Experience with Processes and Monitorsin Mesa'

Butler W. Lampson
Xerox Palo Alto Research @nter

David D. Redell
Xerox Business Sstems

Abstract

The useof monitors for deaibing conaurrency has been mud disaussel in theliterature When
monitors are used in realggms of angize, however, a number of problems arise which have
not been adequaely dealt with: the semantics of nested monitor @lls; thevarious wgys of
definingthe meaningf wAIT; priority scheduling;, handling of timeouts, dorts ad othe
exceptional conditions; interactions with process creation and destruction; monitwgag
numbes of smé#l objects. These problans ae addressal bythefacilities desaibed heae for
conaurrent progammingin Mesa Experience with several substatial applications gves us some
confidence in the validitgf our solutions.

Key Words and Phrases. concurrencycondition variable, deadlock, module, monitor, operating
system, process, sghroniztion, task

CR Categories: 4.32, 4.35, 5.24

1. Introduction

In early1977 we bean to desig the concurrent pragmmingfacilities of Pilot, a new operating
system for a personal computd8]. Pilot is a fairlylarge progam itself (24,000 lines of Mesa
code). h addition, it must support a variedy quite larg application progams, rangng from
database managnent to inter-network messagransmission, which are heaugers of
concurrencyour experience with some of these applications is discussed later in the paper. W
intended thenew facilities to beusel at least for thefollowing purpose:

Local concurrent programming. Andividual application can be implementedaagyhtly
coupled goup of sychronizd processes to press the concurrenayherent in the
application.

1 This paper appeared Communcationsof the AGM 23, 2 (Feb. 1980), pp 103-17. An earler version was
preered atthe 7h ACM Symposum on Operaing Systens Principles Pacfic Growe, CA, Dec. 1979. Tis version
was aeated from the published version by sanning and OCR; it may have errors.

Permissiaon to copy without fee all @ part of this neterial is grantegrovidedthat the cpies are nomade or
distributed for direct canmercial adrantage, the &M copyright ndice andthe title d the publication andits date
appear, ath notice is gven that copyng is by pernissionof the Associationfor Computing Machinery. To copy
otherwise, or b republish, requresa fee am/or gecific pernission.

Experierce with Processes ahMonitors in Mesa 1

Global resource sharingndependent applications can runeibgr on the same machine,
cooperativelysharingthe resources; in particular, their processes can share the processor.

Replacing interruptsA request for software attention to a device can be handled dibgctly
wakingup an appropriate process, withoaing throud a separate interrupt mechanism (for
exanple, a forced branch).

Pilot is closelycoupled to the Mesa langge [17], which is used to write both Pilot itself and the
applications progams it supports. Hence it was natural to detigse facilities as part of Mesa;
this makes them easier to use, and also allows the compiler to detedtintngf errors in their
use Theidea of integrating sud facilitie s into alanguage is certainly not nev; it goes back a

least as far as L [1]. Furthermore, the invention of monitors Byjkstra, Hoare, and iich
Hansen [3, 5, 8] providd avery dtractive framework for rdiable conaurrent progamming

There followed anumbe of pgoe's on theintegration of conaurrency into progamming

languages, and at least one implementatidh [

We therefore thoug that our task would be an easye: read the literature, compare the
alternatives offered there, and pick the one most suitable for our needs.peusgan proved
to be nave. Because ohe large ske and wde varety of our appicaions, we hadataddress a
number of issues which were not cleadgolved in the published work on monitors. The most
notable amonghese are listed below, with the sections in which #reydiscussed.

(a) Program structureMesa has facilities for oepizing progams into modules which
communicat through wel-defined nterfaces. Pocesses st fit into this schene (see
Section 3.1).

(b) Creating processe# set of processes #x at compile-time is unacceptable in such a
general-purpose sgem (See Section 2). BKng proposals for vaigg the amount of
conaurrency were limited to onaurrent dabordion of thestaements in ablodk, in thestyle
of Algol 68 (except for therather complex mechanism in PL/1).

(c) Creating monitorsA fixed nunber of nonitors is also unaccepble, shce he nunber of
synchronizrs should be a function of the amount of data, but no&tiye details of asting
proposals depended on adikassociation of a monitor with a block of the perg tex (see
Section 3.2).

(d) waT in a nested monitor callhis issue had been (and has continued to be) the source of a
considerable amount of confusion, which we had to resolve in an acceptable manner before
we could proceed (see&ion 3.1).

(e) Exceptons A redlistic systan must h&e timeouts, ad it must hae away to éort aproaess
(see Section 4.1). Mesa hasumwIND mechanism for abandonimpgrt of a sequential
computation in an orderlyay, and this must interact propemyith monitors (see Section
3.3).

() SchedulingThe precise semantics of waiting a condition variable had been discus4€d [
but not ageed upon, and the reasons for maldangparticular choice had not been
articulated (see Section 4). No attention had been paid to the interaction between monitors
and priorityschedulingof processes (see Section 4.3).

Experierce with Processes ahMonitors in Mesa 2

(9) Input-Output The details of fitting/O devices into the framework of monitors and condition
variables had not been fullyorked out (see Section 4.2).

Some of these points have also been madéekygy[12], who discusses the usefulness of
monitors in a modernegeral-purpose mainframe operatsgtem. The Modula lan@ge [21]
addresses (b) and (g, but in amorelimited context than ours.

Before sdtling on themonitor stieme desaibed bdow, we consideed othe possibilities. We
felt that our first task was to choose either shared me(timayis, monitors) or messagassing
as our basic interprocess communication paradig

Messag passinghas been used (without larage support) in a number of operatisgstems; for
a recent proposal to embed messag a langage, see 9]. An analsis of the differences
between such schemes and those based on monitors was niaderognd Needhani4]. They
condudetha, given certain mild restrictions on progagmmingstyle, thetwo sthiemes ae duds
under the transformation

messag <> process
process« monitor
send/reply«< call/return

Since our work is based on a laage whose main tool of pragm structurings the procedure,
it was consideably easier to usea monitor stiemethan to devise a messae-passingscheme
properlyintegated with the tge sytem and control structures of the laage.

Within the shared memoparadign, we considered the possibilibf adoptinga simpler

primitive synchronizdion facility than monitors. Assuminghe absence of multiple processors,

the simplest form of mutual elusion appears to be a non-preemptive scheduler; if processes
only yield the processor voluntarjlthen mutual exusion is insured betweemeyd points. i its
simplest form, this approach tends to produce deficate protams, since the insertion of a
yield in a random place can introduce a subtleibagpreviouslycorrect progam. This dangr

can be alleviated biye addition of a modest amount of igctic sugr” to delineate critical
sections within which the processor must notieélgd (for eample, pseudo monitors). This
sugared form of non-preemptive scheduliogn provide eixemelyefficient solutions to simple
problems, but was nonetheless rejected for four reasons:

(1) While we were willingto accept an implementation that would not work on multiple
processors, we did not want to embed this restriction in our basic semantics.

(2) A separate preemptive mechanism is neededaysince the processor must respond to
time-critica events (for example, I/O interrupts) for whit voluntay process swithingis
clearlytoo slugish. With preemptive process schedulimgterrupts can be treated as
ordinaryprocess wakeups, which reduces the total amount of machieedgd and
eliminates the awkward situations that tend to occur at the boubelavgen two scheduling
regimes.

