
A Sanctuary for Mobile Agents

Bennet S. Yee

April 28, 1997

1 Introduction

The Sanctuary project at UCSD is building a secure infrastructure for mobile agents, and examining

the fundamental security limits of such an infrastructure.

First, what do we mean by \secure"?

An obvious issue is the privacy of computation. With standard approaches for agent-based

systems, a malicious server has access to the complete internal state of an agent: software agents

have no hopes of keeping cryptographic keys secret.1

The privacy of computation is only one aspect of the security picture: the integrity of computa-

tion is perhaps more critical. In agent-based computing, most researchers have been concentrating

on one side of the security issue: protecting the server from potentially malicious agents. Related

work in downloadable executable content (Java [7], Software Fault Isolation [19], Proof-Carrying

Code [16, 17], OS extension mechanisms such as packet �lters [13], type safe languages [4, 9], etc)

all focus on this problem. The converse side of the agent security problem, however, is largely

neglected and needs to be addressed: how do we protect agents from potentially malicious servers?

Why should we believe that the result returned by our software agents are actually correct and

have not been tampered with?

2 Software Agents and Malicious Servers

In agent-based computing, not only do servers fear that agents bring in viruses or attempt to subvert

the server, but the agent's user also needs to be able to trust that the agent was not subverted

when visiting a series of servers, some of which may be malicious.

An simple example of how such a subversion might occur will make this problem clearer. Let's

look at the standard air-fare agent scenario: I need to travel to Washington D.C. to attend a

meeting, so I send a software agent to visit servers at all the airlines to query their databases to

determine the least expensive airfare from San Diego to Washington D.C., subject to various trip

timing, seat preference, and routing constraints. One of the airlines, Fly-By-Night Airlines, runs

a server, www.flybynight.com, where my agent's code is automatically recognized and \brain-

washed": its memory of what other airlines it has visited and what prices it had seen is modi�ed,

so that it ends up recommending a \red-eye"
ight by Fly-By-Night Airlines, when a less expensive

daytime
ight o�ered by another airline would really have been preferred.

1Distributed function evaluation approaches may seem to apply, but that requires an unrealistic fault model and
is not likely to be ever practical.

1

3 Partial Solutions / Preliminary Results

How can software agents be protected from malicious servers? This is a critical security problem

to be solved if we are to have faith in agent-based computing. In the following sections, we will

examine several approaches and discuss their limitations.

3.1 Legal Protection

One approach to the agent security problem is via legal/contractual means. Operators of the servers

where agents run promise, via contractual guarantees, that they will keep their servers secure from

external attackers and that they will not violate the privacy or integrity of the software agents'

computation. No complex cryptographic protocols are required | there are no run-time overhead

at all!

Such an approach, however, is not entirely satisfactory: for it to work the ability to detect

breaches of contract is still critical. Furthermore, for that detection to be meaningful, tamper-

proof logs must be available to serve as non-repudiable evidence of the breach of contract should

lawsuits become necessary.

3.2 No Protection

For certain classes of computations, no protection is necessary, and if we are to carefully examine

the cost/bene�ts of providing protection for software agents, this must be examined. What types

of computations require no protection? Suppose the result of the computation is easily veri�able,

e.g., the existence of an airfare that is below $200. In this scenario, agents may simply replicate

and
ood-�ll all airline servers to make sure that a copy of the agent has run on each server, and

each agent copy can send the corresponding
ight information if it �nds one that costs less than

$200. No agent state needs to be transferred at all.

3.3 Fault Tolerance Approaches

In this section, we discuss fault-tolerance-style approaches to the agent security problem. First,

we make some general observations on which aspects of agent state are vulnerable to attack, and

which aspects may be systematically veri�ed.

3.3.1 Observations

First, note that uncorrupted servers can determine whether agent code and read-only state have

been modi�ed: the originator of the software agent can digitally sign the agent code and all read-

only con�guration variables before dispatching the agent to agent servers, and the agent servers

can verify both the origin and the integrity of these aspects of the agent. (Message authentication

codes are inappropriate, since potentially malicious agent servers should not share secrets with

the originator of the agent.) Other than cryptographic techniques (if any) needed for the secure

communication links, for now we will not require the servers to perform any cryptography.

