
On the Robustness of some Cryptographic Protocols for
Mobile Agent Protection

Volker Roth

Fraunhofer Institut f̈ur Graphische Datenverarbeitung
Rundeturmstraße 6, 64283 Darmstadt, Germany

vroth@igd.fhg.de

Abstract. Mobile agent security is still a young discipline and most naturally,
the focus up to the time of writing was on inventing new cryptographic protocols
for securing various aspects of mobile agents. However, past experience shows
that protocols can be flawed, and flaws in protocols can remain unnoticed for a
long period of time. The game of breaking and fixing protocols is a necessary
evolutionary process that leads to a better understanding of the underlying prob-
lems and ultimately to more robust and secure systems. Although, to the best of
our knowledge, little work has been published on breaking protocols for mobile
agents, it is inconceivable that the multitude of protocols proposed so far are all
flawless. As it turns out, the opposite is true. We identify flaws in protocols pro-
posed by Corradiet al., Karjothet al., and Karniket al., including protocols based
on secure co-processors.

Keywords: mobile agent security, cryptanalysis, breaking security protocols.

1 Introduction

Analyzing cryptographic protocols for mobile agent protection means meet-
ing old friends and foes. In [1, 2], Abadi, Needham, and Anderson summarized
some rules and principles of good and bad practice for designing cryptographic
protocols. We show in this paper that their advice was not followed thoroughly
in the design of some cryptographic protocols meant to protect mobile agents
against certain attacks by malicious hosts. We first summarize the typical objec-
tives of the protocols we analyze:

Objective 1 (Confidentiality) Mobile agents shall reveal cleartext only while
being on trusted hosts.

Objective 2 (Integrity) The agents shall be protected such that they can ac-
quire new data on each host they visit, but any tampering with pre-existing
data must be detected by the agent’s owner (and possibly by other hosts on
the agent’s itinerary).

The general objective here is to protect certain features of a mobile agent
against malicious hosts. By assumption, the host of the agent’s owner is always
trusted. Some of the protocols address both objectives simultaneously, others
address just one. All protocols are targeted at protectingfree-roamingmobile
agents. In other words, mobile agents that are free to choose their respective next
hop dynamically based on data they acquired in the course of their execution.

Unfortunately, these protocols expose hosts in a way that allows an attacker
to abuse them as oracles for generating protocol data. This enables attacks on
cryptographic protocols devised in [3–6]. In some cases this leads to a complete
compromise of the protocol’s security objectives. In other cases the adversary
is able to forge and replace subsets of the protocol data in a way that makes it
impossible for an agent’s owner to detect the tampering. The important obser-
vation here is not that protocol data acquired by agents can be truncated (some
authors already acknowledge this possibility) but that the attacker can exercise
control over the data returned by an agent.

1.

2.

3.

4.

Alice Adversary / Eve Bob

Fig. 1. Basic scheme of attacks we mount against various protocols. Triangles denote agents.
Triangles shaded in gray denote agents created by the adversary Eve.

The attacks we mount on the analyzed protocols can best be described as
interleaving attack[7, §10.5], which is “an impersonation or other deception
involving selective combination of information from one or more previous or
simultaneously ongoing protocol executions(parallel sessions), including pos-
sible origination of one or more protocol executions by an adversary itself. Fig-
ure 1 illustrates the general scheme of attack: the adversary receives an agent,
and copies protocol data back and forth between this agent and agents she sent
herself.

2 Some Protocol Failures

We will write encryption of someplaintextinto aciphertextsymbolically asc =
{m}K , whereK is thekeybeing used. A digital signature will be written as an
encryption with a private signing keyS−1. We will write S−1(m) when we refer
to the bare signature rather than the union of the signature and the signed data.
We assume that the identity of the signer can be extracted from her signature. A
cryptographic hash of some input will be writtenh(m). Unless noted otherwise,
we assume thath is preimage resistantandcollision resistant[7, §9.2.2], which
implies thath must also be2nd-preimage resistant[7, §9.2.5]. WhenA sends
some messagem to B we will write A → B : m. We will write A → B :
{m}KA,B

whenm is sent over a confidential channel. Concatenation ofm1 and
m2 is written asm1 || m2. For ease of reading, we refer to some entities by their
nicknames, e.g., Alice, Bob, and Eve. In general, Eve will play the role of the
adversary, Alice will play the role of the victim agent’s owner, Bob and Dave
will play the role of additional entities taking part in the protocols. The itinerary
of Alice’s agent is written asi0, . . . , in, wherei0 = Alice and in is the host
currently visited by the agent.

