
CSE30 | Midterm

Yee Fall '97

Name / Login: Answer sheet

There are a total of 17 questions on 13 pages. There are 100 points possible. It is
unlikely that you will �nish the entire exam. Wait until the instructor has passed out exams
to everybody before you start. Advice: skim through the entire test to determine which of
the problems you can solve quickly and work on those �rst, rather than getting stuck on a
hard problem early and wasting too much of your time on it.

When you can start, you should �rst make sure that you have all the pages, and write
your name and your login name at the top of �rst page, and your login name on the top of
all subsequent pages. Pages of this exam will be separated and graded separately | if you
fail to write your name at the top of a page, you will not receive credit for answers on that
page. Write clearly: if we cannot read your handwriting or your pencil smudges, you will
not properly get credit for your answers.

This exam is open book, open notes (1 sheet of paper), but not open people (no scalpels,
please). You may look at your own books and notes all you want. You may not look at
anybody else's books, notes, exam, or otherwise obtain help from another human being,
arti�cial intelligence, or space alien. If we see your eyeballs wandering, you will get a zero
for the exam. If you must look away from your exam/notes to think, look up into space.

No electronic computation aids are allowed.

Login: Answer Sheet CSE30 F'97, Midterm

1. [Base Conversion] Given a string of digits dk�1dk�2 : : : d2d1d0 in a certain base b, where
0 � dj < b for j = 0; : : : ; k � 1, written as dk�1dk�2 : : : d2d1d0 (b), what is the corresponding
integer? Write this in a mathematical notation. Also write down this number multiplied by
b as a string of digits.
(4pt)

Ans:

The number is

k�1X
i=0

dib
i

b times this number is just dk�1dk�2 : : : d2d1d00 (b).

2

CSE30 F'97, Midterm Login: Answer Sheet

2. [Base Conversion] Perform the following base conversions. For bases larger than
16(10), the individual digits are written as parenthesized base 10 numbers, e.g., (17)(30)(72) =
17(10) � 72(10) + 30(10).

1: FACE0FF(16) =?(2)

2: 2174563582(9) =?(3)

3: (74)(34)(3)(81) =?(3)

4: 12211022(3) =?(27)

5: 33653337357(8) =?(16)

(15pt, 3 each)

Ans:

1: FACE0FF(16) = 1111 1010 1100 1110 0000 1111 1111(2)

2: 2174563582(9) = 02 01 21 11 12 20 10 12 22 02(3)

3: (74)(34)(3)(81) = 2202 1021 0010(3)

4: 12211022(3) = (5)(22)(8)(27)

5:

33653337357(8) = 011 011 110 101 011 011 011 111 011 101 111(2)

= 0 1101 1110 1010 1101 1011 1110 1110 1111(2)

= DEADBEEF(16)

3

Login: Answer Sheet CSE30 F'97, Midterm

3. [Micro-architecture] What is an ALU? Explain what it does.
(4pt)

Ans:

An ALU is the Arithmetic and Logic Unit. It is the circuits that perform opera-
tions such as add, subtract, multiply (sometimes there is a separate multiply unit),
and various bit-wise operations.

4. [Micro-architecture] What is the purpose of a cache? Explain what it is and how it
achieves its purpose.
(5pt)

Ans:

A cache improves overall performance of the computer by transparently making
memory accesses faster most of the time. It is fast memory that is located closer to
the processor, and contains copies of portions of main memory contents. When the
processor attempts to access cached memory, a cache hit occurs and the access is fast,
since the memory access does not have to travel to the DRAM over the system bus;
when the processor attempts to access memory that has not been cached, a cache

miss occurs and the cache forwards the access to the DRAM, saving (caching) a copy
of the result for subsequent use.

If p is the probability of a cache hit, then the expected memory access time is
p � thit + (1 � p) � tmiss; typically caches are designed to have a very high p (depends
on size and program mix), e.g., 0.99, and thit << tmiss, so including caches greatly
improves overall performance of computers.

4

CSE30 F'97, Midterm Login: Answer Sheet

5. [Number representation] Compute the two's complement of the following 16-bit
numbers:

1: 0x3248

2: 0x9321

Negate the following numbers stored in 16-bit registers:

3: 0x328

4: 0xA34C

In all 4 cases, mark which results would be interpreted as a negative number when interpreted
as a 16-bit two's complement number.
(8pt, 2 each)

Ans:

Taking the two's complement of a number is the same as negating it.

