocked, since the WAIT occurred there, but M 
a

will remain locked during the WAIT in N.
_

This kind of two level data abstraction must be handled with some care. A straightforward
solution using standard monitors is to break M 

a
into two pa
�

rts: a monitor M’
a

 and an ordinary
module 0 which implements the abstraction defined by M, and calls M’ for access to the shared
data. The call on N 

_
must be done from 0 rather than from within M’.

Moni
=

tors, like any other interprocess communication mechanism, are a tool for imple
D

menting
synchronization constraints chosen by the programmer. It is unreasonable to blame the tool when
poorly�  chosen constraints lead to deadlock. What is crucial, however, is that the tool make the
prog� ram structure as understandable as possible, while not restricting the programmer too much
in his choice of constraints (for example, by forcing a monitor lock to be held much longer than
ne� cessary). To some extent, these two goals tend to conflict; the Mesa concurrency facilities
attempt to strike a reasonable balance and provide an environment in which the conscientious
prog� rammer can avoid deadlock reasonably easily. Our experience in this area is reported in
Section 6.

3.3
F

Monitored objects

Often we wish to have a collection of shared data objects, each one representing an instance of
some abstract object such as a file, a storage volume, a virtual circuit, or a database view, and we
wish to add objects to the collection and delete them dynamically. In a sequential program this is
done with standard techniques for allocating and freeing storage. In a concurrent program,
however, provision must also be made for serializing access to each object. The straightforward
way is to use a single monitor for accessing all instances of the object, and we recommend this
approach whenever possible. If the objects function independently of each other for the most
part, however, the sing� le monitor drastically reduces the maximum concurrency that can be
obtained. In this case, what we want is to give each object its own monitor; all these monitors
will share the same code, since all the instances of the abstract object share the same code, but
each object will have its own lock.

One way to achieve this result is to make multiple instances of the monitor module. Mesa makes
this quite easy


, and it is the next recommended approach. However, the data associated with a
module instance includes information that the Mesa system uses to support program linking and
code swapping, and there is some cost in duplicating this information. Furthermore, module
instances are allocated by
�

 the system; hence the program cannot exercise the fme control over
allocation strategies which is possible for ordinary Mesa data objects. We have therefore
introduced a new ty
�

pe constructor called a monitored record, C which is exactly like an ordinary
record, except that it includes a monitor lock and is intended to be used as the protected data of a
monitor.

I
G
n writing the code for such a monitor, the programmer must specify how to access the monitored

record, which might be embedded in some larger data structure passed as a parameter to the entry
procedures. This is done with a �

LOCKS clause which is written at the beginning of the module:

MONITOR LOCKS file
b

USING file
b

: POINTER TO FileData;



Ex
�

perience with Processes and Monitors in Mesa 10

if the FileData is the protected data. An arbitrary expression can appear in the LOCKS clause; for
instance, LOCKS file.buffers

b
[currentPage] might be appropriate if the protected data is one of the

buffers in an array
�

 which is part of the file
b

. Every
c

 entry procedure of this monitor, and every
internal procedure that does a WAIT, must have access to a file, so that it can acquire and release
the lock upon entry


 or around a WAIT. This can be accomplished in two ways: the file
b

 may�  be a
global variable of the module, or it may be a parameter to every such procedure. In the latter case,
we have effectively created a separate monitor for each object, without limiting the program’s
freedom
D

 to arrange access paths and storage allocation as it likes.

Unfortunately
d

, the type system of Mesa is not strong enough to make this construction
completely safe. If the value of file

b
 i
�
s changed within an entry procedure, for example, chaos will

result, since the return from this procedure will release not the lock which was acquired during
the call, but some other lock instead. I


n this example we can insist that file
b

 be read-only
�

, but with
another level of indirection aliasing can occur and such a restriction cannot be enforced. In
practice this lack of safety�  has not been a problem.

3.4
F

Abandoning a computation

Suppose that a procedure P1 has called another procedure P2, e which in turn has called P3 and so
forth until the current procedure is Pnf . If  Pnf  generates an exception which is eventually handled
by
�

 P
E

1 (because P
E

2 ... P
E

nf  do not provide handlers), Mesa allows the exception handler in P
E

1 to


abandon the portion of the computation being done in P2 ... Pnf  and continue execution in P1.
W
�

hen this happens, a distinguished exception called UNWIND is first generated, and each of P
E

2 ...
Pnf  is given a chance to handle it and do any necessary cleanup before its activation is destroyed.

This feature of Mesa is not part of the concurrency facilities, but it does interact with those
facilities in the following
D

 way. If one of the procedures being abandoned, say P
E

i, e i
�
s an entry

procedure, then the invariant must be restored and the monitor lock released before � Pi is
destroyed. Thus if the logic of the program allows an UNWIND, the programmer must supply a
suitable handler in Pi to restore the invariant; Mesa will automatically supply the code to release
the lock. I


f the programmer fails to supply an UNWIND handler for an entry procedure, the lock is
not g automatically released, but remains set; the cause of the resulting deadlock is not hard to find.