(3) The use of non-preemption as mutuatlasgion restricts pragmminggenerality within
critical sections; in particular, a procedure that happen®li the processor cannot be
called. h large systems where modularitg essential, such restrictions are intolerable.

Experierce with Processes ahMonitors in Mesa 3

(4) The Mesa concurrendwcilities function in a virtual memomnvironment. The use of non-
preemption & mutud exclusion forbids multiproggmming across pge faults, sine tha
would effectivelyinsert preemptions at arbitrgppints in the progm.

For mutud exclusion with apreemptive stheduler, it is necessay to introdue explicit locks, ad
machinerythat makes requestiqgocesses wait when a lock is unavailable.déhsidered
castingour locks as semaphores, but decided that, compared with monitorsyghtetpo little
structuringdiscipline on concurrent progms. Semaphores do solve several different problems
with a sinde mechanism (for emple, mutual exusion, producer/consumer) but we found

similar economies in our implementation of monitors and condition variables (see Section 5.1).

We have not associated apgotection mechanism with processes in Meseggixwhat is
implicit in the type swtem of the langage. Since the sstem supports onlgne user, we feel that
the considerable protection offeredthg strongyping of the langage is sufficient. This fact
contributes substantiallp the low cost of process operations.

2. Processes

Mesa castthe creaion of a new process as a spéprocedure aotation tat execues
conaurrently with its cller. Mesadlows anyprocedure (esept an internal procedure of a
monitor, see Section 3.1) to be invoked in this watythe caller’s discretiont iis possible to later
retrieve the results returned the procedure.df example, a kelyoard input routine mig be
invoked as a normal procedure\giting:

buffe < ReadLinfterminal]

but sinceReadLines likely to wait for input, its caller migt wish instead to compute
concurrently

p — FORK ReadLingterminall;
... <concurrent computation> ...
buffe < JON p;

Here thetypes ae

ReadLine PROCEDURE[Devicegl RETURNS [Line€];
p: PROCESS REURNS|[LIn€];

The rendexous between the return froReadLingha terminaes the new process and thejoin
in the old process is provided automaticagadLinds theroot procedure of the new process.

This scheme has a number of important properties.

(h) It treat a process as adt class vale in the language, which can be asgned b a varable or
an arrayelenment passed as a parater, and n generaltreaed exacty like anyother valie. A
process value is like a pointer value or a procedure value that refers to a nested procedure, in
thatit can becoma dangjng referencefithe processatwhich it refers ges away

() The method for passingarameters to a new process and retriekgesults is exctly the
same as the correspondimgthod for procedures, and is subject to the same spet ty

Experierce with Processes ahMonitors in Mesa 4

checking. Just asPROCEDURHS agenerator for afamily of types (dgendingon theargument
and result tges), S®PROCESSs asimilar generator, slightly simple since it dgpends onlyon
result types.

() No special declaration is needed for a procedure that is invoked as a process. Because of the
implementation of procedure calls and otHebgl control transfers in Mesad], there is no
extra execution cost for this gnerdity .

(K) The cost of creatingnd destroyg a process is moderate, and the cost in stosagnly
twice theminimum st of aprocedureinstance. It is thaefore feasible to progam with a
large number of processes, and to vilag number quite rapidlys Lauer and Needhani{]
point out, there are marsynchroniztion problems that have straigorward solutions using
monitors onlywhen obtaininga new process is cheap.

Many patterns of process creation are possible. A common one is to caedaeheedprocess
that never returns a result to its creator, but instead functions quite independtiaetiythe root
procedurep of a detached process returns, the process is dastrithout anyfuss. The fact that
no oneintends to wi for aresult fromp can be egressed bgxecuting

DetacHip]

From thepoint of viev of thecaller, this is simila to freeing a dynamic variable—it is generally
an error to make arfyrther use of the current valuemfsince the process, running
asynchronously maycomplete its work and be destedyat anytime. Of course the desigf the
progam maybe such that this cannot happen, and in this case the v@wearostill be usdul as
apaameer to theAbortoperation (see Section 4.1).

This remark illustrates aegeral point: Processes offer some new opportunities to creatindang
references. A process variable itself is a kind of pointer, and must not be used after the process is
destroyd. Furthermore, parameters passeddifgrence to a process are pointers, and if they

hgppen to belocal variables of aprocdure tha proeduremust not raurn until theprocess is

destrowd. Like most implementation langges, Mesa does not provide apsotection aginst

danding references, whether connected with processes or not.

The ordinay Mesafacility for exception handling uses the ordeing established by procdure
calls to control the processimg exceptions. Anyblock mayhave an attached eaption handler.
The bbck conaining the satementthat causeshe excepton is given te firstchanced hande f,
then its enclosinglock, and so forth until a procedure baslyeached. Then the caller of the
procedure isigen a chance in the same w8&ynce the root procedure of a process has no caller,
it must be prepared to handle axgeptions that can bexgerated in the process, including
exceptions generated bytheproedureitsdf. If it fails to do so, theesulting error sends ontrol

to thedebugger, where theidentity of theproeedureand theexception can easily bedeermined
by a progammer. This is not much comfort, however, whenséesy is in operational use. The
pracical consequences that while anyprocedure stable for forking can ato be cded
sequentiallythe converse is notegerallytrue.

Experierce with Processes ahMonitors in Mesa 5

3. Monitors

When several processes interacshgringdata, care must be taken to propsgtychroniz
accessd the dat. The dea behnd nonitors is that a proper velale for this interacion is one
that unifies

» the syichroniztion,
» the shared dat
* the bodyof code which performs the accesses.

Thedaais protecedby amonitor,and can onlye accessed within the bodfamonitor
procedureThere are two kinds of monitor proceduresty procedureswhich can be called
from outside the monitor, andternal proceduresyhich can onlybe called from monitor
procedures. Pro@esse an only paform opeations on thedaa by caling entry procdures. The
monitor esures thd at most oneprocess is &ecuting amonitor proedureat atime; this proess
is sad to bein the monitor. F aproaess is in themonitor, ay othe proaess tha calls an entry
procedure will be delag. The monitor procedures are writtenttexly nex to each other, and
nex to the declaration of the protected data, so that a reader can convesniemjpll the
references to the data.

As longas anyorder of callinghe entryprocedures produces mearfimgesults, no additional
synchroniztion is needed amortge processes sharitige monitor. fla random order is not
accepsble, oher provsions nustbe made n the progam outside he nonitor. For exanple, an
unbounded buffer witPutandGetprocedures imposes no constraints (of couGetmay have
to wait, but this is taken care of within the monitor, as described in theseeion). On the
other hand, a tape unit witkeserve, Read, Mk, andReleaseperatons requies hat each
process ezcuk aReservdirst and aReleasdast. A second processenutingaReservevill be
delayed bythe monitor, but another process doarfgeadwithout a priorReservewill produce
chaos. Thus monitors do not sola# the problans of @naurrent progamming they are
intended, in pat, as primitive building blods for morecomplex stheduling policies. A
discussion of such policies and how to implement them usingtors is begnd the scope of
this paper.

3.1 Monitor modules

In Mesathe simplest monitor is a instance of amodule which is the basic unit ofigbal

progam structuringA Mesa module consists of a collection of procedures and tobalglata,

and in sequential progmmingis used to implement a data abstraction. Such a module has
PUBLIC procedures that constitute theexxal interface to the abstraction, @&mATE proce-

dures that are internal to the implementation and cannot be called from outside the module; its
daais normdly entirely private. A MONITOR module differs onlslightly. It has three kinds of
proceduresentry, internal (private), andexernal (non-monitor procedures). The first two are the
monitor procedures, and esute with the monitor lock heldoFexample, consider a simple

storag allocator with two entrproceduresAllocate andFree,and an eternal procedure
Expandthat increaseshe sie of a bbck.

