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Abstract

We describea new techniquefor findingpotentialbuffer
overrunvulnerabilities in security-criticalC code. Thekey
to successis to use static analysis: we formulatedetec-
tion of buffer overrunsas an integer range analysisprob-
lem. Onemajor advantage of static analysisis that secu-
rity bugs can be eliminatedbefore codeis deployed. We
haveimplementedour designandusedour prototypeto find
new remotely-exploitablevulnerabilities in a large, widely
deployedsoftware package. An earlier handaudit missed
thesebugs.

1. Introduction

Buffer overrunvulnerabilitieshave plaguedsecurityar-
chitectsfor at leasta decade. In November1988, the in-
famousInternetworm infectedthousandsor tensof thou-
sandsof network-connectedhostsandfragmentedmuchof
theknown net [17]. Oneof theprimaryreplicationmecha-
nismswasexploitationof a buffer overrunvulnerability in
thefingerd daemon.

Sincethen,buffer overrunshave beena serious,continu-
ing menaceto systemsecurity. If anything,theincidenceof
buffer overrunattackshasbeenincreasing.SeeFigure1 for
dataextractedfrom CERT advisoriesover the last decade.
Figure1 shows thatbuffer overrunsaccountfor up to 50%
of today’svulnerabilities,andthis ratioseemsto beincreas-
ing over time. A partialexaminationof othersourcessug-
geststhat this estimateis probablynot too far off: buffer
overrunsaccountfor 27%(55 of 207)of theentriesin one
vulnerability database[29] andfor 23%(43 of 189) in an-
otherdatabase[33]. Finally, adetailedexaminationof three
monthsof thebugtraq archives(Januaryto March,1998)
shows that 29% (34 of 117) of the vulnerabilitiesreported
aredueto buffer overrunbugs[7].

Buffer overrunsareso commonbecauseC is inherently
unsafe.Array andpointerreferencesarenot automatically
bounds-checked, so it is up to the programmerto do the�
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checksherself. More importantly, many of the string op-
erationssupportedby thestandardC library—strcpy() ,
strcat() , sprintf() , gets() , and so on—areun-
safe.Theprogrammeris responsiblefor checkingthatthese
operationscannotoverflow buffers,andprogrammersoften
getthosecheckswrongor omit themaltogether.

As aresult,weareleft with many legacy applicationsthat
usetheunsafestringprimitivesunsafely. Programswritten
today still useunsafeoperationssuchas strcpy() be-
causethey are familiar. Even sophisticatedprogrammers
sometimescombinethe unsafeprimitives with somead-
hoc checks,or useunsafeprimitiveswhen they somehow
“know” that the operationis safeor that the sourcestring
cannotcomeunderadversarialcontrol.

Unfortunately, programsthatusejust the“safe” subsetof
theC stringAPI arenotnecessarilysafe,becausethe“safe”
stringprimitiveshavetheir own pitfalls [43]:� Thestrn*() callsbehavedissimilarly. For instance,

strncpy(dst, src, sizeof dst) is correct
but strncat(dst, src, sizeof dst) is
wrong. Inconsistency makesit harderfor theprogram-
mer to rememberhow to use the “safe” primitives
safely.� strncpy() mayleavethetargetbufferunterminated.
In comparison,strncat() and snprintf() al-
ways appenda terminating’\0’ byte, which is an-
otherexampleof dissimilarity.� Usingstrncpy() hasperformanceimplications,be-
causeit zero-fills all the available spacein the tar-
get buffer after the ’\0’ terminator. For example,
a strncpy() of a 13-bytebuffer into a 2048-byte
buffer overwritestheentire2048-bytebuffer.� strncpy() and strncat() encourageoff-by-
one bugs. For example, strncat(dst, src,
sizeof dst - strlen(dst) - 1) is correct,
but don’t forgetthe-1 !� snprintf() is perhapsthebestof the“safe” primi-
tives:it hasintuitiverules,andit is verygeneral.How-
ever, until recentlyit wasnot availableon many sys-
tems,soportableprogramscouldnot rely on it.
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Figure 1. Frequency of buffer overrun vulnerabilities, derived from a classification of CERT advisories. The
left-hand chart shows, for each year, the total number of CERT-reported vulnerabilities and the number that
can be blamed primarily on buffer overruns. The right-hand chart graphs the percentage of CERT-reported
vulnerabilities that were due to buffer overruns for each year.

In all cases,theprogrammermuststill keeptrackof buffer
lengthsaccurately, which introducesanotheropportunity
for mistakes.