4. Condition variables

I
G
n this section we discuss the precise semantics of WAIT and other details associated with

condition variables. Hoare’s definition of monitors [8] requires that a process waiting on a
condition variable must run immediately when another process signals h that variable, and that the


signaling process in turn runs as soon as the waiter leaves the monitor. This definition allows the
waiter to assume the truth of some predicate stronger than the monitor invariant (which the
signaler must of course establish), but it requires several additional process switches whenever a
process continues after a �

WAIT. It also requires that the signaling mechanism be perfectly reliable.

Mesa takes a different view: When one process establishes a condition for which some other
proc� ess may be waiting, it notifieg s the corresponding


 condition variable. A NOTIFY is regarded as

a hint 
i

to a waiting


 process; it causes execution of some process waiting on the condition to
resume at some convenient future time. W< hen the waiting process resumes, it will reacquire the



Ex
�

perience with Processes and Monitors in Mesa 11

monitor lock. There is no guarantee that some other process will not enter the monitor before the
waiting process. Hence nothing more than the monitor invariant may be assumed after a WA

^
IT,

and the waiter must reevaluate the situation each time it resumes. The proper pattern of code for
waiting is therefore:

WHILE NOT
j  <OK to proceed> DO

k  WAIT c ENDL
l

OOP.

This arrangement results in an extra evaluation of the <OK to proceed> predicate after a wait,
compared to Hoare’s monitors, in which the code is:

IF NOT
j  <OK to proceed> TH

m
EN WA

^
IT c.

In return, however, there are no extra process switches, and indeed no constraints at all on when
the


 waiting process must run after a NOTIFY. In fact, it is perfectly all right to run the waiting
process even i� f there is no NOTIFY, although this is presumably pointless if a NOTIFY is done
whenever an interesting change is made to the protected data.

I
G
t is possible that such a laissez-faire attitude to scheduling monitor accesses will lead to

unfairness and even starvation. We do not think this is a leg� itimate cause for concern, since in a
properly�  designed system there should typically be no processes waiting for a monitor lock. As
Hoare, Brinch Hansen, Keedy, and others have pointed out, the low level scheduling mechanism
provided by�  monitor locks should not be used to implement high level scheduling decisions
within a system (for example, about which process should get a printer next). High level
scheduling should be done by taking account of the specific characteristics of the resource being
scheduled (for example, whether the right kind of paper is in the printer). Such a scheduler will
delay its client processes on condition variables after recording information about their
requirements, make its decisions based on this information, and notify<  the proper conditions. In
such a design the data protected by a monitor is never a bottleneck.

The verification rules for Mesa monitors are thus extremely simple: The monitor invariant must
be established just before a return from an entry
�

 procedure or a WAIT, and it may be assumed at
t

he start of an entry procedure and just after a WA

^
IT. Since awakened waiters do not run

immediately, the predicate established before a NOT
j

IFY cannot be assumed after the
corresponding WAIT, but since the waiter tests explicitly for <OK to proceed>, verification is
actually made simpler and more localized.

Another consequence of Mesa’s treatment of 
�

NOT
j

IFY as a hint is that many applications do not
trouble to determine whether the ex


act condition needed by a waiter has been established.
Instead, they choose a very cheap predicate which implies the exact condition (for example, some
change has occurred), and NOTIFY a covering condition variable. Any waiting process is then
responsible for determining whether the exact condition holds; if not, it simply waits again. For
example, a process may need to wait until a particular object in a set changes state. A single
condition covers the entire set, and a process changing any of the objects broadcasts to this
condition (see Section 4.1). The information about exactly which objects are currently of interest
is implic
�

it in the states of the waiting processes, rather than having to be represented explicitly in
a shared data structure. This is an attractive way to decouple the detailed design of two processes:
i
�
t is feasible because the cost of waking up a process is small.



Ex
�

perience with Processes and Monitors in Mesa 12

4.1Alternatives to NOT
j

IFY

With this rule
�

 it is easy to add three additional ways to resume a waiting process:

Timeout. Assoc
�

iated with a condition variable is a timeout interval t. A process which has been
�

waiting for time t will resume regardless of whether the condition has been notified. Presumably
in most c
�

ases it will check the time and take some recovery action before waiting again. The
original design for timeouts raised an exception if the timeout occurred; it was changed because
many users simply wanted to retry on a timeout, and objected to the cost and coding complexity
of handling the exception. This decision could certainly go either way.

Abort. A process may be aborted at any time by executing Abort[p? ]. The effect is that the next
time


 the process waits, or if it is waiting now, it will resume immediately and the Aborted
I

exception will occur. This mechanism allows one process to gently prod another, generally to
suggest that it should clean up and terminate. The aborted process is, however, free to do
arbitrary computations, or indeed to ignore the abort entirely.

