
Distributed Computing For Tomorrow 1 11/30/99

Operating Systems for the WWW
Robert Boyer Davis Chen
Abigail Gray Tim Lee

University of California at San Diego

Abstract. The evolution of inexpensive,
powerful personal computers, ever-expanding
storage capacity, gigabit bandwidth backbones,
unique hardware devices and direct portal
access has opened a new frontier in distributed
computing. Several operating systems have
been built in an attempt to harness the vast store
of computational power locked in idle personal
computers. A distributed operating system (OS)
that seamlessly integrates a wide variety of
devices into a computational grid is required.
Computational abilities and overall performance
should improve while users are guaranteed that
their individual performance will not be reduced
significantly and their privacy will be
maintained

Any distributed OS hoping to meet these
demands must support the concept of a global
system-wide OS, dynamic resource allocation, a
file system which hides the physical location
from the user, fault tolerance, protection, and
scalability, while simultaneously improving
productivity. We describe each of these
components and then evaluate Amoeba, Mach,
NOW, and WebOS against these core
requirements. And finally, we review the
feasibility of such an OS and offer some ideas
for a distributed OS acceptable to users.

1 Introduction
The performance to cost ratio of personal

computers and workstations continues to
dramatically outpace that of mainframes and
MPPs. [1] Smaller computers have
multiplied and invaded our homes and
offices. Concurrent with this trend is the
availability of personal direct connections
(cable modem, ADSL, and ISDN) and work
force direct connections (T1 and above) to
the rapidly growing World Wide Web. Also,
rare hardware devices, such as electron

microscopes, telescopes, and others, have
been connected to the net.

The resulting web environment is different
from most networks supporting distributed
computing. It is a geographically distributed,
heterogeneous computing environment with
a high-speed communications backbone yet
only moderate speed connectivity.

Users do not utilize their computers 24
hours a day; there is tremendous, untapped
computational power available. Even by
conservative estimates, personal computer
and workstation resources are idle 70% of the
time.

“While the World Wide Web has made
geographically distributed read-only data
easy to use, geographically distributed
computing resources remain difficult to
access. As a result, wide-area applications
that require access to remote CPU cycles,
memory, or disk must be programmed in an
ad-hoc and application-specific manner.” [10]

Dozens of attempts have been made to tap
the idle CPUs, DRAM, and disks. The
difficulty involved is underscored by the
marginal success of the best attempts at a
distributed OS. Among the myriad
complications, user concerns of decreased
performance and security top the list. The
current computational grid is merely awaiting
an OS to take advantage of its power in a
way that is transparent to the common user.

In this paper we present and extend
Tanenbaum's requirements for a distributed
OS. [6] Then we introduce each of the
systems surveyed, Amoeba, Mach, NOW,
and WebOS and compare them against our
distributed OS model for the web. Finally,
we analyze the successes and reevaluate the
distributed OS definition for practicality.

2 Distributed OS Requirements

"A distributed [OS] is one that looks to its
users like an ordinary centralized [OS] but runs
on multiple, independent CPUs. The key
concept here is transparency." [6]

Distributed Computing For Tomorrow 2 11/30/99

The following are required to have a truly
distributed OS.

2.1 Global, System Wide OS
A single conceptual OS must exist such that

when a hardware device boots it is added as an
integral part of the system. This contrasts with
most machines connected to the web that each
have their own OS and maintain a substantial
firewall to the web.

A global, system wide OS merges the
concepts of a network OS and a computational
grid. It provides an integrated environment for
all hardware and users.

The grid should be able to incorporate devices
at any time, making its resources available for
all to use based on access rights. With the vast
quantities of computers and devices connected
to the computational grid, the ability to find
resources is crucial.

Managing access to resources is a complex
issue involving a combination of protection
mechanisms and kernel level micro-cash
accounting and possibly a billing service to
support.

Users login to the system using a globally
unique identifier. This allows a user to login
from anywhere in the world. It should also be
used to associate the user with their data files
instead of physical location.

2.2 Dynamically Allocate Resources
Dynamically allocating resources

frees the user from the limitations of their
machine in terms of CPU, memory, and
secondary storage. In order for dynamic
resource allocation to be practical & scalable,
high-bandwidth, low latency networks with low
overhead network interfaces are required. The
speed of the network allows resources to be
viewed as a shared pool, thereby expanding the
universe of available resources.