In short, today’s C environmentsmake it easyto do the
wrongthing,and,worsestill, hardto dotheright thingwith
buffers. This suggeststhat an automatedtool to help de-
tect this classof security-relevantcodingerrorsmay be of
considerablebenefit.

1.1. Overview

This paperdescribesa tool we developedto detectbuffer
overrunsin C sourcecode. Though this is only a first
prototype,early resultslook promising. For example,the
tool found several seriousnew vulnerabilitiesin onelarge
security-criticalapplication,eventhoughit hadbeenhand-
auditedpreviously.

This work involves a synthesisof ideas from several
fields, including programanalysis,theory, andsystemsse-
curity. The main idea is to apply standardstatic analy-
sis techniquesfrom the programminglanguagesliterature
to the taskof detectingpotentialsecurityholes. We focus
specificallyon staticanalysisso that vulnerabilitiescanbe
proactively identified and fixed beforethey are exploited.
We formulatethe buffer overrun detectionproblemas an
integer constraint problem,andwe usesomesimplegraph-
theoretictechniquesto constructan efficient algorithmfor
solving the integer constraints. Finally, security knowl-
edgeis usedto formulateheuristicsthatcapturetheclassof
security-relevantbugsthattendto occurin realprograms.

Othershave appliedruntime code-testingtechniquesto
theproblem,using,e.g.,black-boxtesting[41, 42] or soft-
warefaultinjection[21] tofindbufferoverrunsin real-world
applications.However, runtimetestingseemslikely to miss

many vulnerabilities.Considerthefollowing example:

if (strlen(src) > sizeof dst)
break;

strcpy(dst, src);

Note that off-by-one errors in buffer management,such
as the one shown above, have beenexploited in the past
[36, 48]. Thefundamentalproblemwith dynamictestingis
thatthecodepathsof greatestinterestto asecurityauditor—
theoneswhich arenever followedin ordinaryoperation—
are also the onesthat are the hardestto analyzewith dy-
namictechniques.Therefore,in thiswork wefocusonstatic
analysis.

A themein this work is the trade-off betweenprecision
andscalability. If scalabilityis notaddressedfrom thestart,
programanalysesoften have troublehandlinglarge appli-
cations.Sincewe wish to analyzelargeprograms,suchas
sendmail(tensof thousandsof linesof code),we explicitly
aim for scalabilityeven if it comesat somecost in preci-
sion. This motivatesour useof severalheuristicsthat trade
off precisionfor scalability.

As a resultof imprecision,our analysismay misssome
vulnerabilities (false negatives) and producemany false
alarms(falsepositives), but it is still a useful tool. In our
experience,even thoughour relatively impreciseanalysis
generatesmany falsealarms,it still reducesthe numberof
unsafestringoperationsto becheckedby handby anorder
of magnitudeor more;seeSection5.5.

Weintroducetwo fundamental,new insightsin thispaper:

1. We treat C strings as an abstract data type. In C,
pointersare the baneof programanalysis,and any
codefragmentsthat manipulatebuffers usingpointer
operationsare very difficult to analyze. However,
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Figure 2. The architecture of the buffer overflow detection prototype.

mostC buffer overrunsarein stringbuffers,andmost
stringoperationsusethestandardC library functions.
This suggestsmodellingC stringsasan abstractdata
type with operationslike strcpy() (copy strings),
strcat() (concatenatestrings), and so on. Any
buffer overrunscausedby manipulatingstringsusing
primitive pointer operationscannotbe detected,but
suchcodewon’t otherwiseinterferewith theanalysis.

2. We model buffers as pairs of integer ranges. Rather
than tracking the contentsof eachstring variabledi-
rectly, we summarizeeach string with two integer
quantities:thenumberof bytesallocatedfor thestring
buffer (its allocatedsize), andthenumberof bytescur-
rently in use(its length). ThestandardC library func-
tionscanbemodelledby whatthey do to theallocated
sizeandlengthof stringswithout regardto thestrings’
contents.

We formulate the problem of detectingbuffer over-
flowsin termsof integerrangetracking.Any algorithm
for integerrangeanalysiswill work: we justcheck,for
eachstringbuffer, whetherits inferredallocatedsizeis
at leastaslargeasits inferredmaximumlength.

Thesetwo ideasprovidea conceptualframework for buffer
overrunanalysis.