It may seem that agent code signing could be circumvented by a malicious server, since the

malicious server could tamper with the agent and then re-sign it with its own key. This approach,

however, is thwarted by the following design: agents are constrained to send its results only to

the entity that signed them. Thus, conceptually a server that re-signs an existing agent is simply

performing two actions at once: denying service to the true originator of the agent, and sending

out its own agent, possibly with initial data stolen from the \murdered" agent.

2

Next, note that the originator can specify the order in which the software agent will visit the

airline servers. Abstractly, this is a circuit of the (complete) graph connecting the airline servers,

and the originator may chose this circuit at the time of agent dispatch.

At any honest server, the agent code and its read-only state is checked when the agent arrives,

so if the malicious server tries to tamper with the agent code or the read-only state the malicious

server can not successfully pass the modi�ed agent to an honest server. (Alternatively, the agent

code and the read-only state may be considered to be reloaded from the originator by every server.)

Furthermore, we assume that the variable agent state is transmitted among servers using authen-

ticated and encrypted channels, so that only the server that is the intended migration target can

receive the agent, as long as the agent is starting from an honest server. Thus, the malicious server

can not intercept an agent as it migrates from an honest server to another server.

At any server, an agent may query the server's identity. At �rst glance, this identity could be

authenticated via a public key certi�cation chain, with the root certi�cate embedded as part of the

read-only agent state. Note, however, that the use of cryptographic authentication does not really

help a software agent to determine the hosting server's identity: since the server has control over

the agent's computation, the malicious server may simply cause the program counter to bypass the

cryptography-based identity query and force the program to take the conditional branch(es) which

corresponds to the desired (falsi�ed) server identity.

In addition to being able to ask for the identity of the current server, the agent may also ask

from which server did the agent migrate. Because we assumed that server-to-server communications

use authenticated and encrypted channels, servers will know from which server did an agent arrive.

If the agent is running on an honest server, both these answers will be correct and they can be

used to verify that the agent had migrated on an edge on the intended migration circuit; if the

agent is running on the malicious server, these answers may be incorrect and the agent's state may

be modi�ed so that it believes it is running on a di�erent server. In the special case where there

is exactly one malicious server, this ruse will be discovered when the agent migrates o� of this

server to an honest server. If there are two or more malicious servers, the �rst malicious server

encountered by an agent can hand it o� to any of the other malicious servers in the route the agent

is programmed to take. When the agent is passed on to the next (honest) server, the agent is

brainwashed to believe it had visited all the servers in the original path between the two malicious

servers, thus avoiding discovery. If software agents are to depart from the route determined at agent

dispatch time, such departures must start and end at a malicious server.

Now, consider what visiting a malicious server can do to a software agent's memory. The read-

write state variables of an agent may be completely altered by the malicious server; thus, an agent

that has just left the malicious server can not trust any of its memory: All information collected

prior to this point it time | including data from servers visited prior to visiting the malicious server

| are suspect. Thus, only the results of computation done by those servers from the (maximal)

honest su�x of the agent's route, assuming that the computation is independent of any input from

previous servers, should be trusted.

3.3.2 Server Replication

In [15], Minsky et. al. developed a general method for mobile agent computation security, marrying

some ideas from the �elds of fault tolerance and cryptography. They propose that servers should be

replicated, and that replicated agents on these servers can use voting and secret sharing/resplitting

to move from one phase of the computation to the next.

Unfortunately, the fault model assumed in the paper is completely unrealistic: it assumes

that replicated servers fail independently. In our Fly-By-Night Airlines example, all replicated

3

www.flybynight.com servers are under the administrative control of flybynight.com, and mali-

cious attempts to brainwash software agents would occur on all of these servers. And while bribery

of individual administrators of replicated servers by an outside adversary might be independent

events, bribery of the software engineers responsible for the www.flybynight.com Web site is a

much more likely scenario. Even if we assume that Fly-By-Night Airlines is trustworthy, replicated

servers in the real world are likely to consist of identical hardware running copies of the same

software: any security holes found by an external attacker that allows him/her to compromise one

of the replicated servers is very likely to permit him/her to compromise all the servers.