2.2.1 CPU Allocation
A user should be able to work on any work-

station in the network without having to
perform some form of remote login.

This takes on three distinct behaviors, one of
dynamically allocating an entire application but
for the display (if any), dynamically allocating
subroutines in a kind of read-ahead cache, and
dynamically allocating threads for parallel
processes.

Communicating processes cannot rely on
location dependent schemes such as IP
addresses, but must rely on the level of
virtualization provided by the system. Further,
if processes are allowed to dynamically migrate,
open communications channels must also move.

2.2.2 Memory Allocation
In a fully efficient system, available idle

memory will be accessible to processes in need
as a form of virtual memory to enhance
performance.

2.3 File System
The OS should handle file placement

management and the physical location of files
should be hidden from the user. Typically,
users are aware of where each of their files are
kept and must move files between machines
with explicit file transfer commands instead of
having file placement managed by the OS. [6]

Critical aspects of a distributed operating
system’s transparent file system are replication,
multi-user consistency, disconnected operations,
privacy and accessibility

2.4 Fault Tolerance
Users should be shielded from the effects of

hardware failure. Tanenbaum [6] states,

"If 1 percent of the personal computers crash,
1 percent of the users are out of business,
instead of everyone simply being able to
continue normal work albeit with 1 percent
worse performance."

Although he does not address the fact that
those one- percent may no longer have a
keyboard, monitor, or I/O controller available,
his point is well intentioned.

2.5 Protection
Protection is distinctly at odds with global

computing efficiency. Protection is required for

Distributed Computing For Tomorrow 3 11/30/99

guarding private data: on the wire, on remote
unsecured disk and in remote memory, for
guarding remote programs: on the wire and
during remote execution, and for guarding
hardware against unauthorized use and attempts
to disable service.

Mechanisms such as secure cache-coherent
global file systems, authentication for fine-
grained capability-based access control, and
secure execution of remote programs begin to
address these issues.

2.6 Scalability
Scalability describes how well an OS design

incorporates additional users, hardware and
other resources. In order to scale well, an
operating system should transparently handle
the complexity of additional resources, users
and network traffic.

3 Operating Systems Reviewed
The intent and assumptions made by each

the operating systems reviewed follows.

3.1 Amoeba
The primary goal of the Amoeba project was

to build a globally transparent distributed OS.
This means that there is no concept of a local or
home machine, a user logs into the system
without any awareness of a particular physical
machine. Similarly, programs are run by the
system as a whole and not by a particular
machine. A user views and accesses all system
wide resources as a whole and has the privilege
exploiting all system wide processing power.

The architecture of Amoeba is based on the
processor pool model. It incorporates a vast
number of CPUs into a globally uniform
system. The architecture consists of 4 primary
elements, workstations, processor pools,
specialized servers, and gateways. Workstations
are the interface to the system. The processor
pool is the collection of all CPUs in the system.
The processing power is dynamically allocated
to each user to balance loads on the system.
Specialized servers, such as file or directory
servers, provide system users with a particular

service or function. The gateways interface with
wide-area networks to link Amoeba systems
together in a uniform and transparent manner.

To enhance reliability and promote flexibility,
Amoeba acts as a micro kernel implemented in
user space. Amoeba uses a client and server
model of communication based on remote
procedure calls and return service results. Fault
detection,retransmission, and acknowledgement
are provided to ensure reliable message passing.
Amoeba specifically avoids using shared
memory for scalability reasons.

3.2 Mach evolved from the Rochester
Intelligent Gateway and Accent. Accent
focused on combining memory mapping with
message passing. Mach extends Accent from
a network OS for an uniprocessor to a new
computing environment for multiprocesssors
connected on high-speed network. There are
four basic abstractions that Mach inherited
from Accent, task/process, thread, port, and
message. Their purpose is to provide control
over execution, virtual memory management
and inter-process communication.

Mach also provides the concept of a memory
object, which most sets it apart from Accent.
These give Mach the ability to efficiently
manage system services such as network paging
and file system support outside the kernel, in
what we today call an exokernel. Mach
provides a small set of basic facilities, which
provides great flexibility for implementing
system software and OS applications.

3.3 Network Of Workstations (NOW)
Implemented at UC Berkeley, NOW's main

component is GLUnix, an OS layer placed over
a cluster of workstations each running UNIX.
NOW provides transparent remote execution,
support for interactive parallel and sequential
jobs and load balancing.