1: 0x3248 ! 0xCDB8 (negative)

2: 0x9321 ! 0x6CDF

3: 0x328 ! 0xFCD8 (negative)

4: 0xA34C ! 0x5CB4

5

Login: Answer Sheet CSE30 F'97, Midterm

6. [Number representation] Suppose you have a 32-bit number in a register, and its
hexidecimal representation is 0x80000000. Is this number positive or negative when viewed
as a two's complement number? What happens when you negate it? Is the result of the
negation positive or negative when viewed as a two's complement number?
(7pt)

Ans:

The number is negative when viewed as a two's complement number, since the
high-order bit is set. The result from negating it is also 0x80000000. An over
ow
occurred during the negation, because the result can not be represented as a 32-bit
two's complement number (it's too big). The result would be interpreted as the same
as the original negative number.

7. [One Instruction Computer] De�ne the subz instruction.
(4pt)

Ans:

subz a,b,c

is equivalent to the following C-like pseudo-code:

mem[a] = mem[a] - mem[b];

if (mem[a] == 0) pc = c;

else pc = pc + 1;

6

CSE30 F'97, Midterm Login: Answer Sheet

8. [One Instruction Computer] Convert the following subz program fragment to its
hexidecimal representation.

subz t,t,next

subz t,a,next

subz t,b,next

subz c,c,next

subz c,t,next

subz t,t,this

a: 0x123456789a

b: 0x23456789abcd

c: 0

t: 0
Assume that the �rst instruction will be in memory location 0. You do not need to add

comments to this code, but you should be explicit about how you assigned addresses and
how you arrived at your result.
(8pt)

Ans:

9 9 1 ; 0 subz t,t,next

9 6 2 ; 1 subz t,a,next

9 7 3 ; 2 subz t,b,next

8 8 4 ; 3 subz c,c,next

8 9 5 ; 4 subz c,t,next

9 9 5 ; 5 subz t,t,this

0x12 0x3456 0x789a ; 6 a: 0x123456789a

0x2345 0x6789 0xabcd ; 7 b: 0x23456789abcd

0 0 0 ; 8 c: 0

0 0 0 ; 9 t: 0

7

Login: Answer Sheet CSE30 F'97, Midterm

9. [Endianism] In a little-endian machine, if we loaded the �rst four bytes of a string
into a register as an integer, what would be the value in that register? Let the string be
\ABCD". You may assume that the string is word aligned. The ASCII value of the letter
are: \A" = 0x41; \B" = 0x42, \C" = 0x43, \D" = 0x44. Express the register contents as a
number.
(4pt)

Ans:

A little-endian machine would store the low order byte of an integer into the
lowest memory address; so a load would load the byte with the lowest address as the
lower order byte of the integer. C strings are character arrays, so the \A" will be the
character with the lowest address. Thus, the result will be 0x44434241.

10. [MIPS] What are the MIPS t and s registers used for? In what way are they di�erent
from each other?
(5pt)

Ans:

Both the t and s registers are for temporaries. The t registers are caller-saved

registers, since by convention a subroutine is allowed to use them. The s registers are
callee-saved registers; a routine can call a subroutine and expect that these registers'
contents will be preserved when the subroutine returns.

8

CSE30 F'97, Midterm Login: Answer Sheet

11. [RISC and CISC] Give an example of a processor with a RISC architecture and an
example of processor with a CISC architecture.
(3pt)

Ans:

The MIPS architecture is a RISC, and the R2000 is an implementation of that
architecture; a 486 is a processor that implements the x86 (or IA-32) architecture,
which is a CISC architecture.

12. [Computer Architecture / OS] What are page faults? Why do their existence
in
uence the design of a processor?
(6pt)

Ans:

A page fault occurs when there is no virtual-to-physical address translation possi-
ble because the memory contents were paged out to disk. When a page fault occurs,
the operating system must �nd some free memory, read the page back in, �x the
virtual-to-physical address mapping to translate the virtual address to the (new)
physical address, and restart the instruction that caused the page fault.