3.3.3 Agent Replication

While the general approach proposed by Minsky et. al. fails to be convincing, in certain special

cases the fault tolerance style of approach can solve or at least ameliorate the mobile agent security

problem. Because server replication does not help to reduce the risk of agent brainwashing, in the

following we will assume that there is only one server per administrative/security domain, or when

there are multiple servers in a domain, they are indistinguishable.

Consider the case where there is at most one malicious server in our airfare minimization

example. Assume that secure communication links exists between the servers, and that the users

possess individual certi�ed public keys; servers may use these keys to verify the origin of the

software agents. (Secure communication channels may be constructed cryptographically if servers

also possess cryptographic keys to authenticated and encrypted data among the parties as needed.)

Because we are assuming that there is only one dishonest server, we know that the agent must stay

on the circuit prescribed during agent con�guration.

Suppose we chose some sequence of servers S = s1; s2; : : : ; sn. We con�gure two software agents

A1 and A2, where A1 will travel along S, and A2 will travel over S�1 = sn; sn�1; : : : ; s1.

Recall that we are assuming at most one malicious server. The all-honest servers case is trivial,

so we can ignore that case; henceforth we will assume that there is exactly one bad server. Without

loss of generality, assume that server si is malicious, and that sj is run by the airline with the lowest

fare (j � i). Furthermore, we assume that the malicious server will not attempt denial-of-service

attacks | it may do so by killing the software agent or by implanting the belief that the lowest

fare is o�ered by some third server which will later repudiate this idea.

First, consider the j < i case. A1 will encounter the lowest-fare server (sj) �rst, and when it

arrives at si, its memory of the lowest-fare seen-so-far may be altered. When A1 returns with its

result, it will report either si as the server with the lowest fare, or some sk where k > i if the

malicious server did not declare a fare lower than one that the agent will see later in its travels.

A2, on the other hand, will encounter the lowest-fare server after visiting the malicious server. It

will report the correct minimum price | since we assume no denial-of-service attacks, the corrupt

server will not have made this agent believe that a (false) lower price exists elsewhere | and when

A2 returns to the user, the user will be able to determine the true minimum airfare.

Next, consider the j = i case. When this occurs, the malicious server can alter its price to

be just below that of the second lowest price o�ered and still get business. This corresponds to

a Vickery auction or second-price auction,2 except the situation is upside-down: instead of the

highest bidder paying the second highest bid price to obtain the goods being auctioned o�, we have

the lowest airfare o�er selling tickets at the second lowest quoted price. Note that Vickery-style

2We do not have sealed bids here since the minimization is done by the agent; an alternative design would be

to gather bids encrypted using the public key of the agent originator, preventing servers from knowing each other's

prices directly. Of course, servers could send out their own agents to discover such \commodity" prices; this may
have to be done through anonymizing proxies if the pricing could depend on the consumer's identity.

4

price determinations may be a desirable economic design choice anyway, since Vickery auctions are

designed to maximize the
ow of pricing information so bidders have no economic interest to hedge

and not bid (and reveal) the true prices that they are willing to pay.

The above agent-replication approach provided a partial solution for a special case | at most

one malicious server | the solution did not quite work \properly" to compute the true minimum

airfare: when j = i, we could only achieve second-best pricing, where what we obtain is the second-

best airfare minus �. Arguably, since airline servers may also send out agents to determine pricing

at other airlines | assuming price information can be obtained anonymously or in such a way that

we are assured that it is independent of consumer identity (or race or age or ...) { Vickery pricing

may be the end e�ect whenever there is great consumer price sensitivity in any case. Applying

some basic cryptographic techniques, however, we can do a little better.

3.4 Cryptographic Approaches

There are three cryptographic techniques that apply or may apply. The �rst uses per-server digital

signatures to vouchsafe partial results; the second is the use of state authentication codes to improve

on the fault-tolerance solution above; and the third is the use of probabilistically checkable proofs

(PCP) (a.k.a. \holographic proofs") or computationally sound proofs (CS proofs) to show that the

computation at the servers ran correctly. Note that these techniques deal with the integrity of the

result of computations at various servers | if the privacy of the result is needed, the result can

simply be encrypted using the originator's public key.