NOW improves virtual memory and file
system performance by using the aggregate
DRAM of individual machines as a giant cache.
This achieves cheap, highly available, scalable
file storage by using redundant arrays of work-

Distributed Computing For Tomorrow 4 11/30/99

station disks. The LAN functions as the I/O
backbone. NOW’s design requires efficient
communication between hardware and software,
global coordination of multiple workstation
OS's and enterprise-scale network file systems.

3.4 WebOS
WebOS took the design approach of enabling

new technology without making serious
modifications to the existing OS. It is symbiotic
with Unix workstations and works within the
environment of the World Wide Web to provide
general purpose distributed computing over the
Web. It is an OS designed specifically to
provide the services needed to build
geographically distributed, highly available,
incrementally scalable, and dynamically
reconfiguring applications. It integrates simple
protocols from existing distributed systems into
the Web to enable a two-way computing on the
web - a whole new class of distributed
applications. [10]

“Dynamically reconfiguring and
geographically mobile services provide a
number of advantages, including (i) better end-
to-end availability (service-specific extensions
running in the client mask Internet or server
failures), (ii) better cost-performance (by
dynamically moving information closer to
clients, network latency, congestion, and cost
can all be reduced while maintaining server
control), and (iii) better burst behavior (by
dynamically recruiting resources to handle
spikes in demand).” [10]

WebOS demonstrates the power of providing
a common set of OS services to wide-area
applications, including mechanisms for naming,
persistent storage, remote process execution,
resource management, authentication, and
security. The claim is substantiated by their
Rent-A-Server used to enable overly burdened
servers to dynamically shed load during peak
access times. New servers are dynamically
spawned and requests redirected to take
advantage of locality.

4 Global, System Wide OS
The OS's reviewed ranged from the

centralized control of Amoeba to the

independent OS-per-node requirement of NOW.
Mach takes a minimalist approach providing
more of a global network than an OS.

4.1 Amoeba is a globally transparent
distributed operating system in which the
system appears as a single computer to the
user. The user is unaware of the existence of
any remote machine. There is no concept of a
local or home machine, a user logs into "the
system" without any distinction of a
particular physical machine. Similarly, works
are being done by the system as a whole and
not by any particular machine. Computing
powers are dynamically allocated by the
system to balance processing load across the
entire Amoeba system. Thus, all system wide
resource is view as a whole in Amoeba.

4.2 Mach has no sense of a global system,
the designed approach uses a workstation
model with users specifically login to a home
station. Load sharing is done over the
collection of CPUs on the home machine and
not over the collection of machines each
possibly with multiple CPUs. Similarly there
is no sense of global resources, access to
remote resource must be done through
explicit remote access.

4.3 NOW is not a global OS in that it
requires each member computer to run its
own fully functional UNIX OS. However,
NOW does provide several OS functions at a
global level: resource allocation, load
balancing and processor scheduling to name
a few.

4.4 WebOS is not a global OS. Rather, it
takes the approach of a small component of a
library operating system for an exokernel. It
focuses on the services provided and does
not discuss the user. It provides for a global
naming but this occurs on the level of
processes for the purpose of CPU loading
and the file system for data access.

Distributed Computing For Tomorrow 5 11/30/99

5 Dynamic Resource Allocation
The raison d'être for global system wide

operating systems; each system reviewed
provides some level of dynamic resource
allocation. NOW distributes load only on job
startup while WebOS supports process
migration. NOW has broader definition of
resource than the other operating systems, in
addition to sharing CPU time, NOW shares
DRAM and disk access as well. To spread such
behavior across the web will require secure,
trusted, micro-cash cost accounting built
directly into the kernel with mechanisms to
query usage costs before borrowing resources.

5.1 Amoeba has a central processor pool for
parallel and distributed computations. Each
process has its own stack and its own
program counter, so that when one of the
processes blocks on a remote procedure call,
the others will not be affected. A process
server who keeps track of the availability of
processors controls the processor pool.
Services in Amoeba are separated to provide
the service independently from each other.
Such separation enhances the overall system
performance and fault tolerance.

5.2 Mach has the concept of a processor set
which has a collection of CPUs at its disposal
and a collection of threads that need
computing power. Each processor set is a
closed world, with its own resources and its
own clients, independent of all the other
processor sets. A process may dynamically
assigns threads to a processor set as work
proceeds, keeping the load balanced only
within the home machine.