Broadcast. Instead of doing a NOT
j

IFY to a condition, a process may do a BROADCAST, which
causes all > the processes waiting


 on the condition to resume, instead of simply one of them. Since

a NOTIFY is just a hint, it is always correct to use BROADCAST. It is better to use NOT
j

IFY if there
will typically be several processes waiting on the condition, and it is known that any waiting
process can respond properly� . On the other hand, there are times when a BROADCAST is correct
and a NOTIFY is not; the alert reader may have noticed a problem with the example program in
Section 3.1, which can be solved by replacing the NOT

j
IFY with a BROADCAST.

None of these mechanisms affects the proof rule for monitors at all. Each provides a way
@

 to
attract the attention of a waiting process at an appropriate time.

Note that there is no way
@

 to stop a runaway process. This reflects the fact that Mesa processes are
cooperative. Many aspects of the design would not be appropriate in a competitive environment
such as a general-purpose timesharing system.

4.2Naked NOTIFY

Communication with input/output devices is handled by monitors and condition variables much
like communication among
�

 processes. There is typically a shared data structure, whose details are
determined by the hardware, for passing commands to the device and returning status
information. Since it is not possible for the device to wait on a monitor lock, the update
�

operations on this structure must be designed so that the single word atomic read and write
operations provided by the memory are sufficient to make them atomic. When the device needs
attention, it can NOTIFY a condition variable to wake up a waiting process (that is, the interrupt
handler); since the device does not actually acquire the monitor lock, its NOTIFY is called a nakedg
NOTIFY. The device finds the address of the condition variable in a ftxed memory location.

There is one complication associated with a naked NOTIFY: Since the notification is not protected
by
�

 a monitor lock, there can be a race. It is possible for a process to be in the monitor, find the
<OK to proceed> predicate to be FA

n
LSE (that is, the device does not need attention), and be about

to do a 


WA
^

IT, when the device updates the shared data and does its NOTIFY. The WAIT will then be
done and the NOTIFY from the device will be lost. With ordinary processes, this cannot happen,



Ex
�

perience with Processes and Monitors in Mesa 13

since the monitor lock ensures that one process cannot be testing the predicate and preparing to
WAIT, while another is changing the value of <OK to proceed> and doing the NOTIFY. The
problem is avoided by�  providing the familiar wakeup-waiting switch [19] in a condition variable,
thus turning


 it into a binary semaphore [8]. This switch is needed only for condition variables
that are notified by


 devices.

W
�

e briefly considered a design in which devices would wait on and acquire the monitor lock,
exactly like ordinary Mesa processes; this design is attractive because it avoids both the
anomalies just discussed. However, there is a serious problem with any kind of mutual exclusion
between two processes which run on processors of substantially
�

 different speeds: The faster
process may�  have to wait for the slower one. The worst-case response time of the faster process
therefore cannot be less than the time the slower one needs to finish its critical section. Althoug


h
one can get higher throughput from the faster processor than from the slower one, one cannot get
better worst-case real time performance. We consider this a fundamental deficiency
�

.

It therefore seemed best to avoid any mutual exclusion (except for that provided by the atomic
memory�  read and write operations) between Mesa code and device hardware and microcode.
Their relationship is easily cast into a producer-consumer form, and this can be implemented,
using�  linked lists or arrays, with only the memory’s mutual exclusion. Only a small amount of
Mesa code must handle device data structures without the protection of a monitor. Clearly
=

 a
change of models must occur at some point between a disk head and an application program; we
see no good reason why it should not happen within Mesa code, although it should certainly be
tig


htly encapsulated.

4. Priorities

I
G
n some applications it is desirable to use a priority scheduling discipline for allocating the

proc� essor(s) to processes which are not waiting. Unless care is taken, the ordering implied by the
assignment of priorities can be subverted by monitors. Suppose there are three priority levels (3
highest, 1 lowest), and three processes P1, Pe 2, e and P3, e one running at each level. Let P1 and P3
communicate using a monitor M. Now consider the following

@
 sequence of events:

1. P
E

1 enters M.
a

2. P1 is preempted by P2.
3.
F

 P
E

2 is preempted by P
E

3.
4. P3 tries to enter the monitor, and waits for the lock.
5. P2 runs again, and can effectively prevent P3 from running, contrary to the purpose of the

prioritie� s.

A simple way to avoid this situation is to associate with each monitor the priority of the highest
pri� ority process which ever enters that monitor. Then whenever a process enters a monitor, its
priority�  is temporarily increased to the monitor’s priority. Modula solves the problem in an even
simpler way—interrupts are disabled on entry to M, thus effectively giving the process the
hig
B

hest possible priority, as well as supplying the monitor lock for M
a

. This approach fails if a
pag� e fault can occur while executing in M.