3.4.1 Digital Signatures

The application of digital signatures to mobile agents is to use the signatures to vouchsafe partial

results from computation done while executing in a server. Going back to the airfare minimization

example, what we will do is to have each airline server sign a message of the form \this is the best

airfare found by your software agent at this server at this time".3 The message signature is done

using the airline's key, so it is non-repudiable and unforgeable. The message may optionally be

encrypted by the originator's public key to ensure privacy.

The key observation is this: due to the unforgeability property, a malicious server can not

completely brainwash the agent | at worse, it can make the agent forget the lowest airfare, which

will be detected when an enumeration of the signatures show that one airline's quote is missing.

By using digital signatures, we will either obtain the true minimum airfare or be able to detect

any tampering with the agent. The cost is that the agent state grows linearly with the number of

servers visited, where the fault-tolerance approach required constant space (though the result was

Vickery pricing rather than true minimum). This is an acceptable overhead for most applications.

Like the fault-tolerance approach, however, the digital signature approach is not fully general:

it only applies only certain classes of functions where there are intermediate results that can be

\compressed" (e.g., in this case, the intermediate result is the best price found on the server | we

don't care how much work was done in querying the airline's databases prior to �nding this result,

and we don't need to prove that it took place and that it ran correctly).

3It is important to note that the query as well as the answer is signed and timestamped. Otherwise signed answers
to the wrong question, asked by a di�erent agent dispatched by the adversary, could be substituted in place of the

expected answer.

5

3.4.2 Partial Result Authentication Codes

The idea of a Partial Result Authentication Code (PRAC) is very similar to that of a message

authentication code (MAC)[2, 10, 11]. Instead of authenticating the origins of a message, we are

demonstrating the authenticity of an intermediate agent state or partial result that resulted from

running on a server. Similar to MACs, PRACs are cheaper than digital signatures to compute, and

have slightly di�erent security properties.

The property that PRACs ensure is perfect forward integrity: if a mobile agent visits a se-

quence of servers S = s1; s2; : : : ; sn, and the the �rst malicious server is sc, then none of partial

results generated at servers si, where i < c, can be forged. This contrasts with a simple digital

signature, where if an attacker compromises the generating host where the signature key is stored,

the authenticity of all messages signed with that key becomes questionable. The use of a digital

timestamping service [8] can have similar properties, except that in that case a trusted third party

(the timestamping service) is required and the granularity of the timestamps limits the maximum

rate of travel for the agents | the agent must stay on a server until the next timestamping epoch

before migrating to the next server.

Simple MAC-based PRACs To have an agent use simple PRACs, we provide the agent with

a list of secret PRAC keys at agent dispatch, with a key per server visited. Before leaving a server

for the next, the agent summarizes its partial results from its stay at this server in a \message"

back to the agent dispatcher. This message need not be sent back to the dispatcher immediately;

instead, it may be carried with the agent as part of its migrating state for later transmission. This

may be delayed so that it is \sent" to the dispatcher when the agent returns. Alternatively, these

messages may be \batched" and sent when the networking bandwidth is cheap or available, e.g.,

when the dispatching mobile host has reconnected to the network. To provide integrity, a MAC

is computed on this message, using the key associated with the current server; the message, along

with its MAC, comprises the PRAC. The critical di�erence between MACs and PRACs is that

after a PRAC is computed, the agent takes care to erase the PRAC key associated with the current

server prior to migrating to the next server.

The erasure step provides a very important security property: the partial results from the honest

pre�x servers can not be modi�ed. (This contrasts with the honest su�x property from section

3.3.1, where the partial results from honest servers visited after visiting the last malicious server are

known to be unmodi�ed.) Suppose an agent A traverses a sequence of servers S = s1; s2; : : : ; sn,

where at each server si a partial result PRi is computed using key ki, and servers s1; : : :sj are honest

and do not expose the internal state of the agent, then 8i; k : i � j < k; sk can not forge PRi, since

sk must know ki to change PRi.