5.3 NOW provides load balancing on job
startup through intelligent placement of
processes. NOW does not provide job
migration, which limits NOW’s ability to
utilize idle resources on personal computers.
The GLUnix master layer keeps track of
available resources. Each computer node
runs a daemon that periodically queries the
local job load and reports to the master. The

daemon uses two functions to keep track of
the current load: glups queries all current
running jobs and glustat queries the current
status of all NOW machines. To begin a new
job, an application calls GLURun with the
parallel degree of the program and user’s
current environment (group, cwd, umask, and
environment variables). Using stored
information, the GLUnix master finds the
node with lowest processor load and sends
the job to that node to be run. Binary
programs can be copied and executed on
more than one node at a time to improve
performance.

5.4 WebOS claims dynamic process
allocation is as simple as forking a process
on the local processor. They achieve this by
providing a resource manager on each
machine responsible for job requests from
remote sites. To maintain local system
integrity, a virtual machine is created which
interfaces with the security system to enforce
rights.

Ideally users employ a single name for the
Web service and the system translates the name
to the IP address of the replica that will provide
the best service to the client. WebOS
approaches this ideal by loading application and
server specific code into end clients to perform
name translation. These Smart Clients enable
extensions of the server functionality to be
dynamically loaded onto the client machine
(using Java applets).

“Two cooperating threads make up the Smart
Client architecture. The GUI thread presents the
service interface and passes user requests to the
Director Thread. The Director is responsible for
picking a service provider likely to provide the
best service to the user. The decision is made in
a service-specific manner.” [10]

The customizable graphical interface thread
implements the user’s view of the service. The
director thread maintains the necessary state to
perform fail over if a service provider becomes
unavailable, thus transparently masks individual
failures.

Distributed Computing For Tomorrow 6 11/30/99

6 File System Hides Physical Location
Tanenbaum presents transparent file location

as a requirement for a distributed OS. Freeing
the user from physical file locations is critical to
users being able to login anywhere on a system
and being able to work as if they were on their
home node.

6.1 Amoeba does not dictate the choice of a
specific file system. The file system is
simply a collection of server processes in
user space. The micro kernel is independent
from the file system. In addition, Amoeba
supports the simultaneous use of different
and even incompatible file systems.

Amoeba threads within the same process
share address space, however, each thread has
its own registers, program counter, and stack.
The Amoeba file server utilizes multi threading
to independently handle incoming requests. By
splitting the server up into multiple threads,
each thread can be purely sequential, even if it
has to block waiting for I/O. Nevertheless, all
the threads can have access to a single shared
software cache. The kernel uses semaphores and
mutexes to prevent threads from accessing the
shared cache simultaneously.

A file server uses the Object Field in the
capability to identify the file of client's interest.
The Object Field in the capability of Amoeba
file server is analogous to UNIX's i-node
number.

Amoeba's file server file system indeed hides
the physical location of the file from the users
by when performing an operation on an object,
it is not necessary to know where the object
resides.

6.2 Mach uses paging to support shared
virtual address space. A key concept relating
to the use of virtual address space is the idea
of a memory object. A memory object can be
a page or a set of pages, but it can also be a
file or other, more specialized data structure.
A memory object, which may be a file may
be read and written once it is mapped into the
virtual address space. The read and write

system calls allow a thread to access virtual
memory belonging to another process. These
calls require the caller to have possession of
the process port belonging to the remote
process, which may be granted by the remote
process. Shared memory plays an important
role in Mach. All threads in a process see the
same address space and have access to the
data pages or files. A memory manager that
runs in the user space controls the mapping
of memory objects into process' address
space. Since communication is transparent
in Mach, a memory manager need not reside
on the machine whose memory it is
managing. A Distributed Shared Memory
server provides access to memory objects by
mapping the memory object to machine
address space. This approach blurs the
awareness of file's physical location from the
user.

6.3 NOW Because each computer runs its
own local OS, a full global file system is not
needed. However jobs executed remotely
should have the illusion they are being run
locally. To begin a job, an application calls
Glurun and passes in the environment the job
will run it. Jobs executed remotely will
produce the same effect as the same job run
remotely. There are a couple exceptions to
this where the job location is not transparent.
The authors consider these errors and offer
suggestions for overcoming them.