Our formulationof the problemsuggestsa naturaldivi-
sion of labor for the implementation:a front end models
stringoperationsasintegerrangeconstraints,while a back
endsolvestheresultingconstraintsystem.SeeFigure2 for
a diagramof thesystemorganization.

A secondarycontributionof thisresearchis ascalableand
very fast integer rangeanalysis.Onenovel featureof this
analysisis the ability to handlecyclic datadependencies
without loss of precisionby invoking a fixpoint theorem.
However, we couldeasilyreplacethis algorithmwith some
othertechniquefor integerrangeanalysis.

Theorganizationof thefirst half of thispaperparallelsthe
structureof our implementation.First, we needto define
a constraintlanguage(seeSection2). Given this mathe-
maticalfoundation,wegenerateconstraintsfrom thesource
code(seeSection3), solve the resultingconstraintsystem
(seeSection4),andcheckall of thestringvariablesfor over-
flow.

The secondhalf of this paperfocuseson analysisof our
approach,including our initial experiencewith the proto-
type(Section5), a review of relatedwork (Section6), anda
few concludingremarks(Section7). AppendixA presents

theproofsfor all of our theoreticalresults,andAppendixB
expandson moredetailsof theconstraintsolver.

2. The constraint language

In thissectionwedescribethelanguageof constraintswe
useto modelstringoperations.

Let
�

denotethe set of integersand write
�������
	�
�����������

for the extendedintegers. Thesubsetsof
���

form acompletelatticewith � asthepartialorder.
We restrict our attentionto integer ranges. However,

many of the commentsherealso apply more generallyto
arbitrary subsetsof

���
. A range is a set ��� ���

of
the form � � ����� � �! #" � �%$ � &  & �'�

. When(
is a subsetof

���
, we write )+*-, ( and .0/21 ( for the

minimum and maximum element(with respectto & ) of(
; in particular, for rangeswe have )+*-,!� � �0��� � � and.0/213� � �0��� � � . The range closure of any set

( � �4� is
theminimal range� (with respectto � ) containing

(
, i.e.,� � � )+*-, ( � .0/21 ( � . For example,the set

( � �5��67�982�0:2�
hasrangeclosure� ��67��:7� , since)+*-, ( � ��6 and .�/;1 ( � : ;
notethat the rangenotation � ��65��:<� is shorthandfor theset�
��67�08;�=65�9>-�9?2�0:2� � ��� .

We extend the usualarithmeticoperatorsto act on sets( �0@ � ��� in thenaturalway:( �A@ � �CBD�FE $ BG" ( �0EH"I@��( �J@ � �CBK�LE $ BG" ( �0EH"I@��(NM @ � �CB M E $ BG" ( �0EH"I@��
For notationalconveniencewe often write

�
asshorthand

for thesingletonset
�O�'�

, when
�A" ���

. Thus,theexpres-
sion

>P@
acquiresits naturalinterpretation

>P@ � �P>Q� M @ ��P>PE $ EH"R@��
.

Whenthe resultof an operationis not a range,we take
its range closure. When this rule is followed, the ex-
tendedarithmeticaloperatorsobey mostof the usualalge-
braic laws. For instance,

( �S@ � @T� (
,
( �S8 � (

,( � ( � > (
,
(UM @ � @ MA(

,
8 M#( � 8

, andso on.
However, thedistributive rule doesnot hold (in generalwe
only have

(VMXW @Y�VZG[ � (VM @\� (VM Z ; see[32]) andthe
rule for subtractionintroducesa slightly ugly featuresince
in general

( � (^]� 8
.

In practice,it is usefulto extendthe constraintlanguage
to include _`)+* and _baPc operators:

_`)+* Wd( �0@�[ � � _`)e* W B5��E�[ $ BG" ( ��ED"R@G�_baPc Wd( �0@�[ � � _baPc W B5��E�[ $ B�" ( ��ED"R@��
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C code Interpretation
char s[n];

� � alloc
W
s
[

strlen(s) len
W
s
[f�N6

strcpy(dst,src); len
W
src

[ � len
W
dst

[
strncpy(dst,src,n); _`)e* W len

W
src

[����3[ � len
W
dst

[
s = "foo";