The mechanism is not free, and whether or not it is needed depends on the application. F
�

or
instance, if only processes with adjacent priorities share a monitor, the problem described above



Ex
�

perience with Processes and Monitors in Mesa 14

cannot occur. Even if this is not the case, the problem may occur rarely, and absolute
enforcement of the priority scheduling may not be important.

5. Implementation

The implementation of processes and monitors is split more or less equally among the Mesa
compiler, the runtime package, and the underlying machine. The compiler recognizes the various
syntactic constructs and generates appropriate code, including implicit calls on built-in (that is,
known to the compiler) support procedures. The runtime implements the less heavily used
operations, such as process creation and destruction. The machine directly implements the more
heavily used features, such as process scheduling and monitor entry/exit.

Note that it was primarily
@

 frequency of use, rather than cleanliness of abstraction, that motivated
our division of labor between processor and software. Nonetheless, the split did turn out to be a
fairly clean layering, in which the birth and death of processes are implemented on top of
monitors and process scheduling� .

5.1
`

The processor

The ex
�

istence of a process is normally represented only by its stack of procedure activation
records or frames, 

b
plus a small (10-by� te) description called a ProcessState. Frames are allocated

from a frame heap 
b

by
�

 a microcoded allocator. They come in a range of sizes that differ by 20
percent to 30 percent; there is a separate free list for each siz� e up to a few hundred bytes (about
15 sizes). Allocating and freeing frames are thus very fast, except when more frames of a given
size are needed. Because all frames come from the heap, there is no need to preplan the stack
space needed by a process. When a frame of a given size is needed but not available, there is a
frame
b

 fault, and the fault handler allocates more frames in virtual memory. Resident procedures
ha
B

ve a private frame heap that is replenished by seizing real memory from the virtual memory
manager.

The 
�

Proc
E

essStates are kept in a fixed table known to the processor; the size of this table
determines the maximum number of processes. At any given time, a ProcessState is on exactly
one queue. There are four kinds of queues:

Ready queue
�

. There is one ready
�

 queue, containing all processes that are ready to run.

Monitor lock queue. Whe
�

n a process attempts to enter a locked monitor, it is moved from the
ready<  queue to a queue associated with the monitor lock.

Condition variable queue. W
�

hen a process executes a WA
^

IT, it is moved from the ready queue to
a queue associated with the condition variable.

Fault queue
J

. A fault can make a process temporarily
�

 unable to run; such a process is moved from
the ready


 queue to a fault queue, and a fault handling process is notified.



Ex
�

perience with Processes and Monitors in Mesa 15

Queue cell

Proc
o

essState Proc
o

essState Proc
o

essState

Head Tail

Figure 1: A process queue

Queues are kept sorted by process priority. The implementation of queues is a simple one way
circular list, with the queue cell pointing to the tail of the queue (see Figure 1). This compact
structure allows rapid access to both the head and the tail of the queue. Insertion at the tail and
removal at the head are quick and easy< ; more general insertion and deletion involve scanning
some fraction of the queue. The queues are usually short enough that this is not a problem. Only
the ready


 queue grows to a substantial size during normal operation, and its patterns of insertions
and deletions are such that queue scanning overhead is small.

The queue cell of the ready queue is kept in a fixed location known to the processor, whose
fundamental task is to alway
D

s execute the next instruction of the highest priority ready process.
To this end, a check is made before each instruction, and a process switch is done if necessary
�

. In
pa� rticular, this is the mechanism by which interrupts are serviced. The machine thus implements
a simple priority scheduler, which is preemptive between priorities and FI

n
FO within a given

priority� .

Queues other than the ready list are passed to the processor by software as operands of
instructions, or throug
�

h a trap vector in the case of fault queues. The queue cells are passed by
reference, since in general they must be updated (that is, the identity of the tail may change.)
Monitor locks and condition variables are implemented as small records containing
=

 their
associated queue cells plus a small amount of extra information: in a monitor lock, the actual
loc
�

k; in a condition variable, the timeout interval and the wakeup-waiting switch.

At a fix
�

ed interval (about 20 times per second) the processor scans the table of Proc
E

essStates and
notifies any waiting processes whose timeout intervals have expired. This special NOTIFY is
tricky


 because the processor does not know the location of the condition variables on which such
processes are waiting� , and hence cannot update the queue cells. This problem is solved by
leaving the queue cells out of date, but marking the processes in such a way that the next normal
usag� e of the queue cells will notice the situation and update them appropriately.

There is no provision for time-slicing in the current implementation, but it could easily be added,
since it has no effect on the semantics of processes.