6.4 WebOS chose URL1s as their global
naming scheme to maintain consistency with
existing systems. They successfully achieved
their design goal to make the system work
with existing applications without kernel
modifications.

The costs associated with coherency or
authentication should be incurred only by
accesses requiring these services. Because
capabilities did not exist, WebFS was built. To
provide global file service for unmodified

1 URL - Universal Resource Locator

Distributed Computing For Tomorrow 7 11/30/99

applications, WebFS intercepts all file system
related system calls using SLIC.2 It allows for
interoperability with existing applications
without any kernel source modifications. To
mitigate the context switch overhead of
forwarded system calls to the user-level, SLIC
allows servers to register filters which forward
only system calls with particular arguments. In
the case of WebFS, only file system calls
requesting URLs need to be sent to the user-
level server.

WebFS provides a secure cache coherent
global file system, however its policy is last
writer wins. WebFS maintains a table of open
remote file descriptors and a disk cache of
remote file pages. When the WebFS on a
machine detects a page has been modified, it
sends an invalidate message to all other nodes
that have cached the page. Programs to open,
read, stat, access, close were implemented with
CGI to provide required file system
functionality while not disturbing the existing
OS.

7 Fault Tolerance
In the systems we reviewed, the extent of fault

tolerance is in direct proportion to the size of
the user base, keeping in mind all are used for
research purposes. In a production environment
fault tolerance would be given greater priority.

7.1 Amoeba’s fault tolerance design is based
on the idea that server crashes are infrequent
and thus it is not necessary to make crashes
completely transparent to the users

Amoeba provides a boot service, which other
servers may register, the boot server
periodically polls each registered server to
determine its operational state. If the boot server
times out waiting for response from a particular
server, the boot server will declare that
particular server to be down and request the
processor pool to start up a new copy of that
server.

2 SLIC is a loadable device driver that patches the
Unix OS syscall table to allow forwarding of system
calls to user-level servers.

The concept of a virtual circuit or a session is
not part of Amoeba's communication
philosophy. Therefore each remote procedure
call transaction is self contained and
independent of prior setup. If a server crashes
during a transaction, the client simply timeouts
out and try again. The only exception to the
problem is when the transactional operation is
not idempotent, however this is rarely the case.
Amoeba sacrifices this for the benefit of low
overhead.

Due to the centralized design of the system,
the crux of the system lies with the primary
server. If it goes down, so does the entire
network.

7.2 Mach is very flexible in fault tolerance
issues because it all depends on the particular
OS application emulation or user space
server implementation. Recall that one of the
primary design goals of Mach is to facilitate
the development of efficient user space
software. The degree of fault tolerance is left
as a policy for the emulated OS application
or the servers that run in the user space.

7.3 NOW is able to tolerate the failure of
any number of nodes, but not the failure of
the node running the GLUnix master. The
master keeps an open connection to all
running nodes as well as a list of which
processes are running on each node. If a
connection to a node is severed, the master
looks up which processes were running on
that node and marks them as killed. The
start-up job or parent process is notified of
the death. NOW does not provide
checkpoints or automatic restarts. In fact,
every user has the ability to perform a
manual restart of the entire system.

7.4 WebOS addresses fault tolerance by
having its Smart Clients maintain enough
state that fail over is possible. It also
manages the fault of overloaded hardware for
which it sheds load – dynamically by
spawning another server and redirecting
requests. WebOS took a transaction

Distributed Computing For Tomorrow 8 11/30/99

approach, that applications must have well-
defined failure modes. For example, an
aborted remote agent should not leave a
user’s file system in an inconsistent state

8 Protection
Protection concerns are perhaps the largest

hurdle facing global OS hopefuls. Any “global”
system will include malicious users; the larger
the system, the greater the risk. The systems
reviewed walk a fine line between cooperation
and concealment. NOW restricts its user base
in a way that is not feasible for an operational
system.

8.1 Amoeba Resources are objects, objects
have associated capabilities, thus protection
is provided.

Amoeba is based on the conceptual model of
abstract data types or objects which is managed
by servers providing the service. Amoeba
provides basic protection mechanism but
support a more complicated security policy
depending on the emulation application
executed in the user space.

All naming and protection issues in Amoeba
are dealt with by a single uniform mechanism
called the sparse capabilities. System resources,
including file, directories, and disks are treated
as object and each object is owned and
managed by a particular server which provides
the service. For example, the file server will
own a file object.