Experierce with Processes ahMonitors in Mesa 6

SrageAlocator: MONITOR = BEGIN
avaiableSbtrage INTEGER:
moreAvailable: CONDITION:

Allocate; ENTRY PROCEDURE [size INTEGER
RETURNS [p: PONTER] = BEGIN
UNTIL avaiableSbrage> size
DO WAIT moreAvailable ENDLOOF,
p < <remove chunk d size words & update avaiableStrage>
END;

Free ENTRY PROCEDURE [p: PONTER, Size: INTEGER] = BEGIN
<put back chunk d size words & update avaiableSbrages;
NOTIFY moreAvailalbe END;

ExpandpPuBLIC PROCEDURE [pOld: PONTER, $ize INTEGER] RETURNS [pNew. PONTER] = BEGIN
pNew <« Allocate]sizqg;
<copycorterts from old block to new block>;
FredpOld] END;

END.

A Mesa module is normallysed to packaga collection of related procedures and protect their
private data from errnal accessnlorder to avoid introducing new lekcal structuring
mechanism, we chosé&lmake the scope of a monitor identical to a module. Sometimes,
however, procedurekdt belongin an abstacion do notneed access eanyshared da and

hence need not be enpyocedures of the monitor; these must be disisigd somehow.

For example, two agychronous processes cleanfyist not egcute in theAllocate or Free
procedures at the same time; hence, these must bepsmtedures. On the other hand, it is
unnecessario hold the monitor lock durinpe copyin Expand,even thoug this procedure
logically belong in the storagallocator module; it is thus written as aiteexal procedure. A
more complexnonitor midit also have internal procedures, which are used to structure its
computations, butwhich are naccesdile fromoutide te nonitor. These do naacqure and
releaselte lock on cal and retirn, shce hey can ony be caled when he lock is alreadyheld.

If no suitable block is availablajlocate makes its @ller wait on theconditionvariable

moreAvailable. Freeloes aNOTIFY to this variable whenever a new block becomes available;

this causes someproaess wdting on thevariable to resumeexecution (see Section 4 for deails).

ThewAIT releases themonitor lok, which is reacquired when thewaiting progess renters the

monitor. F awAIT is done in an internal procedure, it still releases the Ibckowever, the

monitor calls some other procedure which is outside the monitor module, the lock is not released,
even if the other procedure is in (or calls) another monitor and ends upadag The same

rule is adopted in Concurrent Paseil [

To understand the reasons for this, consider the form of a correctnessairépr a proggam
usingamonitor. Thebasic ideais tha the monitor mantains an invariantthat is alwag true of

its dai, exceptwhen sore processd executng in the nonitor. Whenever conbl leavesltie
monitor, this invaiant must beestablishal. In return, whenever control enters themonitor the
invariant can be assumed. Thus an eptocedure must establish the invariant before returning
and a monitor procedure must establish it before dowmgiT. The invariant can be assumed at

Experierce with Processes ahMonitors in Mesa 7

the startof an enty procedure, and &teachwaiT. Under these conditions, the monitor lock
ensures thda no onecan enter themonitor whe theinvariant is fase Now, if thelock were to be
released on wAIT done in another monitor which happens to be called from this one, the
invariant would have to be established before mattiegcall which leads to thealT. Since in
general there is no watp know whether a call outside the monitor will lead wsar, the
invariant would have to be established before esach call. The result would be to make
calling such procedures hopelesslynbersome.

An dternative solution is to #ow an outside blocko bewritten insidea monitor, with the
following meaning on entryto the block the lock is released (and hence the invariant must be
estblished);within the block the proectied daais inaccesdle; on leaving the block the lock is
reacquired. This scheme allows the state representie l®yecution environment of the

monitor to be maintained durintge outside call, and imposes a minimal burden on the
progamme: to establish theinvariant before making thecall. This mechanism would beeasy to
add to Mesa; we have left it out because we have not seen conwerampgles in which it
significantly simplifies theprogam.

If an entry procduregenerates an exception in theusuaway, theresult will beacall on the
exception handler from within themonitor, so thathelock will not bereeased. In paticular, this
means that the eeption handler must carefullyvoid invokingthat same monitor, or a deadlock
will result. To avoid this restriction, the enpyocedure can restore the invariant and then
execue

RETURN WITH ERROR (arguments)]

which reurns from theentry procedure thus réeasing thelock, and than generates theexception.

3.2Monitors and deadlock

There areliree paterns of paiwise deadick that can occur usig monitors. In practce, of

course, deadlocks often involve more than two processes, in which case the actual patterns
observed tend to be more complicated; convergalyalso possible for a sitgprocess to
deadbck with itself (for exarmple, if an enty procedures recursve).

The simplest form of deadbck takes phce nside a sigle monitor when o processes dovealT,
each epecing to be awakened bie oher. Ths represerga localized bugin the nonitor code
and s usualy easyto locae and correct

A moresubtleform of dedlock can occur if there is acyclic caling patern beween two

monitors. Thus if monitoM cals an enty proceduren N, andN calls one in M, each will wait

for the other to release the monitor lock. This kind of deadlock is made neither more nor less
serpus bythe nonitor mechansm. It arises whenever such cyc dependenes are dbwed D

occur in a progam, and can be avoided in a number ofsvdje simplest is to impose a partial
orderingon resources such that all the resources simultangoos$gssed gnyprocess are
totally ordered, and insist that if resourggrecedes Sithe ordemg, thenr cannot be acquired
later than 5. When theresoures are monitors, this rduaes to thesimplerule tha mutudly

recursive monitors must bevoided. Conairrent Pasca [4] makes this deck at compile time;

Mesa cannot do so because it has procedure variables.

Experierce with Processes ahMonitors in Mesa 8

A more serious problem arisedMfcalls N, andN then waits for a condition which can only
occur when another process enfétbrough M and makes the condition true.this situationN
will be unlodked, sin@ thewaIT occurred there, b will remain locked duringthewAiT in N.
This kind of two level data abstraction must be handled with some care. Attnaigrd
solution usingstandard monitors is to breBkinto two pats: amonitorM’ and an ordinary
module0 which implements the abstraction defined\Mbyand calls\V’ for accessd the shared
data. The call ol must be done fror rather than from within M’.

Monitors, ike anyother nterprocess comunicaion mechansm, are atool for implementing
synchroniztion constraints chosen Ilye progammer. 1 is unreasonable to blame the tool when
poorly chosen constraints lead to deadloclka¥\is crucial, however, is that the tool make the
progam structure as understandable as possible, while not resttiipgogammer too much

in his choice of constraints (for @xple, byforcinga monitor lock to be held much Iarghan
necessay). To someaxtent, these two goals tend to @nflict; the Mesaconaurrency facilitie s

attempt to strike a reasonable balance and provide an environment in which the conscientious
progammer can avoid deadlock reasonaagily Our experience in this area is reported in
Section 6.