MAC-based PRACs with One-Way Functions An obvious enhancement to simple PRACs

is to use a single key instead of n PRAC keys and use a m-bit to m-bit one-way function to generate

the list of PRAC keys. When the agent is initially sent to server s1, it contains key k1. When the

agent prepares to go from server si to server si+1, it computes ki+1 = f(ki), where f is a one-way

function, and erases all knowledge of ki. As before, a server sk can not forge PRACs from previous

servers, since it would have to break the one-way assumption to determine the previous PRAC keys

or break the MAC function.

More generally, instead of a m-to-m-bit function, an m to r bit one-way function may be used.

(Typically r < m.) In this case, to obtain ki+1 from ki, we simply use some (perhaps pseudo-

random) known (m � r)-bit string t and set ki+1 = f(kijt), where \j" denotes concatenation. If

the probability that any algorithm, given y, will �nd a pre-image x : f(x) = y is at most 2�m + �,

6

knowing the last (m � r) bits of the pre-image x = kijt should not help: if knowing t gives an

algorithm a probability of �nding a pre-image of p > 2�r + 2m�r�, then by guessing the value of

t values (probability 2r�m), we obtain an algorithm which will �nd a pre-image with probability

2r�mp > 2�m + �, contradicting our one-way assumption.

Publicly Veri�able PRACs The MAC-based PRACs above required that the agent originator

maintained a secret key or keys in order to detect tampering with the partial results. An obvious

question is whether perfect forward integrity can be provided such that the integrity veri�cation

may be public | so that an untrusted intermediate server not sharing the secret key with the

originator may nonetheless help detect tampering.

Like MAC-based PRACs, publicly veri�able PRACs are implemented by relying on the destruc-

tion of information when agents migrate. Here, we use a digital signature system: when the agent

is dispatched, it is given a list of secret signature functions sig1(m); : : : ; sig
n
(m), along with usre-

generated certi�cates for their corresponding veri�cation functions verif1(m; s); : : : ; verifn(m; s).

The veri�cation functions would be signed by the user's signature function siguser(m).4 Like

simple MAC-based PRACs, we use sig
i
(m) to sign the partial result computed on server si, and

erase sig
i
(m) prior to migrating to server si+1.

Similar to one-way function MAC-based PRACs, we can also defer key generation, so that most

of it is done on the servers, which presumably have greater resources. Here, the agent is given

an initial secret signature function sig1(m) and a certi�ed veri�cation predicate verif1(m; s); the

signature function is used both to sign partial results and to certify new veri�cation functions.

The veri�cation predicate verif1(m; s) (and its certi�cate) is public, and the signature function

sig1(m) is secret. When the agent is ready to leave server s1, it signs the partial result r1 by com-

puting sig1(r1). Next, it chooses (randomly) a new signature / veri�cation function pair from the

signature system, sig2(m) and verif2(m; s), and computes sig1(verif2) to certify the new signature

functions. Lastly, before the agent migrates to server s2, sig1 is destroyed.

To use publicly veri�able PRACs, the list of certi�ed veri�cation predicates must be either

published and/or carried with the agent. When these predicates are available with the agent,

publicly veri�able PRACs enjoy an important property not available with MAC-based PRACs:

while at server sj , the agent can itself verify the partial results obtained while at servers si, where

i < j. In particular, this means that computations that depend on previous partial results can

detect any integrity violation of those results | the agent's computation can abort early, instead

of having to �nish the computation and detecting integrity violation only when the agent results

return to the agent originator.

3.4.3 Proof Veri�cation

We would like to get a guarantee that the agent's computation was done according to program

speci�ed in the agent. One possibility is to forward the entire execution trace to the originator,

who checks it. This however is too costly. We would like to explore the use of holographic proof

checking techniques [1].

This is quite a speculative idea. The current approaches are very theoretical. In principle they

do help, but the cost in practice of existing solutions is prohibitive. We are considering investigating

ways to use the ideas in a more practical way. Let us describe the ideas and issues to see what it

is about.