Each object has a globally unique name and
associated capabilities. Capabilities are
managed entirely by user processes without the
involvement from kernel.

Capability has a check field. It is an
encryption parameter generated to authenticate
the capability for protection purposes.

8.2 Mach – Inter-process communication in
Mach is based on message passing.
Messages are send or received from a process
port. Permission to send or receive from a
process port takes the form of a capability.
Process port is used to communicate with the
kernel. Each thread also has its own thread

port, which is used to invoke its private
kernel services. Threads are managed by
kernel, thus they are sometimes called
heavyweight threads rather than the
traditional lightweight thread which is pure
user space threads.

A Mach process does not have a uid, gid,
signal mask, root directory, working directory,
or file descriptor array, all of which UNIX
processes do have. All of this information is
managed by the emulation package, so the
Mach micro kernel knows nothing at all about
it.

8.3 NOW –was created to run in a trusted
network on top of complete operating
systems. Once a user has logged into a local
machine, he is implicitly trusted. NOW was
implemented with a maximum of 100 nodes
in a research environment. Protection will be
major consideration if NOW’s scope of use
is expanded. For practical purposes, a user
can reserve a node for a set time. At this time
only the node “owner” can run processes on
that node.

8.4 WebOS – provides a secure cache
coherent global file system, authentication
for fine-grained capability-based access
control, and secure execution of remote
programs.

WebOS goals were to provide a simple
mechanism for reasoning about granting access
to foreign programs; provide users with a way
to transfer access rights to programs running
remotely on their behalf, and to not incur over-
head associated with authentication when
accessing public resources.

WebOS chose public key cryptography and
assume the existence of trusted certification
authorities to guarantee the association of public
keys to entities.

The WebFS server maintains an access
control list (ACL) for read, write, and execute
access to all local files. One of the arguments to
system calls such as open is an identity

Distributed Computing For Tomorrow 9 11/30/99

certificate. The certificate is also used to guard
against replay attacks.

Protection against the risks of remote
execution is provided by constraining processes
to run on a restricted virtual machine isolated
from other programs, in a sandbox. Such
programs may be allotted limited resources,
may not be allowed to access most of the local
file system, and may be forbidden from making
arbitrary network connections. To manage their
sandbox, WebOS chose secure remote helper
application (SRHA) techniques to enable the
system to interact with unmodified applications.
SRHA uses OS tracing facilities to intercept and
disallow the subset of system calls that could
possibly violate system integrity. That work
was extended to provide sandboxing of arbitrary
executables using SLIC to intercept the needed
system calls.

9 Scalability
The systems reviewed all scale well within

certain limiting assumptions or design
decisions. For example, both GLUnix of NOW
and WebOS make specific use of Unix features
not available in other operating systems.

9.1 Amoeba . Targeting to incorporate a
large number CPUs in a straightforward way.

In order to scale the system, Amoeba avoids
the idea of CPUs sharing physical memory. If
shared memory is present, it can be utilized to
optimize message passing by just doing
memory-to-memory copying instead of sending
messages over the LAN.

Amoeba avoids using shared memory for
scalability reason. While it would be easy to
build a 16 node shared memory multiprocessor,
it would not be easy to build a 1000 node shared
memory multiprocessor.

Originally Amoeba is primarily used on local
area networks. Recently, there has been some
work developed on the wide area networks.
What LAN differs from WAN is that WAN
lacks the broadcasting; thus, Amoeba takes a
different approach on WAN. Amoeba's
approach to WAN requires the owner, which is

the human user, of the service to explicitly
publish the service port to the gateways. Then
when the client kernel broadcasts the LOCATE
packet, the gateway kernel responds in the usual
way. Only the gateway knows that WAN
communication is involved, the RPC is
transparent to the client and the server .

9.2 Mach – The Mach distributed OS
support an implementation a distributed
shared memory server [3], which promotes
scalability. The distributed solution allocated
multiple memory servers to avoid the
bottleneck of excess paging request as the
system grows in size.

9.3 NOW – The NOW design requires each
node to run a version of the Unix
workstation. There is another version of
GLUnix that runs with LINIX. The authors
are currently working on a tool that would
allow NOW to be used with commercially
marketed OS's. Since NOW has a centralized
master it can be used with only limited
number of nodes. With a limited number of
nodes (less than 100) the centralized master
is not a performance bottleneck. Only 1% of
job time is spend in the master. Network and
file system interactions are more costly than
services provided by the master. To increase
the node limit, NOW would need to be
redesigned using a peer to peer protocol.