Ex
�

perience with Processes and Monitors in Mesa 16

5.2
`

The runtime support package

The Process module of the Mesa runtime package does creation and deletion of processes. This
module is written (in Mesa) as a monitor, using�  the underlying synchronization machinery of the
processor to coordinate the implementation of �

FORK and JOI
p

N as the  built-in entry procedures
Process.Fork  
E

and Process.Joi
E

n, respectively< . The unused Proc
E

essStates are treated as essentially
normal processes which are all waiting on a condition variable called rebirth. A call of
Process.Fork performs appropriate “brain surg� ery”  on the first process in the queue and then
notifie� s rebirth to bring


 the process to life: Process.Joi

E
n synchronizes with the dying process and

retrieves the results. The (implicitly invoked) procedure Process.End synchronizes the dying
proc� ess with the joining process and then commits suicide by waiting on rebirth. An e

�
xplicit call

on Process.Detach marks the process so that when it later calls Process.End, it will simply
destroy itself immediately.

The operations 
�

Process.Abort 
E

and Process.Y
E

ield are provided to allow special handling of
processes that wait too long�  and compute too long, respectively. Both adjust the states of the
appropriate queues, using the machine’s standard queueing mechanisms. Utility routines are also
provided by�  the runtime for such operations as setting a condition variable timeout and setting a
process priority� .

5.3
`

The compiler

The compiler recognizes the syntactic constructs for processes and monitors and emits the
appropriate code (for example, a MONITORENTRY instruction at the start of each entry procedure,
an implicit call of Process.Fork for each FORK). The compiler also performs special static checks
to help avoid certain frequently


 encountered errors. For example, use of WA
^

IT in an external
procedure i� s flagged as an error, as is a direct call from an external procedure to an internal one.
Because of the power of the underlying Mesa control structure primitives, and the care with
which concurrency was integrated into the language, the introduction of processes and monitors
into Mesa resulted in remarkably little upheaval inside the compiler.

5.4
`

Performance

Me
=

sa’s concurrent programming facilities allow the intrinsic parallelism of application programs
to be represented naturally


; the hope is that well structured programs with high global efficiency
will result. At the same time, these facilities have nontrivial local costs in storage and/or
execution time when compared with similar sequential constructs; it is important to minimize
the


se costs, so that the facilities can be applied to a finer grain of concurrency. This section
summarizes the costs of processes and monitors relative to other basic Mesa constructs, such as
simple statements, procedures, and modules. Of course, the relative efficiency of an arbitrary
concurrent program and an equivalent sequential one cannot be determined from these numbers
alone; the intent is simply to provide an indication of the relative costs of various local
constructs.

Storage costs fall naturally into data and program storage (both of which reside in swappable
virtua� l memory unless otherwise indicated). The minimum cost for the existence of a Mesa
module is 8 by� tes of data and 2 bytes of code. Changing the module to a monitor adds 2 bytes of
data and 2 bytes of code. The prime component of a module is a set of procedures, each of which



Ex
�

perience with Processes and Monitors in Mesa 17

requires a minimum of an 8-byte activation record and 2 bytes of code. Changing a normal
procedure to a monitor entry�  procedure leaves the size of the activation record unchanged, and
adds 8 bytes of code. All of these costs are small compared with the program and data storage
actually needed by typical modules and procedures. The other cost specific to monitors is space
for condition variables; each condition variable occupies 4 by
D

tes of data storage, while WAIT and
NOTIFY require 12 bytes and 3 bytes of code, respectively.

The data storage overhead for a process is 10 bytes of resident storage for its ProcessState, plus�
the swappable storag


e for its stack of procedure activation records. The process itself contains no
extra code, but the code for the FORK and JOI

p
N which create and delete it together occupy 13

by
�

tes, as compared with 3 bytes for a normal procedure call and return. The FO
n

RK/
q
JOIN sequence

also uses 2 data bytes to store the process value. In summary:

Space 
�

(bytes)
Construct data code

module� 8 2
procedure� 8 2
call + return - 3
monitor� 10 4
entry procedure 8 10
FORK+JOIN 2 13
process� 10 0
condition variable 4
WAIT - 12
NOTIFY - 3

F
r

or measuring execution times we define a unit called a tick: the


 time required to execute a
simple instruction (for example, on a “one MIP” machine, one tick would be one microsecond).
A tic
�

k is arbitrarily set at one-fourth of the time needed to execute the simple statement “a>  b +
c”  (that is, two loads, an add, and a store). One interesting number against which to compare the
concurrency facilities is the cost of a normal procedure call (and its associated return), which
takes 30 ticks if there are no arg


uments or results.