4Signing a function verifi(:) simply consists of signing the parameters that specify the function; in RSA, it would

be the two values ei; ni.

7

Call the program x. Let y denote an execution trace. De�ne the predicate �(x; y) to be 1 if this

trace is correct (corresponding to running x) and 0 otherwise. The server does not want to send y.

But it can encode y as a holographic proof y0. This has the property that one needs to look at only

a few bits of y0 to check that �(x; y) = 1. It is tempting from this to think that the server can just

transmit a few bits. But this does not work. The model necessary for holographic proofs is that

the veri�er have available a �xed, \committed" proof string y0 that he can access at will. He will

pick a few random positions here and check something. So there is no choice but to transmit y0 in

entirety. We will not save bandwidth. We will gain something: the veri�cation process is faster.

(The veri�er receiving y0 will perform some quick spot-checks).

A better approach is to use computationally sound (CS) proofs as in [12, 14]. Having constructed

the holographic proof y0 as above, the server hashes it down via a tree hashing scheme using a

collision-resistant hash function h. Only the root of the tree is sent to the originator. This is

relatively short, so bandwidth is saved. In addition, certain challenges are implicitly speci�ed by

applying an ideal hash function to this root, and the server also provides answers to them. The

total communication from server to originator is still small compared to the length of the original

execution trace y, yet some con�dence in the correctness of y is transmitted!

The tree hashing is actually not impractical. What is prohibitive is constructing the holographic

proof y0 to which it is applied. This currently calls for application of NP-completeness techniques,

including the use of the construction underlying Cook's theorem. What we might hope instead is

to �nd a direct holographic proof for the functions of interest, and then apply tree-hashing.

3.5 Trusted Environments (Secure Coprocessors)

An engineering solution to providing security for software agents is to build a trusted / trustworthy

execution environment for the agents. The Sanctuary project will build such an environment to run

within a secure coprocessor [20], allowing Java-based agents to run securely; design and implement

the agent APIs needed to support mobile Java agents; and develop the technology by which Java-

based agents can migrate among unmodi�ed Java interpreters running in an secure-coprocessor

environment.

In addition to the basic support for agent execution, the Sanctuary project will develop the

trust framework needed for inter-server communications. This necessarily implies having some

basic public key infrastructure | we should be able to leverage o� of the existing work being done

to support SSL [6], PCT [3], and TLS. 5

4 Trust Models

The issue of trust models is very important to agent-based computing. Agents do not just need a

trusted computing base (TCB) | trust may not be so binary in nature. Instead, agents (or their

deployers) may decide that it is okay to run in a software-only environment if such an environment

is hosted by a well-known and trusted entity, but the use of physical protection to maintain the

trustworthiness of a trusted third-party provided execution environment is needed when the envir-

onment is hosted by an entity with no reputation to protect and/or where no legal remedies may

be obtained.

In Sanctuary, we envision that the trust decision will be made by the agent's software itself.

Thus, trust speci�cation is simply an object in Java, and any e�ectively computable function may

5The Internet Engineering Task Force's Transport Level Security group is developing a merged protocol based on

SSL version 3 and features from PCT. Such a protocol requires a merchant-side public key infrastructure.

8

be used. This is similar in spirit with the work of Blaze and Feigenbaum [5], except that by unifying

the agent language and the trust speci�cation language, the programmer's work is simpli�ed.

5 Mobile Java

Other approaches to providing mobility to Java programs [18] requires modifying the interpreter.

In Sanctuary, we intend to provide a mechanism to migrate Java-based agents that can run on

unmodi�ed interpreters. This strategy will enable wider acceptance of mobile agents, leveraging

o� of the work done by Sun/Javasoft.

6 Proposed Work / Future Work

The Sanctuary project group will examine the important security issues in mobile agent computing.

This paper has discussed some preliminary results and directions.