2.1 Decrypting the targeted state

In [3], Karnik and Tripathi propose atargeted stateas a means to protect the
confidentiality of data carried by an agent. The idea is to make this data available
to the agent only when it is on a host that is trusted with respect to keeping
this data confidential from other agents and hosts. In order to achieve this, the
plaintext is encrypted with the public key of the trusted host. The targeted state
looks like this:

{{m1}Ki1
, . . . , {mn}Kin

}S−1
A

The targeted state is signed by Alice, who is the originator of the agent owning
the targeted state. Having received an agent, each host inspects the targeted state
for ciphertexts it can decrypt. If so, the host decrypts it using its own private
decryption key, and makes the cleartext available to the agent.

Below, we illustrate the attack on this protocol. Without loss of generality,
we assume that the agent’s targeted state contains a single ciphertext, which is
encrypted with the public key of Bob. Alice first sends the agent to Eve from
whom it hops to Bob and then returns to Alice. The protocol starts as follows
(for simplicity, we assume here that an agent initially consists only of its targeted
state and its programΠA):

A → E : ΠA, {{m}KB
}S−1

A

The attack is straightforward. Eve strips off Alice’s signature, copies{m}KB

into the targeted state of an agent of her own, signs this targeted state, and sends
her agent to Bob:

E → B : ΠE , {{m}KB
}S−1

E

B : ΠE , {{m}KB
}S−1

E
, {{m}KB

}K−1
B

= m

Bob innocently decrypts the targeted state using his own private key and makes
the resulting plaintext available to the agent. The agent then migrates back to
Eve carrying the plaintext.

B → E : ΠE , {{m}KB
}S−1

E
, m

Eve now is in possession of the plaintext which should be available only to
Bob; Alice never detects the attack. The problem with this protocol is that, due
to a lack of redundancy in the ciphertext, Bob can be abused as an oracle. Al-
ice needs to include an unforgeable identifier of her agent in the ciphertext,
e.g.,h(ΠA, A) (see [8] for an alternative approach). Even then, the agent’s pro-
gram must be unique for each agent1 and designed carefully such that it can not
be abused in the way illustrated above by means of malicious state changes.

2.2 Forging the Append Only Container

In addition to thetargeted state, Karnik and Tripathi also propose anappend
only container. The idea is to protect a container of objects in an agent such
that new objects can be added to it but any subsequent modification of an object
contained therein can be detected by the agent’s owner. The protocol relies on
an encrypted checksum, whose initial valueC0 = {r}KA

is computed by Alice
(the agent’s owner) based on a random noncer. The nonce must be kept secret
by Alice, and is used in the verification protocol upon the agent’s return. The
append only container is defined as follows:

{{m1}S−1
i1

, . . . , {mn}S−1
in

, Cn}

Whenever a new object is appended to the append only container, the checksum
is updated2 as given below:

Cn+1 = {Cn || S−1
in+1

(mn+1)}KA

1 Otherwise Eve can still cut & paste targeted states back and forth between agents that are
owned by Alice and which share the same program.

2 In the original protocol description, the signature and identity of the server are appended. On
the other hand, we assume that the signer’s identity can be extracted from the signature and
appending it is, therefore, redundant.

The signer of the appended object is the host on which the append operation
takes place. Upon the agent’s return, Alice successively decrypts the checksums,
extracts the signature, and verifies the signature against the corresponding object
in the container. The last checksum must equal the initial nonce.

We now assume that Eve received Alice’s agent and she knowsCj for some
1 ≤ j ≤ n. Eve always knowsCn, because it is embedded in the container. She
might collude with other servers which the agent visited before, or she might
be part of a loop in the agent’s itinerary. In these cases, Eve might discover a
checksumCj with j < n.