The cost of calling and returning from a monitor entry procedure is 50 ticks, about 70 percent
m� ore than an ordinary call and return. In practice, the percentage increase is somewhat lower,
since typical procedures pass arguments and return results, at a cost of 24 ticks per item. A
process switch takes 60 ticks; this includes the queue manipulations and all the state saving�  and
restoring< . The speed of WAIT and NOT

j
IFY depends somewhat on the number and priorities of the

processes involved, but representative fig� ures are 15 ticks for a WAIT and 6 ticks for a NOT
j

IFY.
Finally, the minimum cost of a FORK/ 

q
JOI
p

N pair is 1,100 ticks, or about 38 times that of a
procedure call. To summariz� e:



Ex
�

perience with Processes and Monitors in Mesa 18

Construct Time (ticks)

simple instruction 1
call + return 30
monitor call + return 50
process switch� 60
WAIT 15
NOTIFY, no one waiting 4
NOTIFY, process waiting 9
FORK+JOI

p
N 1,100

On the basis of these performance figures, we feel that our implementation has met our efficiency
goals, with the possible exception of FORK and JOI

p
N. The decision to implement these two

language constructs in software rather than in the underlying machine is the main reason for their
somewhat lackluster performance. Nevertheless, we still regard this decision as a sound one,
since these two facilities are considerably more complex than the basic synchronization
m� echanism, and are used much less frequently (especially JOI

p
N, since the detached processes

discussed in Section 2 have turned out to be quite popular).

6. Applications

I
G
n this section we describe the way in which processes and monitors are used by three substantial

Mesa programs: an operating system, a calendar system using replicated databases, and an
inte
�

rnetwork gateway.

6.1Pilot: A general-purpose operating system

Pilot is a Mesa-based operating
o

 system [18] which runs on a large personal computer. It was
designed jointly with the new language features and makes heavy use of them. Pilot has several
autonomous processes of its own, and can be called by any number of client processes of any
priority� , in a fully asynchronous manner. Exploiting this potential concurrency requires extensive
use of monitors within Pilot; the roug� hly 75 program modules contain nearly 40 separate
monitors.�

The Pilot implementation includes about 15 dedicated processes (the ex
�

act number depends on
t

he hardware configuration); most of these are event handlers for three classes of events:

I/O inte
s

rrupts. Naked notifies as discussed in Section 4.2.
@

Process faults. Page faults and other such events, signaled via fault queues as discussed in
Section 5.1. Both client code and the higher levels of Pilot, including some of the dedicated
processes, can cause such faul� ts.

Internal exceptions. Missing entries in resident databases, for example, cause an appropriate high
level “helper” process to wake up and retrieve the needed data from secondary
�

 storage.

There are also a few “daemon” processes, which awaken periodically and perform housekeeping
chores (for example, swap out unreferenced pages). Essentially all of Pilot’s internal processes



Ex
�

perience with Processes and Monitors in Mesa 19

and monitors are created at system initialization time (in particular, a suitable complement of
interrupt handler processes is created to match the actual hardware configuration, which is deter-
mined by�  interrogating the hardware). The running system makes no use of dynamic process and
monitor creation, largely because much of Pilot is involved in implementing facilities such as
virtual memory�  which are themselves used by the dynamic creation software.

The internal structure of Pilot is fairly complicated, but careful placement of monitors and
dedicated processes succeeded in limiting the number of bugs which caused deadlock; over the
life of the sy
�

stem, somewhere between one and two dozen distinct deadlocks have been
discovered, all of which have been fixed relatively easily without any global disruption of the
system’s structure.

At least two areas have caused annoying problems in the development of Pilot:

1.  The lack of mutual exclusion in the handling of interrupts. As in more conventional interrupt
systems, subtle bugs have occurred due to timing races between I/O devices and their
handlers. To some extent, the illusion of mutual exclusion provided by the casting of
interrupt code as a monitor may
�

 have contributed to this, although we feel that the resultant
economy of mechanism still justifies this choice.

2. The interaction of the concurrency and exception facilities. Aside from the general problems
of exception handling in a concurrent environment, we have experienced some difficulties
due to the specific interactions of Mesa signals with processes and monitors (see Sections 3.1
and 3.4). In particular, the reasonable and consistent handling of signals (including UNW

�
INDS)

in entry procedures represents a considerable increase in the mental overhead involved in
designing a new monitor or understanding an existing one.

6.2Violet: A distributed calendar system

The Violet system [6, 7] is a distributed database manager which supports replicated data files,
and provides a display interface to a distributed calendar system. It is constructed according to
the hierarchy


 of abstractions shown in Figure 2. Each level builds on the next lower one by
calling procedures supplied by it. In addition, two of the levels explicitly deal with more than one
proc� ess. Of course, as any level with multiple processes calls lower levels, it is possible for
multiple processes to be executing procedures in those levels as well.

The user i
�

nterface level has three processes: Display, Keyboard, 
t

and DataChanges
t

. The 
�

Display
t

process is responsible for keeping�  the display of the database consistent with the views specified
by
�

 the user and with changes occurring in the database itself. The other processes notify it when
changes occur, and it calls on lower levels to read information for updating the display. Display

t

never calls update operations in any lower level. The other two processes respond to changes
initia
�

ted either by the user (Keyboard
u

) or by the database (DataChanges
t

). The
�

 latter process is
FORKed from the Transactions module when data being looked at by Violet changes, and
disappears when it has reported the changes to Display.