: � len
W
s
[���: � alloc

W
s
[

p = malloc(n);
� � alloc

W
p
[

p = strdup(s); len
W
s
[ � len

W
p
[��

alloc
W
s
[ � alloc

W
p
[

strcat(s,suffix); len
W
s
[g�

len
W
suffix

[h�N6 � len
W
s
[

strncat(s,suffix,n); len
W
s
[g� _`)+* W len

W
suffix

['�
67���3[ � len
W
s
[

p = getenv(...); � 65�i�F� � len
W
p
[j� � 65�i�F� � alloc

W
p
[

gets(s); � 65�i�F� � len
W
s
[

fgets(s,n,...); � 65����� � len
W
s
[

sprintf(dst,"%s",src); len
W
src

[ � len
W
dst

[
sprintf(dst,"%d",n); � 65�9>78P� � len

W
dst

[
snprintf(dst,n,"%s",src); _`)e* W len

W
src

[����3[ � len
W
dst

[
p[n] = ’\0’; _`)e* W len

W
p
[����k�^6![ � len

W
p
[

p = strchr(s,c); p = s+n; � 82� len
W
s
[l� � �

h = gethostbyname(...); � 65�i�F� � len
W
h->h name

[��� ���^�i�F� � h->h_length

Table 1. Modelling the effects of string operations: some examples.

For example, when
( � �
67�9>2�0?;��:2� � � 65��:7� and

@ ��!?;��:m�9n-�9o-� � � ?;�0o<� , then )e*-, @ � ?
, _`)+* Wd( �0@�[ � � 67�0:<� ,

and
( �J@ � � ��n2�=6=� .

We definean integer rangeexpressionp asp $e$ ��qRr � r � M qXr p � p r p � pr _baPc W p �=sOs=st� p [ r _u)+* W p �=s=sOst� p [
where

�v" �
and

q "
Vars, a setof rangevariables. An

integer range constraint hasthe form p^� q
. Notice we

requiretheright-handsideto beavariable.
Note thatequalityconstraintsof the form

q ��� �xw
fit

within this framework, sincethey canbe equivalently ex-
pressedasthepair of simultaneousconstraints

q �N� � w ,w ��� � q
. Equality constraintsare useful for unifying

variablesthatarediscovered(duringconstraintgeneration)
to referto thesamememorylocation.

An assignmenty $ qUz{ y W q [ � ���
satisfiesa sys-

temof constraintsif all of theconstraintassertionsaretrue
whentheformalvariablenames

q
arereplacedby thecorre-

spondingvaluesy W q [ . For assignmentsy and| , wesaythaty}�v| if y W q [ �U| W q [ holdsfor all variables
q
. The least

solutionto a constraintsystemis thesmallestassignmenty
thatsatisfiesthesystem,i.e.,asatisfyingassignmenty such
thatany othersatisfyingassignment| obeys yA�N| .

Theorem 1. Everyconstraint systemhasa uniqueleastso-
lution.

Proof. SeetheAppendixA for theproof.

In fact,asweshallseelater, theseconstraintsystemsusu-
ally canbesolvedefficiently.

3. Constraint generation

The first step is to parsethe sourcecode; we use the
BANE toolkit [2]. Our analysisproceedsby traversingthe
parsetreefor theinput C sourcecodeandgeneratinga sys-
temof integerrangeconstraints.With eachintegerprogram
variablev weassociatearangevariable

q
. As discussedbe-

fore,with eachstringvariables weassociatetwo variables,
its allocatedsize(thenumberof bytesallocatedfor s ), de-
notedalloc(s ), andits length(thenumberof bytescurrently
in use),denotedlen(s ). We modeleachstringoperationin
termsof its effecton thesetwo quantities.

For convenience,the lengthof a string is definedto in-
cludetheterminator’\0’ . Thus,thesafetypropertyto be
verifiedis

len
W
s
[ & alloc

W
s
[

for all stringvariabless .

For eachstatementin the input program,we generate
an integer rangeconstraint. Integer expressionsand inte-
ger variablesaremodelledby correspondingrangeopera-
tions.For anassignmentv = e, wegeneratetheconstraintp�� q . For example,for theassignmenti = i+j , wegen-
eratetheconstraint

 3��~ �  . We ignoreassignmentswith
dereferencedpointersontheleft; seebelow for adiscussion.

Forstringoperations,wepattern-matchto determinewhat
kind of constraintto generate.Somesampleconstraintsare
summarizedin Table1. The left columnshows theC code
for astringoperationof interest,andtheright columnshows
thegeneratedconstraints.For example,thesecondline says
that the return valueof the strlen() library call is the
lengthof thestringpassedasits first argument,minusone
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(for the string terminator). The third line in the tablesays
that the effect of the strcpy() operationis to overwrite
the first argumentwith the secondargument,and thusaf-
ter thestrcpy() the lengthof thefirst argumentis equal
to the lengthof the secondargument. Note that although
strncpy() may leave its targetunterminated,we do not
modelthis behavior.