3.3Monitored objects

Often we wish D have a cdécion of shared datobject, each one represeng an nstance of
some abstract object such as a file, a stovajume, a virtual circuit, or a database view, and we
wish to add objects to the collection and delete themamycally In a sequential pragm this is
done with standard techniques for allocatmgl freeingstorag. In a concurrent pragm,
however, prowsion nmust also be nade for serlizing accessd each olbgct The staightforward
way is to use a sigle monitor for accessig all instances oftie obect and we recomend this
approach whenever pokk. If the obpcts functon independety of each dter for he most
part, however, the silgmonitor drasticallyeduces the maxum concurrencyhat can be
obtained. h this case, whatve wantis to give each olgctits own nonitor; all these nonitors
will share thesane code sine dl the instances of theabstract object shae thesane code but
each object will have its own lock.

One wayto achieve this result is to make multiple instances of the monitor module. Mesa makes
this quite easyand it is the nexxecommended approach. However, the data associated with a
module instance includes information that the Mes#esy uses to support prag linkingand

code swappingand there is some cost in duplicatthgs information. Erthermore, module

instances are allocated the sgtem; hence the progm cannot earcise the fme control over
allocation stratags which is possible for ordinaljesa data objects. \have therefore

introduced a new pe constructor calledmonitored recordwhich is exactly like an ordinary

record, exept that it includes a monitor lock and is intended to be used as the protected data of a
monitor.

In writing the code for such a monitor, the pra@mer must specifijow to access the monitored
record, which migt be embedded in some larglata structure passed as a parameter to the entry
procedures. This is done with.@acks clause which is written at the bagingof the module:

MONITOR LOCKSfileT USING file: PONTER TO FileData;

Experierce with Processes ahMonitors in Mesa 9

if the FileDatais the proecied dah An arbirary expresson can appeanithe LOCKS clause;for
instance Locks file.buffergcurrentPagé might be appropriate if the protected data is one of the
buffers in an arrayvhich is part of théile. Everyentryprocedure of this monitor, and every
internal procedure that doesvalT, must have acces®afile, so hatit can acque and retase

the lock upon entrgr around avAIT. This can be accoplished n two ways. the file maybe a
global variable of the module, or it mbg a parameter ®verysuch procedurenlthe latter case,
we have effectivelgreated a separate monitor for each object, without limitiegprogam’s
freedomto arran@ access plas and strage alocaion asfilikes.

Unfortunately the type swtem of Mesa is not stroreoudy to make this construction
completely sde. If thevdue of file is changd within an enty procedure, for exrple, chaos Wi
result, sine thereturn from this proedurewill release not thelock which was acquired during
the call, but some other lock insteaulthis example we can insist thfite be read-onlybut with
another level of indirection aliasirogn occur and such a restriction cannot be enfonged. |
practice this lack of safetyas not been a problem.

3.4 Abandoning a computation

Suppose that a procedughas called another proceddf®g which in turn ha alled P; and so
forth until thecurrent proedureis P, If P, generates an eeption which is eventuallyandled
by P, (becausd, ... P, do not provide handlers), Mesa allows theeption handler ifP; to
abandon the portion of the computation bedoge inP, ... P, and continue escution inP;.
When this happens, a distuighed exeption calledsNwIND is first generaed, and each d®, ...
P, is gven a chance to handle it and do aegessargleanup before its activation is destoy

This festure of Mesais not pat of theconaurrency facilities, but it dos inteact with those
facilities in the followingway. If one of the procedures beiagandoned, sd&), is an enty
procedure, then the invariant must be restored and the monitor lock release& hsfore
destrowd. Thus if the loge of the progam allows aruNwiIND, the progammer must supplg
suitable handler i, to restore the invariant; Mesa will automaticalypplythe code to release
the lock. f the progammer fails to supplgnuNwiIND handler for an entrgrocedure, the lock is
notautomatically released, but renains se; the causeof theresultingdeadlock is not had to find.

4. Condition variables

In this section we discuss the precise semanties\af and other details associated with

condition vaiables. Hoae's ddinition of monitors [8] rguires tha aprocess wating on a

condition vaiable must run immediately when anothe proesssignalsthat variable, and that the
signaling process in turn runs as soon as the waiter leaves the monitor. This definition allows the
waiter to assumethetruth of somepredicate strongr than the monitor invaiant (which the

signaler must of course establish), but it requires several additional process switches whenever a
process continues aftemalT. It dso rejuires thd the signaling mechanism bepeafectly rdiable.

Mesa takes a different view: M¢n one process establishes a condition for which some other
proaess mg bewaiting, it notifiesthe correspondingondition variable. AOTIFy is regrded as
ahintto a waitingprocess; it causes esution of some process waiting the condition to
resume at some convenient future timénéWthe waitingprocess resumes, it will reacquire the

Experierce with Processes ahMonitors in Mesa 10

monitor lok. Theeis no giarantee tha someothea proaess will not eter the monitor béore the

waiting proaess. Hece nothingmorethan themonitor invaiant may beassume dter awaiT,

and the waiter must reevaluate the situation each time it resumes. The proper pattern of code for
waliting is theefore

WHILE NOT <OK to proceed>b0O WAIT C ENDLOOFP.

This arrang@mentresuts in an exra evalaion of he <OK b proceed> predak afer a wat,
compaed to Hoae's monitors, in whik thecodeis:

IF NOT <OK to proceed>THEN WAIT C.

In return, however, there are namxprocess switches, and indeed no constraints at all on when
thewaiting proaess must runféer aNoTIFY. In fact, it is pefectly dl right to run thewaiting

process everf there B nONOTIFY, althoudp this is presumablgointless if aNOTIFY is done
whenever annteresing chang is made b the proecied dak

It is possible that such a laisdeire attitude to schedulingonitor accesses will lead to
unfairness and even starvation. We do not think this istarie¢e cause for concern, since in a
properlydesigied sytem there should pycally be no processes waitifgr a monitor lock. As
Hoare, Binch Hansen, Keedwnd others have pointed out, the low level scheduatiaghanism
provided bymonitor locks should not be used to implemenhiéyel schedulinglecisions
within a system (for eample, about which process shoudt @ printer ne®). High level
schedulingshould be done hyakingaccount of the specific characteristics of the resource being
scheduled (for exmple, whether the ity kind of paper is in the printer). Such a scheduler will
delayits client processes on condition variables after recolidiogmation about their
requirements, make its decisions based on this information, and thetiiyoper conditionsn|
sudt adesign thedaa protected by a monitor is nger a bottleneck.

The verification rules for Mesamonitors ae thus etremely simple Themonitor invaiant must
be established just before a return from an gmiogedure or AIT, and it maybe assumed at
the startof an enty procedure andugt after awaIT. Since awakened waiters do not run
immediately, the predicate established bdore aNOTIFY cannot be assumed after the
correspondingVvAIT, but since the waiter testsgicitly for <OK to proceed>, verification is
actudly madesimple and morelocalized.

Another consequence of Mesa’s treatmemaifirFy as a hint is that margpplications do not
trouble to determine whether theagx condition needed laywaiter has been established.
Instead, theghoose a vergheap predicate which implies theaekcondition (for eample, some
change has occurred), ambTiIFy acovering condition vaiable. Any waiting process is tha
responsible for determininghether the exct condition holds; if not, it simplyaits agin. For
example, aproess mg need to wat until a paticular object in asd changes stae. A singe
condition covers the entire set, and a process chgagyof the objects broadcasts to this
condition (see Section 4.1). The information abowaictx which objects are currentbf interest
is implicit in the staes of thewaiting processes, raher than having to berepresented explicitly in
a shared data structure. This is an attractivetoaecouple the detailed desigf two processes:
it is feasble becausehe costof waking up a processismall.