Because page fault handling requires that the processor save enough state in
order to restart instructions, this complicates the processor design. A processor
with complex addressing modes and complicated instructions (such as the x86's REP
pre�x or the Vax's polynomial evaluation instruction) require a lot of state to be
saved/restored. RISC designs avoid complexity that are rarely useful, so tend to be
load/store architectures, where only explicit load and store instructions are used to
reference memory, and all other instructions only involve registers.

9

Login: Answer Sheet CSE30 F'97, Midterm

13. [Translating C to assembly] Translate the given the following C code into an
equivalent series of MIPS assembly language instructions. You may assume that the C
variables are in the correspondingly named registers. Indicate where the code that preceeds
the loop, the code that comprise the body of the loop, and the code that follows the loop
would be located in your equivalent MIPS code. E�ciency matters.

code that precedes loop

for (t0 = 0; t0 < t1 && t2; t0++) f
loop body

g
code that follows loop

(9pt)

Ans:

code that precedes loop

li $t0,0

b test

loop: loop body

addi $t0,$t0,1

test: bge $t0,$t1,done

bne $t2,$zero,loop

done: code that follows loop

10

CSE30 F'97, Midterm Login: Answer Sheet

14. [Stack Frames] Write the MIPS assembly language equivalent for the following
function:

int fib(int n)

f
if (n <= 1) return 1;

else return fib(n-1) + fib(n-2);

g
(9pt)

Ans:

fib: sub $sp, $sp, 16

sw $fp, 4($sp)

add $fp, $sp, 16

sw $ra, -8($fp)

bgt $a0, 1, rec fib

li $v0, 1

b fib done

rec fib: sw $a0, 0($fp)

sub $a0, $a0, 1

jal fib

sw $v0, -4($fp)

lw $a0, 0($fp)

sub $a0, $a0, 2

jal fib

lw $a0, -4($fp)

add $v0, $v0, $a0

fib done: lw $ra, -8($fp)

lw $fp, 4($sp)

add $sp, $sp, 16

11

Login: Answer Sheet CSE30 F'97, Midterm

15. [Proofs of Correctness] The loop invariant for the �bonacci function is f0 = fib(i)

and f1 = fib(i+1). This invariant holds at just before the test i < n (marked with a bullet
[�]). Prove that this is indeed a loop invariant, and use it to prove that the function is the
�bonacci function. (The de�nition of the �bonacci function is fib(0) = fib(1) = 1, and
fib(n+2) = fib(n+1) + fib(n).)

fib(unsigned int n)

f
unsigned int i, f0 = 1, f1 = 1, t;

for (i = 0; � i < n; i++) f
t = f0 + f1;

f0 = f1;

f1 = t;

g
return f0;

g

(9pt)

Ans:

Base case: when i = 0, f0 = 1, f1 = 1, and so the invariant holds. Next, we
assume that the invariant holds when i = k, so f0 = fib(k) and f1 = fib(k + 1).
We trace the execution of the code once through the loop body, and see that

t f0 + f1

= fib(k) + fib(k + 1)

= fib(k + 2)

f0 f1

= fib(k + 1)

f1 t

= fib(k + 2)

and then i is incremented as part of the loop control, getting k+1. At the next
encounter with �, we have i = k+ 1, f0 = fib(k+ 1), and f1 = fib(k+ 2), which is
what we wanted and the invariant holds.

When the loop terminates due to the test failing, i == n holds, so we have
f0 = fib(n), which is what the code returns. Thus, the code correctly computes
fib(n).

12

CSE30 F'97, Midterm Login: Answer Sheet

16. [Extra credit (?)] If you could choose the
avor of a cream pie (vanilla, chocolate,
or banana) to be thrown at the professor, which would you choose? Why?
(0pt)

Ans:

17. [For Your Amusement After The Exam] To really e�ciently calculate the fib

function, we use a little more mathematics. We �rst express the fib function as matrix
operations:

fib(n) =

�
1
0

�
�

�
0 1
1 1

�n�
1
1

�

where � is vector dot product, and exponentiate via the fast exponentiation algorithm, using
the binary expansion of the exponent and repeated squarings. (If you know what eigenvalues
are, then you can also convert to a diagonal matrix of eigenvalues.)
(0pt)

Ans:

(Use the back of this page for over
ow. Clearly mark which problem's answer is being
over
owed on both this page and the page containing the original question.)

13