For scalabilityandsimplicity of implementation,weusea
flow-insensitiveanalysis,i.e.,we ignoreall controlflow and
disregardthe orderof statements.Flow-insensitive analy-
sessacrificesomeprecisionfor significant improvements
in scalability, efficiency, andeaseof implementation.We
donotclaimthatflow-insensitiveanalysisis necessarilythe
bestapproachfor a production-qualitybuffer overruntool;
instead,we merelyobserve that its advantages(easeof im-
plementation,scalability)mappedwell to our initial goals
(constructionof a proof-of-conceptprototypethatcanana-
lyze large,real-world applications).

Note that the strcat() operationis difficult to model
accuratelyin aflow-insensitivemodel,becausewemustas-
sumethat it canexecutearbitrarily often (for instance,in-
sidea loop). As aresult,in aflow-insensitiveanalysisevery
non-trivial strcat() operationis flaggedas a potential
buffer overrun.This is a pricewe have to payfor thebetter
performanceof flow-insensitiveanalyses.Fortunately, most
of the C library string operationsare idempotent, which
meansthat they do not presentany intrinsic problemsfor
a flow-insensitiveanalysis.

Finally, we model function calls monomorphically, i.e.,
we merge information for all call sitesof the samefunc-
tion. Let f() be a function definedwith the formal in-
teger parameterformal . We adda variablef_return
to denotethe return valueof f() . A return statement
in f() is treatedas an assignmentto f_return . Each
function call b = f(a) is treatedas an assignmentof
the actualsto the formals (i.e., formal = a) followed
by anassignmentthatcarriesthe returnvalueof f() (i.e.,
b = f\_return ). Notethatthebodyof eachfunctionis
processedonly once,sothisstrategy is simpleandefficient,
but not necessarilyprecise.

After thepossiblerangesof all variablesareinferred,we
may checkthe safetypropertyfor eachstring s . Suppose
theanalysisdiscoversthat len

W
s
[

andalloc
W
s
[

take on val-
uesonly in � � �9�9� and � � �9�<� , respectively. Thereare three
possibilities:

1. If
� &
� , wemayconcludethatthestrings neverover-

flows its buffer.

2. If �#� � , thena buffer overrunalwaysoccursin any
executionthatusess .

3. If the two rangesoverlap,thenwe cannotrule out the
possibilityof aviolationof thesafetyproperty, andwe

char s[20], *p, t[10];
strcpy(s, "Hello");
p = s + 5;
strcpy(p, " world!");
strcpy(t, s);

Figure 3. A buffer overrun that the analysis would
not find due to the pointer aliasing. In this exam-
ple, a 13-byte string is copied into the 10-byte
buffer ttt .

conservatively concludethatthereis thepotentialfor a
buffer overrunvulnerabilityin s .

3.1. Handling pointers

Ideally, wewouldliketheconstraintgenerationalgorithm
to besound: if y is asatisfyingassignmentfor theconstraint
systemgeneratedby this algorithmon someprogram,theny W q [ shouldcontainevery possiblevalue that the integer
programvariablev cantake on duringtheexecutionof the
program.Our algorithmis, however, unsafein thepresence
of pointersor aliasing.

Table 1 is deliberatelyvagueaboutpointer operations.
This is because,in the simplistic model usedin the pro-
totype,pointeraliasingeffectsarelargely ignored,andthe
rules for dealing with pointer expressionsare highly ad-
hoc. For example,thestatementq = p+j; is interpreted
as alloc

W
p
[��N~ � alloc

W
q
[
, len

W
p
[��N~ � len

W
q
[
. This

interpretationis correctin the absenceof writes to *p and
*q , but dueto theimplicit aliasingof p andq awrite to one
string is not reflectedwhentheotherstring is readin some
subsequentprogramstatement.Figure3 givesan example
of a codesegmentwith a staticbuffer overrunthat is unde-
tectedby the analysis.Thus,ignoring pointeraliasingcan
causethe analysisto misssomevulnerabilitiesand,aswe
shallseelater, canoccasionallycausefalsealarms.

Doubly-indirectedpointers(e.g.,char ** ) arehardto
handlecorrectlywith our heuristicsandthusareignoredin
our tool. Arraysof pointerspresentthesameproblemsand
are treatedsimilarly. As an unfortunateresult,command-
line arguments(char *argv[] ) are not treatedin any
systematicway.