At this stage, Eve has multiple choices. She can either truncate the container
up to thej’th object and grow a fake stem by releasing the agent. Or she can
remove, add or replace arbitrary objectsml with l > j in the name of other
hosts. In order to do this, Eve creates an agent with the object that she wants to
add atj + 1, and an append only container of her own, with checksumCj as its
initial value. Eve now sends her agent to Bob. There, Eve’s agent insertsmj+1

in its own targeted state and migrates back:

E → B : ΠE , mj+1, {Cj}
B → E : ΠE , {{mj+1}S−1

B
, {Cj || S−1

B (mj+1)}KE
}

Upon the agent’s return, Eve decrypts the checksum using her own private key,
and re-encrypts it using the public key of Alice:

Cj+1 = {{{Cj || S−1
B (mj+1)}KE

}K−1
E

}KA

= {Cj || S−1
B (mj+1)}KA

Then, she constructs a new container:

{ {m1}S−1
i1

, . . . , {mj}S−1
ij

︸ ︷︷ ︸

from A’s agent

,

from E’s agent
︷ ︸︸ ︷

{mj+1}S−1
B

, Cj+1 }

which replaces the previous container of Alice’s agent. This process is repeated
with the new checksum until Eve is pleased with the result, and releases Alice’s
agent. Bob is not able to detect the attack, becauseCj is not publicly verifiable
(it is encrypted with Alice’s public key). All Bob can see is the length ofCj ,
from which he can estimate the number of objects that must be in the append
only container. So if Eve wants to make sure that Bob has no reason to get
suspicious then she addsj signed objects to her agent’s container before she
sends it to Bob. As long as these objects are properly signed it does not matter
who signed them and where she got them.

Once again, a lack of redundancy allows Eve to abuse other hosts as ora-
cles, this time for the purpose of signing and checksum computation rather than
decryption.

2.3 Forging the Multi-Hops Protocol

In [4], Corradi, Montanari, and Stefanelli propose a protocol they callmulti-
hops, which has the same purpose as theappend only containerpresented by
Karnik and Tripathi. It falls prey to the same type of attack. However, this time,
the faked agent needs to do one more hop to complete its attack. For reference,
we summarize the multi-hops protocol below.

Let (Π,M,P) be an agent whereΠ is static (immutable) code and ini-
tialization data,M is (mutable) application data, andP is protocol data (meta
information required by the protocol). Alice initializes her agent with(ΠA, ε, ε).
The protocol additionally requires a nonceγ and a message authentication code
µ. The initial values areγ0 = h(r) andµ0 = ε, wherer is chosen randomly. On
each hop, the agent can add some datam to its application data, which is then
protected by the host using the multi-hops protocol. The protocol is defined as
given below:

γn = h(γn−1)
µn = h(mn, γn−1, µn−1, in+1)
Pn = Pn−1 || S−1

in
(µn)

Mn = Mn−1 || mn || in

in → in+1 : (ΠA,Mn,Pn), {γn}Kin+1
, µn

The message authentication codeγn serves as achaining relationthat binds
results previously obtained by the agent to the ones obtained at the current host
and to the identity of the agent’s next hop.

Due to this chaining relation, the attack cannot be executed in the same way
as it is done for the append only container. The resulting star shaped itinerary
with Eve in the center would be too obvious in the protocol data. What Eve has
to do here is to plan ahead one step.

Again, we assume that Eve isin, and she knows someγj−1 for 1 ≤ j ≤ n.
She received the agent so she always knowsγn−1 andµn−1. She can obtainγj−1

with j < n by colluding with other hosts or as a result of loops in the agent’s
itinerary. Due to the chaining relation — remember thatµj−1 is computed on
ij — Eve does not have free choice of her first target, although she does have
free choice for subsequent targets. In particular, ifj = n then she has to append

an offer herself. Eve now choosesij+1 and does the following:

E → ij : (ΠE ,Mj−1,Pj−1), {γj−1}Kij
, µj−1

ij → ij+1 : (ΠE , Mj−1 || mj || ij , Pj−1 || S−1
ij

(µj)),

{γj}Kij+1
, µj

ij+1 → E : (ΠE , Mj−1 || mj || ij || m∗ || ij+1,

Pj−1 || S−1
ij

(µj) || S−1
ij+1

(µj+1)),

{γj+1}KE
, µj+1

Eve sends her agent first toij where it inserts somemj chosen by her. Then it
hops toij+1 (chosen by Eve), inserts some random datam∗ (which is discarded
later on), and returns to Eve. Eve now updates Alice’s agent as shown below,
using the data acquired by her own agent:

(ΠA, Mj−1
︸ ︷︷ ︸

A

||
E

︷ ︸︸ ︷

mj || ij , Pj−1
︸ ︷︷ ︸

A

||
E

︷ ︸︸ ︷

S−1
ij

(µj)) = (ΠA,Mj ,Pj)

This completes the round. Eve now plans her next move (Eve choosesij+2, she
already fixedij+1 in the previous round). In order to send the agent toij+1 she
needs to knowγj andµj , but she doesn’t – yet. However, Eve knowsγj−1, µj−1,
andmj . This is sufficient to compute

γj = h(γj−1)
µj = h(mj , γj−1, µj−1, ij+1)

At this stage, Eve either continues the attack, or she releases Alice’s agent and
sends it toij+1, where it resumes normal execution.