Experierce with Processes ahMonitors in Mesa 11

4.1 Alternatives to NOTIFY
With this ruleit is easy to add three additiond ways to resumeawaiting process:

Timeout. Assocgated with acondition vaiable is atimeout inteval t. A process which has been
waiting for timet will resume regrdless of whether the condition has been notified. Presumably
in most @ses it will check thetime and t&ke somerecovery action bdore waiting again. The

original desig for timeouts raised an egption if the timeout occurred; it was chatidpecause
many uses simplywanted to rery on atimeout, and objested to thecost and awding complexity

of handlingthe exeption. This decision could certairdy either way

Abort. A process mg beaborted a any time by executing Abortp]. The effectis that the nex
time theprocess wats, or if it is wating now, it will resumeimmediately and theAborted
exception will occur. This mehanism dlows oneprocgess to gntly prod anothe, genealy to
suggest that it should clean up and terminate. The aborted process is, however, free to do
arbitrarycomputations, or indeed tongre the abort entirely

BroadcastInstead of doin@NOTIFY to a condition, a process mdyg aBROADCAST, which
causeall the processes waitirgn the condition to resume, instead of singte of them. Since
aNOTIFY is just a hint, it is alwas/correct to USBROADCAST. It is better to ussOTIFY if there

will ty pically be several processes waitioig the condition, and it is known that amgiting
process can respond propefDn the other hand, there are times whBR@DCAST s correct
and aNOTIFY is not the akrtreader my have natced a prol#mwith the example progamin
Section 3.1, which can be solvedigplacingtheNOoTIFY with aBROADCAST.

None of these mechanisms affects the proof rule for monitors at all. Each providetoa way
attract the atention of awaiting process & an appropride time.

Note that there is no wdg stop a runawagrocess. This reflects the fact that Mesa processes are
cooperative. Mangspects of the desigvould not be appropriate in a competitive environment
sud as a genera-purposetimeshaing systam.

4.2 NakedNOTIFY

Communication with input/output devices is handlearmnitors and condition variables much
like communication amongrocesses. There igigally a shared data structure, whose details are
determined byhe hardware, for passicgmmands to the device and returrstafus

information. Since it is not possible for the device to wait on a monitor lock, the update
operations on this structure must be desigso that the sitgyword atomic read and write
operations provided bihe memonare sufficient to make them atomichén the device needs
attention, it camoTIFY acondition vaiable to wee up awaiting proaess (thais, theinterrupt
handler); since the device does not actuatiguire the monitor lock, itsoTIFy is clled anaked
NOTIFY. The device finds the address of the condition variable ired fbemorylocation.

There § one comlicaion assodted wih a nakedvoTIFy: Since the notification is not protected

by a nonitor lock, there can be a racé.i$ possble for a proces®tbe n the nonitor, find the

<OK to proceed> predatk 1 beFALSE (that is, the device does not need attention), and be about
to do awaIT, when the device updates the shared data and doesiits. ThewAIT will then be
done and theioTiFy from the device will be lost. With ordinapyocesses, this cannot happen,

Experierce with Processes ahMonitors in Mesa 12

since the monitor lock ensures that one process cannot be tastimgdicate and preparitg
WAIT, while anoher s changng the valie of <OK b proceed> and dong the NOTIFY. The
problem is avoided bygrovidingthe familiar wakeup-waitingwitch [L9] in a condition variable,
thus turningt into a binarysemaphoreq]. This switch is needed onfgr condition variables
that are notified bylevices.

We briefly considered a design which devices would wait on and acquire the monitor lock,
exacly like ordnaryMesa processet)is desgn is atiracive becausd avoids boh the

anomalies just discussed. However, there is a serious problem wkimdrof mutual eglusion
between two processes which run on processors of substadifigiignt speeds: The faster

process makhave to wait for the slower one. The worst-case response time of the faster process
therefore cannot be less than the time the slower one needs to finish its critical sectionhAlthoug
one can ¢ higher throudpput from the faster processor than from the slower one, one ca&anot g
better worst-case real time performance. We consider this a fundamental deficiency

It therefore seemed best to avoid amytual exlusion (exept for that provided biphe atomic
memoryread and write operations) between Mesa code and device hardware and microcode.
Their relationship is easilyast into a producer-consumer form, and this can be implemented,
usinglinked lists or arrag; with onlythe memoris mutual exlusion. Onlya small amount of
Mesa code must handle device data structures without the protection of a monitor.&Clearly
chang of models must occur at some point between a disk head and an applicatiam pveg

see no god reason whit should not happen within Mesa code, althoiigshould certainlype
tightly encapsulaed.

4. Priorities

In someapplications it is deirable to usea priority scheduling disdpline for dlocating the
processor(s) to proesses whidh ae not wating. Unless @re is t&ken, theordeing implied bythe
assigiment of priorities can be subvertedrognitors. Suppose there are three pridatels (3
highest, 1 lowest), and three procesBgsP,, andP;, one runningat each level. & P, andP,
communicat usihg a nonitor M. Now consider the followingequence of events:

P, eners M.

P, is preempted bf,.

P, is preempted b#..

P, tries to eater themonitor, ad walts for thelock.

P, runs agin, and can effebtely preventP, from running contraryto the purpose of the
priorities.

A o

A simple wayto avod this situation is to assoate with each nonitor the priority of the highest
priority process with ever erdrs that monitor. Then whenever a processeegta nonitor, its
priority is temporarilyincreased to the monitor’s prioritylodula solves the problem in an even
simpla way—interrupts ae disabled on entry to M, thus effectivelygiving the process the
highest possible priorityas well as suppigg the monitor lock foM. This approach fails if a
pace fault can occur whe execuing in M.

The mechanism is not free, and whether or not it is needed depends on the applmation. F
instance, if onlyprocesses with adjacent priorities share a monitor, the problem described above

Experierce with Processes ahMonitors in Mesa 13

cannot occur. Even if this is not the case, the problematayr rarelyand absolute
enforcement of the prioritychedulingnaynot be important.

5. Implementation

Theimplementation of pro@sses and monitors is split morer less gudly anongtheMesa
compiler, the runtime packagand the undeiilgg machine. The compiler recaiges the various
syntectic construds and generates gpropride code indudingimplicit calls on built-in (tha s,
known to the compiler) support procedures. The runtime implements the less beadlily
operations, such as process creation and destruction. The machine imgletigents the more
heavilyused features, such as process schedatidgnonitor entigxit.

Note that it was primarilfrequencyof use, rather than cleanliness of abstraction, that motivated
our division of ldor béween proessor ad softwae. Nonahdess, thesplit did turn out to ba

fairly clean lagring, in which the birth and death of processes are implemented on top of
monitors and process scheduling

5.1 The processor

The exstence of a process is normaigpresented onlyy its stack of procedure activation
records oframes plus a small (10-kig) description called BrocessStateFranes are abcaed
from aframe heagby a microcoded allocator. Thepme in a rangof sizs that differ by20
percent to 30 percent; there is a separate free list for eaalpdiz a few hundred bgs (about
15 sizs). Allocatingand freeingrames are thus vefgst, exept when more frames of avgn
size are needed. Becausé faames cone from the heap,hiere 5 no needd prepbn the sack
space needed layprocess. \Wen a frane of a gven ske is needed buhotavalable, here sa
framefault, and the fault handler allocates more frames in virtual menR@gident procedures
have aprivate frame hegp tha is replenishal by sezing real mamory from thevirtua memory
manager.