Ex
�

perience with Processes and Monitors in Mesa 20

Use
d

r interface

F
v

igure 2: The internal structure of Violet

Views
w

Bu
x

ffers

File suites

Transact
�

ions

Networks
@

Stable files

Containers

Calendar names

Vola
w

tile filesProcess table
o

4
y

Le
z

vel

3

2

1

0

A more
�

 complex constellation of processes exists in File
J

Suites, which constructs a single
replicated file from a set of representative fi les, each containing data from some version of the
repl< icated file. The representatives are stored in a transactional fi le system [11], so that each one
is updated atomically, and each carries a version number. For each FileSuite bei

�
ng accessed,

there is a monitor that keeps track of the known representatives and their version numbers. The

replicated file is considered to be updated when all the representatives in a < write quorum { have

B

been updated; the latest version can be found by
�

 examining a read quorum. Provided the sum of
the read quorum and the write quorum is as larg


e as the total set of representatives, the replicated
file behaves like a conventional file.

Whe
�

n the file suite is created, it FORKs and detaches an inquiry process for each represent� ative.
This process tries to read the representative’s version number, and if successful, reports the
�

number to the monitor associated with the file suite and notifies the condition CrowdLarger. Any
process try� ing to read from the suite must collect a read quorum. If there are not enough repre-
sentatives present yet, it waits on CrowdLarger. The inquiry processes expire after their work is
done.



Ex
�

perience with Processes and Monitors in Mesa 21

W
�

hen the client wants to update the FileSuite, it must collect a write quorum of representatives
containing the current version, again waiting on CrowdLarger if one is not yet present. It then
FORKS an update process for each representative in the quorum, and each tries to write its file.�
After FORKing the update processes, the client JOINS each one in turn, and hence does not proceed
until all have completed. B� ecause all processes run within the same transaction, the underlying
transactional file sy


stem guarantees that either all the representatives in the quorum will be
written, or none of them.

I
G
t is possible that a write quorum is not currently accessible, but a read quorum is. In this case the

writing client FORKs a copy process for each represent� ative which is accessible but is not up to
date. This process copies the current file suite contents (obtained from the read quorum) into the
representative, which is now eligible to join the write quorum.

Thus as many as three processes may be created for each representative in each replicated file. In
the normal situation when the state of enoug


h representatives is known, however, all these
processes have done their work and vanished; only�  one monitor call is required to collect a
quorum. This potentially complex structure is held together by a single monitor containing an
array of representative states and a single condition variable.

6.3Gateway: An internetwork forwarder

Another substantial application prog
�

ram that has been implemented in Mesa using the process
and monitor facilities is an internetwork gateway for packet networks [2]. The gateway is
attached to two or more networks and serves as the connection point between them, passing
packets across network boundaries as required. To perform this task efficiently�  requires rather
heavy use of concurrency.

At the lowest level, the g
�

ateway contains a set of device drivers, one per device, typically
consisting of a high priority interrupt process, and a monitor for synchronizing with the device
and with non-interrupt-level software. Aside from the drivers for standard devices (disk,
keyboard, etc.) a gateway contains two or more drivers for Ethernet local broadcast networks
[16] and/or common carrier lines. Each Ethernet driver has two processes, an interrupt process
and a background process for autonomous handling of timeouts and other infrequent events. The
driver for common carrier lines is similar, but has a third process which makes a collection of
lines resemble a sing
�

le Ethernet by iteratively simulating a broadcast. The other network drivers
have much the same structure; all drivers provide the same standard network interface to higher
le
�

vel software.

The nex
�

t level of software provides packet routing and dispatching functions. The dispatcher
A

consists of a monitor and a dedicated process. The monitor synchronizes interactions between the
drivers and the dispatcher process. The dispatcher process is normally waiting for the completion
of a packet transfer (input or output); when one occurs, the interrupt process handles the inter-
rupt, notifies the dispatcher, and immediately returns to await the next interrupt. For example, on
input the interrupt process notifies the dispatcher, which dispatches the newly
�

 arrived packet to
the appropriate 


socketh  for further processing by invoking a procedure associated with the socket.

The 
�

router contains a monitor that keeps a routing table mapping


 network names to addresses of
other gateway machines. This defines the next “hop” in the path to each accessible remote



Ex
�

perience with Processes and Monitors in Mesa 22

network. The router also contains a dedicated housekeeping process that maintains the table by
exchanging special packets with other gateways. A packet is transmitted rather differently than it
is received. The process wishing
�

 to transmit to a remote socket calls into the router monitor to
consult the routing table, and then the same process calls directly into the appropriate network
driver monitor to initiate the output operation. Such asymmetry between input and output is
particularly�  characteristic of packet communication, but is also typical of much other I/O
software.