E → ij+1 : (ΠA,Mj ,Pj), {γj}Kij+1
, µj

The underlying weakness of the multi hops protocol is the same as in the pre-
viously described protocols, namely, the abuse of servers as oracles. The digital
signature gives no assurance about the intended recipient of the signed data.

3 The KAG Family of Protocols

Karjoth, Asokan, and G̈ulcü [5] published a family of protocols which are di-
rected at preserving the integrity and confidentiality of data acquired by free-
roaming agents. The general scenario is that of a comparison shopping agent
that visits a number of shops, and collects offers from them. The idea behind
these protocols is to preserve the integrity of collected offers. Some protocols
also address confidentiality of offers.

3.1 Publicly Verifiable Chained Digital Signatures

The Publicly verifiable chained digital signature protocol(P1) is defined as
given below:

Mn = {{mn, rn}KA
, Cn}S−1

in

Cn = h(Mn−1, in+1)
M0 = {{m0, r0}KA

, C0}S−1
A

C0 = h(r0, i1)

in → in+1 : Π, {M0, . . . , Mn}

wherem0 is a dummy offer,rn is random salt that makes it harder to attack the
encryption.Cn is called thechaining relationat n. By assumption, it shall be
possible to deduce the identity of the signer from a signature [5, pp. 198]. The
signer ofM0 is deemed to be the owner of the agent (unfortunately, the authors
of [5] do not explicitly mention from what they conclude who the owner of a
given agent is, so we have to do a little guesswork here).

The security of the protocol relies on the assumption that an attacker does
not change the last elementMn in the chain. However, there is no reason why an
attacker would be so obliging. On the contrary, if the attacker is willing to build
a complete chain for the agent then he can even remove chain elementsbefore
his own entry (this contrasts with e.g., thehonest prefixproperty introduced by
Yee [9, pp. 267]). The important observation here is that the input to all previous
chaining relations is known.

We assume that Eve received an agent owned by Alice. Let Eve bein, n > 1.
She picksj with 0 < j < n and a newij+1 of her choice. Please note that there
is no free choice ofij oncej is fixed, only ofij+1. Eve has to collect an offer
from the original shopij for her chosenj in order to maintain the chaining
relation’s validity atj − 1. Then Eve does the following:

E → ij : ΠE , {M0, . . . , Mj−1}
ij → ij+1 : ΠE , {M0, . . . , Mj}
ij+1 → E : ΠE , {M0, . . . , Mj+1}

Upon the agent’s return, Eve throws awayMj+1, incrementsj, and picks a new
ij+1. The chaining relation and encapsulated offers are build as if Alice’s agent
had requested the offer (instead of Eve’s agent with Eve’sprogram) because
M0 bears Alice’s signature. Eve repeats the process at her discretion. When
she is finally satisfied with the collection of encapsulated offers she assembled,

she pastes them into Alice’s agent, and sends that agent toij+1. If Alice can be
fooled into forwarding agents whoseM0 she signed herself then Eve’s charade
can carry on until the very last (faked) hop. Otherwise, Eve has to stop her attack
before the next to last hop.

It must be stressed here that the problem isnot that Eve can truncate offers
and grow a fake stem (this possibility is acknowledged by the authors, so this
fact is not surprising). The problem is that shops can be abused as oracles for
generating offers to the terms of Eve rather than Alice (this remark also holds
for Sects. 3.2 and 3.3). In other words, Alice might look for blue or red shirts
with a preference on blue ones; she might find out that Eve is the only shop that
offers her blue shirts, though. This is possible because Eve’s agent looks only
for red shirts, and the offers made to this agent are returned to Alice.