TheProcessStateare kept in a fird table known to the processor; theesz this table
determines themaximum numbe of proaesses. At any given time aProcessStatés on eactly
onequeue.There are four kinds of queues:

Ready queudhere is one readyueue, containingll processes that are readyrun.

Monitor lock queueWhen aproaess dtempts to ater alocked monitor, it is move from the
readyqueue to a queue associated with the monitor lock.

Condition variable queudhen a process ekues awaAlT, it is moved from the readyueue to
a queue associated with the condition variable.

Fault queueA fault can make a process temporadhable to run; such a process is moved from
the readygueue to a fault queue, and a fault handtiragess is notified.

Experierce with Processes ahMonitors in Mesa 14

Queue €l

"

ProassStte ProaessStte ProaessStte

Head Tail

Figure 1: A process qaue

Queues are kept sorted process priorityThe implementation of queues is a simple one way
circular list, with thequeaue cell pointing to thetail of the queue (seadrre 1). This compact
structure alows rapd accessaboth the head andhe tail of the queue.rserion atthe tail and
removal at the head are quick and easyre gneral insertion and deletion involve scanning
some fraction of the queue. The queues are ussladiy enouly that this is not a problem. Only
the readygqueue gows to a substantial @zluringnormal operation, and its patterns of insertions
and deletions are such that queue scanovmeghead is small.

The queue cell of the readyeue is kept in a fed location known to the processor, whose
fundamental task is to alwsigxecute the nexinstruction of the higest priorityreadyprocess.

To this end, a check is made before each instruction, and a process switch is done if necessary
paticular, this is themechanism bywhich interupts ae seviced. Themachine thus implenents

a simplepriority scheduler, which is premptive beween priorities and FIFO within agiven

priority.

Queues other than the redidyf are passed to the processosbitware as operands of

instructions, or througa trap vector in the case of fault queues. The queue cells are passed by
reference, since inegeral theymust be updated (that is, the identifythe tail maychang.)

Monitor locks and condition variables are implemented as small records contagiing
associated queue cells plus a small amounttoé @xformation: in a monitor lock, the actual

lock; in acondition vaiable, thetimeout inteval and thewakeup-wating switch.

At a fixed interval (about 20 times per second) the processor scans the ®teessState and

notifies ay waiting proesse whosdimeout intevals have expired. This speia NOTIFY is

tricky because the processor does not know the location of the condition variables on which such
processes are waitingnd hence cannot update the queue cells. This problem is solved by
leavingthe queue cells out of date, but markiing processes in such a vihgt the netktnormal

usa@ of the queue cells will notice the situation and update them appropriately

There is no provision for time-slicing the current implementation, but it could eabéyadded,
since it has no effect on the semantics of processes.

Experierce with Processes ahMonitors in Mesa 15

5.2 The runtime support package

TheProcesanodule of the Mesa runtime pacleagoes creation and deletion of processes. This
module is written (in Mesa) as a monitor, usihg underlyng synchronization machinergf the
processor to coordinate the implementatiora®k andisoN as the built-in entry procedures
Process.ForkandProcess.Jai, respectively The unuse®rocessState are teaed as esseiatly
normal processes which are all waitimg a condition variable calledbirth. A call of
Process.Forlperforms appropriate “brain suaxy’ on the first process in the queue and then
notifiesrebirth to bringtheproaess to life Process.Jai synchronizs with the ding process and
retrieves the results. The (implicitigvoked) procedur@rocess.Engynchronizs the dyng
process with thgoining proeess ad then commits suiede by waiting onrebirth. An explicit call
on Process.Detch marks theproaess so thbwhen it later calls Process.Endt will simply
destroyitsdf immediately.

The operation®Process.AborandProcess.¥ld are provided to allow special handliafy
processes that wait too loagd compute too longespectivelyBoth adjust the states of the
appropride queaues, usingthemechine's standad quaigng mechanisms. Utility routines are so
provided bythe runtime for such operations as setangpndition variable timeout and settiag
process priority

5.3 The complier

The compiler recognizes the syntactic construds for pro@sses and monitors ad emits the
appropriate code (for exple, amONITORENTRY instruction atthe sart of each eny procedure,
an implicit call of Process.ForKor eachFork). The conpiler also perforns speal static checks
to help avoid certain frequentgncountered errorsoFexample, use oWAIT in an exernal
procedures flagged as an error, as a drectcal from an exernal procedured an nternal one.
Because of the power of the undamtyMesa control structure primitives, and the care with
which concurrencyvas integated into the langagg, the introduction of processes and monitors
into Mesa resulted in remarkabiitle upheaval inside the compiler.

5.4 Performance

Mesds conaurrent progammingfacilities dlow the intrinsic parallelism of goplication progams

to be represented naturalthe hope is that well structured prags with hidp global efficiency

will result. At the same time, these facilities have nontrivial local costs in staratjor

execution timewhen compaed with similar sequential construds; it is importat to minimize

these costs, so thiathefacilities can be gpplied to afiner grain of conaurrency. This se&tion

summaries the costs of processes and monitors relative to other basic Mesa constructs, such as
simple statements, procedures, and modules. Of course, the relative effidiancyrbitrary
concurrent progam and an equivalent sequential one cannot be determined from these numbers
alone; the intent is simply provide an indication of the relative costs of various local

constructs.

Storag costs fall naturallnto data and pragm storag (both of which reside in swappable

virtual memory unless othewiseindicated). Theminimum ®st for theexistence of aMesa

module is 8 bies of data and 2 bgs of code. Chamgg the module to a monitor adds 2éxy of

data and 2 ks of code. The prime component of a module is a set of procedures, each of which

Experierce with Processes ahMonitors in Mesa 16

requires a minimum of an 8-tgyactivation record and 2 teg of code. Chamgg a normal

procedure to a monitor entpyocedure leaves the siaf the activation record unchad) and

adds 8 btes of code. All of these costs are small compared with theaonognd data storag
actuallyneeded byypical modules and procedures. The other cost specific to monitors is space
for condition variables; each condition variable occupiesdslnyf data storag whilewAiT and
NOTIFY require 12 bies and 3 kigs of code, respectively

The data storagoverhead for a process is 1@dsyof resident storagor itsProcessStateplus

the swappable storador its stack of procedure activation records. The process itself contains no
extra code, but the code for therRk andioN which create and delete it ®ljer occupyl3

bytes, as compared with 3tbeg for a normal procedure call and return. AdrRX/JON sequence

also uses 2 data tag to store the process valuestmmary

Spacgbytes
Construct data code
module 8 2
procedure 8 2
cal + return - 3
monitor 10 4
entryprocedure 8 10
FORK+JONN 2 13
process 10 0
condition variable 4
WAIT - 12
NOTIFY - 3

For measuring execution times weddine a unit clled atick: thetime required to execute a

simple instruction (for eémple, on a “one MR” machine, one tick would be one microsecond).
A tick is abitrarily se at onefourth of thetime nesded to execute the simplestadement “a «— b +

¢’ (that is, two loads, an add, and a store). One interastimdper aginst which to compare the
conaurrency facilitie s is thecost of anormd procedurecall (and its asocated return), whid

takes 30 ticks if there are no angents or results.