9.4 WebOS – is well suited to questions of
scalability. It is built on top of the web
infrastructure as a framework to support
general computation on the web using a
common set of protocols. Issues might be
cache coherent file system; performance and
bandwidth costs associated with
authentication; ability to access files WebFS.

10 Conclusion
None of the operating systems reviewed quite

measure up to the definitions of a distributed OS
set forth by Tanenbaum and applied to the web
environment.

Distributed Computing For Tomorrow 10 11/30/99

His own operating system, Amoeba, follows
the definitions most closely, but is not sufficient
for the diverse web environment.

Although Mach does not support the concept
of a global system wide OS and its dynamical
resource allocation schemes are weak, it does
have a form of exokernel to provide a small set
of basic facilities outside the kernel.

NOW provides a unifying wrapper around
Unix through the use of GLUnix. With this,
users are able to capitalize on the untapped
power of idle resources – CPU, memory, disk.
NOW works well in a LAN environment due to
the availability of high speed, low latency
bandwidth. However, today there is probably
not enough bandwidth to support it on the web.

WebOS uses the Unix SLIC to avoid the cost
of kernel crossings and provides a set of OS
services to improve resource utilization across
the web

In review, we find Tanenbaum's ideas are
sound, but his writings are eclipsed by the rapid
changes which have brought us the World Wide
Web. Given human nature, the concept of a
global, system wide OS is both unachievable
and technically undesirable. Unique hardware
and performance considerations will force us to
maintain unique OS per device type. These
systems seem to have the right idea of removing
layers of access to kernel functions. Exokernel-
like techniques, similar to those developed for
Mach, NOW and WebOS, are a step in the right
direction.

Challenges to a widely used, distributed OS
include managing unique user names, managing
file concurrency, replication, and accessibility,
fault tolerance, heterogeneous computing,
transactional processing, security infrastructure
providing secure transactions and private data,
and scalability.

Further, to develop a fully collaborative
confederation of computing resources, the web
equivalent to the global system-wide OS, a
common micro-cash accounting system and
standard protocols which all participating
operating systems can incorporate are required.

11 Bibliography
1. Anderson, T., Culler D, Patterson, D. and

the NOW team."A Case for Now (Networks
of Workstations)", Dec 1994, src unknown.

2. Denning, P.J., Browne, J.C., Peterson, J.L.,
"The Impact of Operating Systems
Research on Software Technology,"
Research Directions in Software
Technology, MIT Press, Cambridge, Mass,
(June 1979), pages 490-513.

3. Forin, A., Barrera, J., Young, M., Rashid,
R., “Design, Implementation and
Performance Evaluation of a Distributed
Shared Memory Server for Mach, USENIX
Conference, January 1989.

4. Ghormley, D., Petrou, D, Rodrigues, S.,
Vahdat, A., Anderson, T., “GLUnix: a
Global Layer Unix for a Network of
Workstations” University of CA at
Berekely, August 14, 1997.

5. Rashid, R., Baron, R., Forin, A., Golub, D.,
Jones, M., Julin, D., Orr, D., Sanzi, R.,
“Mach: A System Software Kernel,”
Computer Society International Conference
COMPCON 89, February 1989.

6. Tannebaum, A.S., Renesse, R. van,
"Distributed Operating Systems," 1986

7. Tannebaum, A.S., Kaashoek, M.F., Renesse,
R. van and Bal, H., "The Amoeba
Distributed Operating System – A Status
Report," Computer Communications vol.
14, pp. 324-335, July/Aug. 1991

8. Tannebaum, A.S., Distributed Operating
Systems, Prentice-Hall, 1995. p. 376~472

9. Vahdat, A., Dahlin, M., Anderson, T.,
"Turning the Web Into a Computer,"
University of California at Berkeley.

10. Vahdat, Amin, Ed. "WebOS: Operating
System Services for Wide Area
Applications," http://now.cs.berkeley.edu/
WebOS/index.html, Oct 99.

11. Young, M., et al, “The Duality of Memory
and Communication in the Implementation
of a Multiprocessor Operating System,”
Carnegie Mellon University, Nov., 1987.