The primary goal will be to build a secure agent environment insofar as it is theoretically

feasible. First, we will build a trusted Java agent environment to run within a secure coprocessor

and design APIs that permit agents to exist both in a hardware-based secure environment and in

a software-only environment unchanged (but permitting security property queries). Next, we will

build the necessary software tools to permit Java-based agents to be mobile. Our techniques will

enable these agents to run on unmodi�ed Java interpreters; this design approach permits greater

acceptance of our work, since no complex installation process will be required, and it will allow our

system to track new Java releases more easily. Additionally, we will examine alternative methods

for providing security for software agents through fault tolerance and cryptographic approaches

(e.g., distributed function evaluation, additional uses of digital signature techniques, etc).

Acknowledgements

The author wishes to thank Mihir Bellare for his invaluable help in preparing this paper.

References

[1] Laszlo Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in

polylogarithmic time. In Proceedings of the Twenty Third Annual ACM Symposium on Theory

of Computing, pages 21{31, New Orleans, Louisiana, May 1991.

[2] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authen-

tication. In Neil Koblitz, editor, Advances in Cryptology: Crypto '96 Proceedings, volume 1109

of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[3] Josh Benaloh, Butler Lampson, Terence Spies, Dan Simon, and Bennet Yee. The PCT protocol,

October 1995.

[4] Brian N. Bershad, Stefan Savage, Przemys law Pardyak, Emin G�un Sirer, Marc E. Fiuczynski,

David Becker, Craig Chambers, and Susan Eggers. Extensibility, safety and performance in

the spin operating system. In Proceedings of the Fifteenth Symposium on Operating Systems

Principles, December 1995.

9

[5] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In Proceedings

1996 IEEE Symposium on Security and Privacy, page (to appear), May 1996.

[6] Alan Freier, Philip Karlton, and Paul Kocher. The SSL protocol version 3, December 1995.

[7] J. Steven Fritzinger and Marianne Mueller. Java security, 1996. Published as http://www.-

javasoft.com/security/whitepaper.ps.

[8] Haber and Stornetta. How to time-stamp a digital document. Journal of Cryptology, 3(2),

1991.

[9] Wilson C. Hsieh, Marc E. Fiuczynski, Charles Garrett, Stefan Savage, David Becker, and

Brian N. Bershad. Language support for extensible operating systems. In Proceedings of the

Workshop on Compiler Support for System Software, February 1996.

[10] IBM Corporation. Common Cryptographic Architecture: Cryptographic Application Program-

ming Interface Reference, SC40-1675-1 edition.

[11] R. R. Jueneman, S. M. Matyas, and C. H. Meyer. Message authentication codes. IEEE

Communications Magazine, 23(9):29{40, September 1985.

[12] Joe Kilian. A note on e�cient zero-knowledge proofs and arguments. In Proceedings of the

Twenty Fourth Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,

Canada, May 1992.

[13] Steven McCanne and Van Jacobson. The bsd packet �lter: A new architecture for user-level

packet capture. In USENIX Technical Conference Proceedings, pages 259{269, San Diego, CA,

1993. USENIX.

[14] Silvio Micali. Cs proofs. In Proceedings of the 35th IEEE Symposium on Foundations of

Computer Science, pages 436{453, Santa Fe, New Mexico, November 1994.

[15] Yaron Minsky, Robbert van Renesse, Fred B. Schneider, and Scott D. Stoller. Cryptographic

support for fault-tolerant distributed computing. Technical Report TR96-1600, Department

of Computer Science, Cornell University, July 1996.

[16] George Necula. Proof carrying code. In Proceedings of the Twenty Fourth Annual Symposium

on Principles of Programming Languages, 1997. To Appear.

[17] George Necula and Peter Lee. Safe kernel extensions without run-time checks. In Proceedings

of the Second Symposium on Operating Systems Design and Implementation, Seattle, WA,

October 1996.

[18] Mudumbai Ranganathan, Anurag Acharya, Shamik D. Sharma, and Joel Saltz. Network-

aware mobile programs. In Proceedings of the Usenix 1997 Annual Technical Conference.

Usenix, 1997.

[19] Robert Wahbe, Steve Lucco, T. E. Anderson, and Susan L. Graham. E�cient software-based

fault isolation. In Proceedings of the ACM SIGCOMM 96 Symposium. ACM, 1996.

[20] Bennet S. Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mellon University, 1994.

10