The cost of callingind returnindrom a monitor entrprocedure is 50 ticks, about 70 percent
more than an orcharycal and retirn. In practce, he percerdge increases sonewhatlower,

since tyical procedures pass argents and return results, at a cost of 24 ticks per item. A
process switch takes 60 ticks; this includes the queue manipulations and all the stat@shving
restoring The speed ovAIT andNOTIFY depends someha on thenumbe and priorities of the
processes involved, but representativerig are 15 ticks for@AIT and 6 ticks for alOTIFY.
Findly, theminimum ®st of aForRK/ JON pair is 1,100 ticks, or about 38 times that of a
procedure call. To summaeiz

Experierce with Processes ahMonitors in Mesa 17

Construct Time (tickg

simpleinstrudion 1
cal + return 30
monitor @l + return 50
process switch 60
WAIT 15
NOTIFY, N0 onewaiting 4
NOTIFY, proess wating 9
FORK+JOIN 1,100

On the basis of these performanceufes, we feel that our implementation has met our efficiency
goals, with the possible eeption ofForRK andioiN. Thedecision to implenent these two

language constructs in software rather than in the undleglynachine is the main reason for their
somewhat lackluster performance. Nevertheless, we stdelis decision as a sound one,

since these two fecilities ae consideably morecomplex than the basic synchronizaion

mechansm, and are used umh less frequeny (espedally 30N, since he deached processes
discussed in Section 2 have turned out to be quite popular).

6. Applications

In this section we describe the wiaywhich processes and monitors are usethige substantial
Mesa progams: an operatingystem, a calendar si¢m usingeplicated databases, and an
interngwork gateway.

6.1Pilot: A general-purpose operating system

Pilot is a Mesa-based operatisigtem [L8] which runs on a laggpersonal computet.was
designed jointlywith the new langace features and makes heaywge of them. Pilot has several
autonomous processes of its own, and can be callagymumber of client processes of any
priority, in a fully asynchronous manner. ploiting this potential concurrenagquires etensive
use of monitors within Pilot; the robly 75 progam modules contain neady) separate
monitors.

The Pilot implementation includes about 15 dedicated processes détttenarmber depends on
the hardware corduraion); most of these are evemtanders for hree chsses of evesit

I/O interrupts. Naked notifies as discussed in Section 4.2.

Process faults Page faults and other such events,rgifpd via fault queues as discussed in
Section 5.1. Bth client code and the Higr levels of Pilot, includingome of the dedicated
processes, can cause suchttaul

Internal excepitons Missingentries in resident databases, fasraple, cause an appropriatehhig
level “helper” process to wake up and retrieve the needed data from seciodagy

There are also a few “daemon” processes, which awaken periodiedlyerform housekeeping
chores (for eample, swap out unreferenced gg)g Essentiallyall of Pilot’s internal processes

Experierce with Processes ahMonitors in Mesa 18

and monitors ee created a systam initialization time (in paticular, a suitéble complement of
interrupt handler processes is created to match the actual hardwarereioing which is deter-
mined byinterrogting the hardware). The runnirsygstem makes no use ofréymic process and
monitor creation, lamgly because much of Pilot is involved in implementiagilities such as
virtual memorywhich are themselves usedthg dyamic creation software.

The nternal structure of Rlot is fairly conplicated, butcarefulplacenentof monitors and
dedicated processes succeeded in limitivignumber of bugwhich caused deadlock; over the
life of the sytem, somewhere between one and tweddalstinct deadlocks have been
discovered, all of which have beendikrelativelyeasilywithout anyglobal disruption of the
system’s structure.

At least two areas have caused ammgproblems in the development of Pilot:

1. The lack of mutual exclusion in the handling of interrupisin more conventional interrupt
systems, subtle bsghave occurred due to timingces betweerl® devices and their
handlers. To somextent, theillusion of mutu& exclusion providd bythe casting of
interrupt code as a monitor mhgve contributed to this, althdugve feel that the resultant
economyof mechanism still justifies this choice.

2. The interaction of the concurrency and exception facilissde from thegeneral problems
of exception handling in aconaurrent environment, we have experienced somediffic ulties
due to the specific interactions of Mesansilg with processes and monitors (see Sections 3.1
and 3.4). h particular, the reasonable and consistent handlisggnals (includinguNwiINDS)
in entryprocedures represents a considerable increase in the mental overhead involved in
desigiing a new monitor or understandiag exsting one.

6.2 Violet: A distributed calendar system

The Violet sptem B, 7]is a distributed database maeaghich supports replicated data files,
and provdes a diplay interface b a dstributed caéndar sgtem It is constucted accordng to

the hierarchyf abstractions shown irigure 2. Each level builds on the néswer one by
calling procedures supplied lity In addition, two of the levels ekicitly deal with more than one
process. Of ourse as any level with multiple proesses cls lower levels, it is possibldor
multiple proaesses to beexecuting procedures in thoselevels as well.

The usernterface kevel has hree processeRisplay, KeyboardandDataChangesThe Display
process is responsible for keepthg displayof the database consistent with the views specified
by the user and with chaegoccurringn the database itself. The other processes ribtiflgen
changs occur, and it calls on lower levels to read information for upd#tendisplayDisplay
never calls update operations in aower level. The other two processes respond to @ang
initiated ather by theuse (Keyboard or bythe databasdgtaChanges The latter progess is
FOrRked from theTransactionsnodule when data beirgoked at byiolet changs, and
disappears when it has reported the chamngDisplay.

Experierce with Processes ahMonitors in Mesa 19

Leve

4 Use interface
v
3 Views
Calendar nams
v
2 Buffers
v
1 File suites
v / \ v
Transadbns Containers
\ v
Networks
v v N
0 Process table Stable files Volatile files

Figure 2: The internal structure of Violet

A morecomplex constdlation of pro@esses eists inFileSuites, which constructs a site

replicated file from asd of represertivefiles, each comtining da from sone verson of he
replicaked fie. The represedtives are stred n a ransadbnalfile system[11], so hateach one

is updated atomicallyand each carries a version number. For €deBuitebeing accessed,

there is a monitor that keeps track of the known representatives and their version numbers. The
replicated file is considered to be updated when all the representatiwesti| guorumhave

been updated; the latest version can be fourekdayiningaread quorumProvided the sum of

the read quorum and the write quorum is asslagjthe total set of representatives, the replicated
file behaves like a conventional file.

When thefile suiteis aeated, it FORKS and detches amnquiry process for each represanie.

This process tries to read the representative’s version number, and if successful, reports the
numbe to themonitor @asocated with thefile suiteand notifies thecondition CrowdLarger Any
process tring to read from the suite must collect a read quorfithere are not enobgepre-
sentdives present yet, it waits onCrowdLarger The inquiryprocesses gxre after their work is
done.

Experierce with Processes ahMonitors in Mesa 20

When the client wants to update thigeSuite it must collect a write quorum of representatives
containingthe current version, ag waitingon CrowdLargerif one is not ¢t present.tithen

FORKS anupdateprocess for each representative in the quorum, and each tries to write its file.
After FORKiIng the update processes, the cligmiis each onen turn, and hence does nmtoceed
until all have completed.d&ause all processes run within the same transaction, the urglerly
transactional file sstem giarantees that either all the representatives in the quorum will be
written, or none of them.