3.2 Chained Digital Signatures with Forward Privacy

The second protocol proposed in [5] is thechained digital signature protocol
with forward privacy(P2). It is a variation of the protocol discussed in Sect. 3.1,
with the order of encryption and signature computation being swapped. The
goal of this arrangement is to hide the identity of shops that provided offers
while keeping the integrity assurances. The protocol is defined as given below:

Mn = {{mn}S−1
in

, rn}KA
, Cn

Cn = h(Mn−1, rn, in+1)

in → in+1 : Π, {M0, . . . , Mn}
A problem we couldn’t resolve is how a shop knows who the owner of an agent
is, and hence for whom the offers must be encrypted. The shop cannot extract
the identity of Alice fromM0, because the signature of the dummy offerm0 is
hidden by the encipherment. The authors leave that to speculation. The proto-
col’s description is far from being sufficiently detailed at this point. Whereas a
signer’s identity can be verified easily against her signature using a public key
and corresponding certificate (where the identity binding is assured by a cer-
tification authority), anybody could have used somebody else’spublic key to
encrypt data.

Again, we assume that Eve received Alice’s agent, and Eve isin as in the
previous attacks. Letj be the smallest number for which Eve knowsij . Eve
probably knowsin−1 because this is most certainly the host that sent her the
agent. In any case she knowsin (her own identity).

Eve collects arbitrary signed offers using agents of her own, including an
offer from ij . Then, she cuts off the chain atj, and appends the offers, starting

with the fresh one collected fromij and the remaining ones in arbitrary order.
In doing so, she generates random nonces as required, and builds the chaining
relations consecutively from known data. The last chaining relation is computed
with the identity of the entity to whom Eve wants to hand off Alice’s agent.

Upon the agent’s return, Alice cannot decide whether her agent remained
unattacked, or carries offers of shops it has never seen actually. It is worth noting
that the integrity assurance of the protocol relies on the secrecy of the associa-
tion of Mj with the identity of the shop who signed offermj . This means that
privacy of offers is not only afeatureof the protocol, but is also arequirement.
In particular, secrecy of the agent’s itinerary is a requirement.

Once again, not the truncation of protocol data is the important point, but
Eve’s ability to set the terms for (authentic) offers returned to Alice.

3.3 Publicly Verifiable Chained Signatures

Another protocol that is proposed in [5] is thepublicly verifiable chained sig-
natures(P4) protocol. The key aspect of the protocol is that each shop gen-
erates a temporary asymmetric key pair (either on the fly or by means of pre-
computation) to be used by the successor. The public key is certified by the shop
that generated the key pair. Each shop uses the private key that it received from
its predecessor for signing its partial result, the chaining relation, and the public
key to be used by its successor. The private key is destroyed subsequently. Let
(χA, χ−1

A) be a temporary key pair generated byA. The protocol is as follows:

Mn = {{mn, rn}KA
, Cn,

oracle
︷︸︸︷

χin }χ−1
in−1

Cn = h(Mn−1, in+1)

in → in+1 : Π, {M0, . . . , Mn}, {χ−1
in

}Kin,in+1
︸ ︷︷ ︸

oracle

The protocol is initialized by Alice with:

M0 = {{m0, r0}KA
, C0, χA}S−1

A

C0 = h(r0, i1)

It is easy to see that Eve can collect valid certified temporary key pairs from Bob,
simply by dispatching and agent of her own to Bob, which promptly returns to
Eve. On the agent’s transport to Eve, Bob sends a temporary private keyχ−1

B

and corresponding certified public keyχB (contained inM).

We assume that Eve isin and she received Alice’s agent. Letj be the small-
est number for which Eve knowsχ−1

ij
. She receivedχ−1

in−1
with the agent, so

at least one suchj exists andj < n. Eve then cuts off all encapsulated offers
following Mj , and collects key pairs from all the shops in whose names she
wants to fake offers, including shopij+1. Starting withij+1, she appends arbi-
trary offers, building the protocol data consecutively. The identity that Eve uses
in the final chaining relation is the one of the entity to whom she wants to hand
off Alice’s agent (for instance Alice herself).

4 Protocols Using Secure Co-Processors

In [6], Karjoth proposes use of trusted secure co-processors as a means to pro-
tect mobile agents in a distributed marketplace. The setting equals that described
in Sect. 3, with the exception that each shopin has a trusted tamper-proof hard-
wareTn (in brief, its device), which is issued and certified by a central market
authority<. The market authority acts as a trusted third party for merchants and
customers. By assumption, the channel between a shop and its device is secure
against active attacks. Each device has its own asymmetric key pair, and is capa-
ble of computing suitable asymmetric ciphers, symmetric ciphers, and message
digests. Furthermore, each device has the public key of the market authority,
and uses it to authenticate the public keys of other devices.