The primary
�

 operation of the gateway is now easy to describe: When the arrival of a packet has
been processed up throug
�

h the level of the dispatcher, and it is discovered that the packet is
addressed to a remote socket, the dispatcher forwards it by doing a normal transmission; that is,
consulting the routing table and calling back down to the driver to initiate output. Thus, although
the g


ateway contains a substantial number of asynchronous processes, the most critical path
(forwarding a message) involves only a single switch between a pair of processes.

Conclusion

The integ
�

ration of processes and monitors into the Mesa language was a somewhat more
substantial task than one might have anticipated, given the flexibility  of Mesa’s control structures
and the amount of published work on monitors. This was largely because Mesa is designed for
the construction of larg


e, serious programs, and processes and monitors had to be refined
sufficiently to fi t into this context. The task has been accomplished, however, yielding a set of
lang
�

uage features of sufficient power that they serve as the only software concurrency
mechanism on our personal computer, handling situations ranging from input/output interrupts to
cooperative resource sharing among unrelated application programs.

Received June 1979; accepted September 1979: revised November 1979

References

1. American National Standard Programming Language PL/1. X3.53, American Nat. Standards
Inst., New York, 1976.

2. Bog
x

gs, D.R. et al. Pup: An internetwork architecture. IEEE Trans. on Communications
s

 28
|

, 4
(April 1980).

3. B
x

rinch Hansen, P. Operating System Principles. Prentice-Hall, July 1973.

4. Brinch Hansen. P. The programming language Concurrent Pascal. IEEE Trans. on Software
Engineering 1,2 (June 1975), 199-207.

5. Dijkstra, E.W
}

. Hierarchical ordering of sequential processes. In Operating Systems
Techniques, Academic Press, 1972.

6. Gifford, D.K. Weighted voting for replicated data. Operating Systems Review 13, 5
(Dec.1979), l50-l62.



Ex
�

perience with Processes and Monitors in Mesa 23

7. Gifford. D.K. Violet, an experimental decentralized system. Integrated Office Systems
W
�

orkshop, IRIA, Rocquencourt, France, Nov. 1979 (also available as CSL report 79-12,
Xerox
�

 Research Center, Palo Alto, Calif.).

8. Hoare, C.A.R. Monitors: An operating system structuring concept. Comm. ACM 17, 10
(Oct.1974), 549-557.

9. Hoare, C.A.R. Communicating sequential processes. Comm. ACM 21, 8 (Aug.1978), 666-
677.

10. Howa
~

rd, J.H. Signaling in monitors. Second Int. Conf. on Software Engineering
�

, San
Francisco, Oct.1976, 47-52.

11. I
G
srael, J.E., Mitchell, J.G., and Sturgis, H.E. Separating data from function in a distributed

file system. Second Int. Symposium on Operating Systems
�

, IRIA, Rocquencourt, France, Oct.
1978.

12. Keedy, J.J. On structuring operating systems with monitors. Australian Computer J
I

. 10, 1
(Feb.1978), 23-27 (reprinted in Operating Systems Review 13, 1 (Jan.1979), 5-9).

13. L
z

ampson, B.W., Mitchell, J.G., and Satterthwaite, E.H. On the transfer of control between
contexts. Lecture Notes in Computer Science 19, Springer, 1974, 181-203.

14. Lauer. H.E., and Needham. R.M. On the duality of operating system structures. Second Int.
�

Symposium on Operating Systems
�

, IRIA, Rocquencourt, France, Oct. 1978 (reprinted in
Operating Systems Review 13,2 e (April 1979), 3-19).

15. L
z

ister, AM., and Maynard. K.J. An implementation of monitors. Software—Practice and
�

Experience 6,3 (July 1976), 377-386.

16. Metcalfe. R.M., and Boggs, D.G. Ethernet: Packet switching for local computer networks.
Comm. ACM 19, 7 e (July 1976), 395-403.

17. Mitchell. J.G., Maybury. W., and Sweet, R. Mesa Language Manual. Xerox Research Center,
Palo Alto, Calif., 1979.
o

18. Redell, D., et al. Pilot: An operating system for a personal computer. Comm. ACM 23,2e
(Feb.1980).

19. Saltzer, J.H. Traffic Control in a Multiplexed Computer System. MAC-TR-30, MIT, July
1966.

20. Saxena, A.R., and Bredt, T.H. A structured specification of a hierarchical operating system.
SI
�

GPLAN Notices 10, 6 (June 1975), 310-318.

21. Wirth, N. Modula: A lang
�

uage for modular multi-programming. Software—Practice and
�

Experi
�

ence 7
�
, 1 (Jan.1977), 3-36.