It is possible that a write quorum is not curreattgessible, but a read quorum isthiis case the
writing client FORKS acopyprocess for each represante which is accessile butis notup ©

date. This process copies the current file suite contents (obtained from the read quorum) into the
representative, which is now ealig to join the write quorum.

Thus as rany as hree processesay be creatd for each represatitve in each reptated file. In
the normal situation when the state of erfotgpresentatives is known, however, all these
processes have done their work and vanished;am@dymonitor call is required to collect a
guorum. This potentiallgomplexstructure is held ta@gher bya singe monitor containingn
arrayof representative states and a Ergpndition variable.

6.3 Gateway: An internetwork forwarder

Another substantial application pragn that has been implemented in Mesa ufiiagporocess

and monitor failitie s is a internetwork gateway for packet neworks [2]. Thegateway is

attached to two or more networks and serves as the connection point between them, passing
packets across network boundaries as required. To perform this task effi@quothes rather
heavyuse of concurrency

At the lowest level, theagewaycontains a set of device drivers, one per devipgaity

consistingof a hidn priority interrupt process, and a monitor fonslgronizng with the device

and with non-interrupt-level software. Aside from the drivers for standard devices (disk,
keyboard, etc.) aaiewaycontains two or more drivers for Ethernet local broadcast networks

[16] and/or common carrier lines. Each Ethernet driver has two processes, an interrupt process
and a backgund process for autonomous handliigimeouts and other infrequent events. The
driver for common @rrier linesis simila, but ha athird proess whit m&es acollection of

lines resemble a sifgEthernet byterativelysimulatinga broadcast. The other network drivers
have nuch the sane structure;all drivers provde he sane standard netork interface o higher

level software.

The nex level of software provides packet routiagd dispatchinéunctions. Thalispatcher

consists of a monitor and a dedicated process. The momithreyizs interactions between the
drivers and thedispdcher proaess. Thedispdcher proaess is normby waiting for thecompletion

of a packet transfer (input or output); when one occurs, the interrupt process handles the inter-
rupt, notifies thedispdcher, and immadiately returns to avait the next interrupt. For example, on

input the interrupt process notifies the dispatcher, which dispatches theanswdy packet to

the appropriatsocketfor further processingly invoking a procedure associated with the socket.

Therouter contains a nonitor that keeps aouting table mappingnetwork names to addresses of
other gtewaymachines. This defines the mékop” in the path to each accessible remote

Experierce with Processes ahMonitors in Mesa 21

network. The router also contains a dedicated housekepgngss that maintains the table by
exchanging spesia packets with othe gateways. A packet is transmitted rather differently then it

is received. The process wishitwtransmit to a remote socket calls into the router monitor to
consult theroutingtable, and then the sane process alls directly into theagppropride nework
driver monitor to initiate the output operation. Suchasyetrybetween input and output is
particularlycharacteristic of packet communication, but is alpecéy of much other/O

software.

The primaryoperation of the @ewayis now easyo describe: Wen the arrival of a packet has
been processed up thrdutipe level of the dispatcher, and it is discovered that the packet is
addressed to a remote socket, the dispatcher forwardddifyya normal transmission; that is,
consultingthe routingtable and callindgpack down to the driver to initiate output. Thus, althoug
the gtewaycontains a substantial number ofradyonous processes, the most critical path
(forwardinga messag) involves onlya sindge switch between a pair of processes.

Conclusion

The integation of processes and monitors into the Mesaulagggvas a somewhat more
substatial task than onemight have anticipated, gven theflexibility of Mesds control strutures
and the amount of published work on monitors. This waghalgecause Mesa is deseyl for

the construction of lamy serious pragms, and processes and monitors had to be refined
sufficienty to fit into this conext. The &sk has been accatished, however,iglding a setof
language features of sufficient power that thegrve as the onlsoftware concurrency
mechanism on our personal computer, handlitgations ranigg from input/output interrupts to
cooperative resource shariagnongunrelated application progms.

Received June 1979; acceptedeBtenber 1979: reised November 1979

References

1. American National Standard Programming Language PXA.53, American Nat Standards
Inst., New York, 1976.

2. Boggs, D.R etal. Pup: An internetwork archiecure.JEEE Trans. on Communicatio28, 4
(April 1980).

3. Brinch Hansen, FOperating System PrincipleBrentice-Hall, dly 1973.

4. Brinch Hansen. P. Theprogamming language Conairrent Pascal. IEEE Trans. on Software
Engineeringl,2 (lne 1975), 199-207.

5. Dijkstra, E.W Hierarchical orderingf sequential processen.®perating Systems
TechniguesAcademic Press, 1972.

6. Gifford, D.K. Weighted votingfor replicated dataOperaing Systms Reww13, 5
(Dec.1979), 150-162.

Experierce with Processes ahMonitors in Mesa 22

7. Gifford. D.K. Violet, an exerimental decentalized sytem Integrated Office S/stems
Workshop, RIA, Rocquencourt,iance, Nov. 1979 (also available as G8port 79-12,
Xerox Research Center, Palo Alto, Calif.).

8. Hoare, C.A.R. Monitors: An operatirgystem structuringonceptComm. ACML7, 10
(Oct.1974), 549-557.

9. Hoare, C.A.R. Communicatingequential processédomm. ACM21, 8 (Aug1978), 666-
677.

10.Howard, JH. Signaling in monitors.Second Int. Conf. on Software EngineeriBgn
Francisco, Oct.1976, 47-52.

11.1Israel, JE., Mitchell, JG., and Sturig, H.E. Separatindata from function in a distributed
file system.Second Int. Symposium on Operating SystéRh&, Rocquencourt, iance, Oct.
1978.

12.Keedy J.J. On structuringpperatingsystems with monitorAustralian Computer.110, 1
(Feb.1978), 23-27 (reprinted @perating Sys¢ms Reww13, 1 (AN.1979), 5-9).

13.Lampson, BW., Mitchell, JG., and Satterthwaite, E.H. On the transfer of control between
contexs. Lecture Notes in Computer Scierd& Springer, 1974, 181-203.

14.Laue. H.E., aad Needham. R.M. On thadudity of opeating system strudures. Second Int.
Symposium on Operating Systef®$A, Rocquencourt,iance, Oct. 1978 (reprinted in
Operaing Systms Reww 13,2 (April 1979), 3-19).

15.Lister, AM., and Magard. K.J An implementation of monitor&oftware—Practice and
Experence6,3 (lly 1976), 377-386.

16. Metcalfe. R.M., and Bggs, D.G. Ethernet: Packet switchifgyr local computer networks.
Comm. ACMLY, 7 (July 1976), 395-403.

17.Mitchell. J.G., Maybury. W., and Sweet, RMesa Language ManuaKerox Research @nter,
Palo Alto, Calif., 1979.

18.Redell, D., et al. Pilot: An operatirgystem for a personal comput@omm. ACM23,2
(Feb.1980).

19. Sdtzer, JH. Traffic Control in a Multiplexed Computer SystetAC-TR-30, MIT, July
1966.

20.Savena, A.R., and Bedt, T.H. A structured specification of a hierarchical operatystem.
SIGPLAN Noties 10, 6 (June 1975), 310-318.

21.Wirth, N. Modula: A langage for modular multi-proggmming Software—Practice and
Experence7, 1 (Bn.1977), 3-36.

Experierce with Processes ahMonitors in Mesa 23