At the beginning of the protocol, Alice chooses a randomK and setsC1 =
h(K). The protocol continues as follows:

in−1 → in : ΠA, {K, Cn}KTn
, {M1, . . . , Mn−1},

{C1, . . . , Cn−1}

in → Tn : {K, Cn}KTn
, {mn}S−1

in

, {KTn+1}S−1
<

Tn : Mn = {{mn}S−1
in

}K, Cn+1 = h(Mn, Cn)

Tn → in : {K, Cn+1}KTn+1
, {Cn+1}K, Cn,Mn

in → in+1 : ΠA, {K, Cn+1}KTn+1
, {M1, . . . , Mn},

{C1, . . . , Cn}
In the final protocol step, the last shop sends Alice the agent and the final check-
sum, which is encrypted withK:

in → i0 : ΠA, {M1, . . . , Mn}, {C1, . . . , Cn}, {Cn+1}K
Alice knowsK, so she decrypts{Cn+1}K, verifies the checksums consecutively
from C1 to Cn+1, decryptsM1, . . . , Mn, and finally she verifies the signa-
tures.

We assume that Eve runs a shop in the electronic marketplace, which im-
plies that she has a device certified by the market authority. Consider that Eve
received an agent owned by Alice, so Eve isin. Eve now has a number of en-
crypted offers, an equal number of checksums, and{K, Cn}KTn

, which can be
decrypted only by her device.

From the protocol, we know thatCn+1 = h(Mn, Cn). There is nothing
secret abouth, so in fact Eve can takej of then − 1 encrypted offers, shuffle
them, and re-compute the appropriate checksums herself, beginning with the
initial checksumC1 (without ever going through her device). However, Alice
expects to receive a matching{Cj+1}K with her agent. Eve cannot encrypt her
final checksum withK because she does not know it – but her device can do it
for her! All Eve has to do is passingCj+1 in the place where her device expects
to receive Eve’s signed offer:

E → Tn : {K, Cn}KTn
, Cj+1
︸ ︷︷ ︸

substituted for Eve’s offer

, {KTn}S−1
<

The device first extracts Alice’s secret keyK from {K, Cn}KTn
, which is en-

crypted with the device’s public key. Then the device usesK to encrypt what it
thinks is Eve’s signed offer. Only that it is not the signed offer but the checksum
that must be passed back to Alice with her agent.

Tn : Mn = {Cj+1}K
︸ ︷︷ ︸

oracle computation

, C ′ = h({Cj+1}K, Cj+1)

Eve also passed her own device’s public key rather than that of another shop’s
device. What Eve gets back from her device is:

Tn → E : {K, Cn+1}KTn
, {C ′}K, Cn, {Cj+1}K

︸ ︷︷ ︸

leaked result

In other words, given a set of signed offersM1, . . . , Mj (which are encrypted
with Alice’s secret keyK), Eve can construct a valid representation of Alice’s
agent, and return it to Alice in a way that is indistinguishable from an ordinary
run of the agent.

Eve can also collect signed offers herself (at her own terms) using agents of
her own. For instance, let{mB}S−1

B
be such an offer, collected from Bob. Eve

sends this offer to her device, rather than one of her own offers:

E → Tn : {K, Cn}KTn
, {mB}S−1

B
︸ ︷︷ ︸

Bob’s offer

, {KTn}S−1
<

Tn → in : {K, Cn+1}KTn
, {Cn+1}K, Cn,MB

︸︷︷︸

Bob’s offer encrypted withK
The device returns the offer encrypted withK. Offers prepared in this way can
also be used by Eve in her attack on the checksum.

If Eve just wants to append offers that she collected to Alice’s agent (fol-
lowingMn−1), then the attack is even simpler. All Eve has to do is passing her
own device’s public key to her device rather than that of another shop’s device
until she wants to hand off Alice’s agent. In that case she either passes the public
key of the next shop’s device, or returns the agent to Alice herself.

In summary, Eve can delete and rearrange any offers brought by the agent,
and insert forged offers collected by her, at any position3 in the chain of results.
This means in particular that the protocol does not achieveforward integrityas
is claimed by its author. The surprising fact is that although secure co-processors
are used, the protocol fails where some software only approaches succeed (for
instance thechained MAC protocol[5]). The lesson that is to be learned is that
tamper-proof hardware is no guarantee for improved security.

In order to prevent the attack on the final encrypted checksum, the device
has to verify that the data input as the signed offer is “well-formed”, in other
words, actually constitutes a signature rather than random data. Providing typed
driver APIs is not sufficient since the driver software itself can be tampered with
(which exposes the device’s raw hardware interface).

5 Authentication to the Rescue?

It might be argued that mutual authentication of hosts in the course of agent
hand-off may inhibit some of the attacks we described. Upon closer inspection,
it turns out that actually only one protocol of the ones we discussed may profit
from this (although that protocol still remains vulnerable to some extent).

Thetarget state(Sect. 2.1) does not profit for obvious reasons. Theappend-
only container(Sect. 2.2) defines the crucial checksumCn in a way that makes
it impossible for a hop to verify intermediate targeted states. Consequently, Eve
can arrange a targeted state in her attack at will, and there is no point for hopij+1

to verify e.g., that the sender of the agent actually inserted elementj. Neither
does themulti-hops protocol(Sect. 2.3) benefit from authentication. Eve may
always signµj−1 (the last element ofP) herself, replace the last element ofM
with her own identity, and complete her attack without raising suspicion.

3 In general, Eve knows only{K, Cn}KTn
, so if she touches any encrypted offers beforen then

she has to hand off the agent herself to Alice, and cannot let another shop do this. However,
she can pass on the agent if she knows that it will return to her before it hops back to Alice.

The protocols described in Sects. 3.2 and 4 obscure or encrypt all proto-
col data that is passed from one hop to the next. Again, there does not seem to
be a hook to improve the protocol’s security by verifying protocol data against
authentication results. In protocol P4 (Sect. 3.3), hosts are exploited as key--
generating oracles. Authentication results can hardly be connected with any-
thing useful either, unless the protocol itself is modified.4

This leaves protocol P1 (Sect. 3.1). This protocol has two important proper-
ties. First, the data that is added by each host is randomized, and thus cannot be
reliably reproducedby means of an oracle exploit. Second, the protocol builds
a strong backward chain including the signature of the agent’s previous host.
Each host can verify this chain back toM1, starting with the last element inM
whose signer must be the authenticated previous hop of the agent.5 This makes
it impossible for Eve to hide her traces completely, although she can still launch
her attack in one sweep rather than multiple rounds. But her attack must start at
her own position in the existing chain, and she must appear as well at the end of
her faked sub-chain, because she needs to hand off Alice’s agent and pass the
combined authentication and signature check as well.

6 Conclusions

One problem repeatedly occurred in the protocols we analyzed: a legitimate
host could be abused by malicious hosts as an oracle that decrypts, signs, or
otherwise computes protocol data on behalf of an adversary. These flaws could
have been avoided, had the authors of the protocols taken the advice of Needham
and Anderson [1] faithfully: “be careful, especially when signing or decrypting
data, not to let yourself be used as an oracle by the opponent.”

Mobile agent systems are particularly vulnerable to this type of attack be-
cause they are meant to work autonomously, and no human intervention is ex-
pected to happen in order to validate and authorize the processing of agents
by cryptographic protocols. Hence, agent servers and agent owners must have
means to decide whether protocol data that an agent requests to process or re-
turns, actually belongs to that agent. This brings us to another of Needham’s and
Anderson’s rules of good practice: “where the identity of a principal is essential
to the meaning of a message, it should be mentioned explicitly in that message.”

None of the protocols that involved signing as a means of authenticating
protocol data actually signed a data type or recipient identity along with the

4 Each host may certify its temporary key with an authenticated attribute that includes the iden-
tity of the agent’s previous hop. However, in that case Eve simply sends her key-collecting
agent first to the hop whose identity shall be certified by her next target, then to her target, and
back to her.

5 Due to an unfortunate choice ofC0, only Alice can fully verify the chain at0.

data. Hence, protocol data that was collected by one entity appeared valid to
other entities as well. Obviously, inclusion of a recipient’s identity is not even
enough, because protocol data from one agent instance can be used again in an
attack on other agent instances owned by the same entity. Since mobile agents
may be under way for a period of time that is hard to anticipate in advance, it is
difficult to have a notion of “freshness”. If this were not enough, the protocols
also have to cope with multiple agents that run concurrently. Both, agent owners
and legitimate hosts must therefore “be sure to distinguish different protocol
runs from each other.”

Each agent instance certainly constitutes a different protocol run. On the
other hand, digital signatures affixed to an agent’s code are not sufficient to dis-
tinguish one agent instance from another. This leads to the important conclusion
thatdigitally signing a mobile agent’s code alone is not sufficient to assert agent
ownership.

However, this approach is a favorable one among contemporary mobile
agent systems. A signature on code can be copied just like the code itself. Code
is written to be re-used, so the agentinstanceis what renders an agent (a pro-
tocol run) distinct. Seen in this light, it is even less desirable to sign credentials
that contain acode baserather than the code itself (as described e.g., in [3]), be-
cause this gives an adversary potentially more valid agent programs to choose
from. Each agent program that is available from a particular code base can be
used in conjunction with credentials that refer to the code base.

Instead, the owner of some agent should sign astatic kernel, which includes
the agent’s code as well as enough redundancy to distinguish between two in-
stances of the same agent. A cryptographic hash value of the kernel’s signature
may serve as a unique “anchor” to which protocol data can be bound by means
of a digital signature.

Agent developers must still be aware of the fact that “a migrating agent can
become malicious by virtue of its state getting corrupted” [10]. We cannot as-
sume that a mobile agent properly represents the intentions of its owner, because
– subsequent to its first hop – an agent’s state is a function of its own program
and state, and the state and program of the hosts that it visited.

Hence, any attempt to protect a free-roaming agent against interleaving at-
tacks is probably futile unless the agent’s code is carefully designed, such that
it does not leak confidential data, and does not enter negotiations based on pa-
rameters stored in its mutable state.

7 Acknowledgments

This paper is a revised and extended version of [11], with a discussion of de-
fensive measures omitted. We thank Günter Karjoth for his comments on the
initial manuscript, which helped to improve its precision and focus, as well as
for the inspiring discussion that evolved from the commentary. We also thank
the anonymous reviewers for their comments, which, again, led to several im-
provements and extensions.

References

1. R. Anderson and R. Needham, “Programming Satan’s computer,” inComputer Science To-
day, vol. 1000 ofLecture Notes in Computer Science, pp. 426–441, Springer Verlag, 1995.

2. M. Abadi and R. Needham, “Prudent engineering practice for cryptographic protocols,” SRC
Research Report 125, Digital Equipment Corporation, June 1994.

3. N. M. Karnik and A. R. Tripathi, “Security in the Ajanta mobile agent system,” Technical
Report TR-5-99, University of Minnesota, Minneapolis, MN 55455, U. S. A., May 1999.

4. A. Corradi, R. Montanari, and C. Stefanelli, “Mobile agents protection in the Internet envi-
ronment,” inThe 23rd Annual International Computer Software and Applications Confer-
ence (COMPSAC ’99), pp. 80–85, 1999.

5. G. Karjoth, N. Asokan, and C. G̈ulcü, “Protecting the computation results of free–roaming
agents,” inProceedings of the Second International Workshop on Mobile Agents (MA ’98)
(K. Rothermel and F. Hohl, eds.), vol. 1477 ofLecture Notes in Computer Science, pp. 195–
207, Berlin Heidelberg: Springer Verlag, September 1998.

6. G. Karjoth, “Secure mobile agent-based merchant brokering in distributed marketplaces,” in
Proc. ASA/MA 2000(D. Kotz and F. Mattern, eds.), vol. 1882 ofLecture Notes in Computer
Science, pp. 44–56, Berlin Heidelberg: Springer Verlag, 2000.

7. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,Handbook of Applied Cryptography.
Discrete Mathematics and its Applications, New York: CRC Press, 1996. ISBN 0-8493-
8523-7.

8. V. Roth and V. Conan, “Encrypting Java Archives and its application to mobile agent se-
curity,” in Agent Mediated Electronic Commerce: A European Perspective(F. Dignum and
C. Sierra, eds.), vol. 1991 ofLecture Notes in Artifical Intelligence, pp. 232–244, Berlin:
Springer Verlag, 2001.

9. B. S. Yee, “A sanctuary for mobile agents,” inSecure Internet Programming, vol. 1603 of
Lecture Notes in Computer Science, pp. 261–273, New York, NY, USA: Springer-Verlag
Inc., 1999.

10. W. M. Farmer, J. D. Guttman, and V. Swarup, “Security for mobile agents: Issues and
requirements,” inProceedings of the National Information Systems Security Conference
(NISSC 96), pp. 591–597, October 1996.

11. V. Roth, “Programming Satan’s agents,” in1st International Workshop on Secure Mobile
Multi-Agent Systems, (Montreal, Canada), 2001.