Functionpointersarecurrently ignored. We alsoignore
union types. Thesesimplificationsareall unsoundin gen-
eral,but still usefulfor a largenumberof realprograms.

It seemsthat one can retain some benefits of static
analysisdespite(largely) ignoring pointers and aliasing.
Nonetheless,in practicethereis one relatedC idiom that
cannotbeignored:useof C struct ’s. Structuresform es-
sentiallytheonly mechanismfor abstractionor construction
of datastructures,soit is notsurprisingthatthey arewidely
used. Experiencesuggeststhat modellingstructuresprop-
erly is crucial to obtaininggoodresults:anearlieranalysis
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tool that ignoredstructureswasmostly uselessfor under-
standingrealprogramsof any non-trivial complexity. One
aspectthat complicatesanalysisof structuresis that they
arecommonlyusedin conjunctionwith pointers(for exam-
ple, we might want to know whetherp->left->right
refersto thesameobjectasq->right->right ), yetone
of thegoalsof theprototypewasto avoid the implementa-
tion complexity associatedwith a full treatmentof pointers,
if possible.

This seemingparadoxis resolvedwith a simpletrick for
modellingstructures:all structureobjectswith thesame(or
compatible)C typeareassumedto bepotentiallyaliasedand
are modelledwith a single variablein the constraintsys-
tem (seealso [16]). In addition,structurefield references
arefurtherdisambiguatedusinglexical field names,sothat
hp->h_length is notconsideredthesamememoryloca-
tion ashp->h_addr . This techniquecanintroducefalse
alarms(but doesn’t missrealvulnerabilities,unlessthepro-
gramusescastsin unusualways),yet it seemsto work well
enoughin practice,in lieu of a full pointeranalysis.

4. Solving integer range constraints

Thedesignof theconstraintlanguageis motivatedby the
following intuition. Supposewe areanalyzinga program
with � variables. Considerthe statespace

���
whose

 
-th

componentrecordsthe valueof the
 
-th programvariable.

We may consideran executionof the programas a path
throughthestatespace.With this perspective,our goalis to
find aminimalboundingboxthatenclosesall of thedynam-
ically possiblepathsthroughthe � -dimensionalstatespace.

In this section,we give an efficient algorithm for find-
ing a boundingbox solutionto a systemof constraints.In
practice,our algorithmscaleslinearly on our benchmarks.
Notice that the solution to the constraintsystemgives us
boundson the rangesof eachprogramvariable standing
alone,but cannotgive us any informationon relationships
that hold betweenmultiple programvariables. As an al-
ternative, we could imaginecomputinga minimal convex
polyhedronthatenclosesall theexecutionpaths(using,e.g.,
the simplex method). This would return moreprecisere-
sults, but it would probablyalso scaleup very poorly to
the large problem instancesencounteredwhen analyzing
real-world programs.For instance,sendmailcontainsabout
32k non-comment,non-blanklinesof C code,andit yields
a constraintsystemwith about9k variablesand 29k con-
straints. The simplification to boundingboxesis what al-
lows theconstraintsolver to runveryefficiently.

We developa boundingbox algorithmby beginningwith
thesimplestcase:assumethatarithmeticandmin/maxex-
pressionsareomitted,so thateachconstrainthasthe form�'W q<� [ � q!� , where

� "F��� � �!� z{ � �b��� $ � " � �9��"��� �
is an affine function on

���
extendedto operateon

rangesin thenaturalway, i.e.,
�'W � [ � � �'W�� [ $ � " � � �

���
.

We form a directedgraphwhoseverticesare the vari-
ables

q<�
. For eachconstraint

�'W q<� [ � q!�
we add the la-

beleddirectededge
q ���{ q �

. Eachvertex
q �

is marked
with a range y W q � [ giving the currentestimateof the so-
lution. All rangesare initially set to y W q � [ $ ���

. Then
constraintsof the form

� � q
are processedby settingy W q<� [ $ � RANGE-CLOSURE

W y W q<� [ 	 �O�'�C[ and the solver
is called.

The solver works by propagatinginformation in this

graph. We say that an edge
q � �{ q �

is active if�'W y W q<� [0[ ]��y W q!� [ . To propagateinformationalong such
anactive edge(alsoknown asrelaxation), we set y W q!� [ $ �
RANGE-CLOSURE

W y W q!� [ 	 �'W y W q<� [�[0[ . An augmentingpath
is one containingonly active edges. (This wording is in
deliberateanalogyto standardalgorithmsfor shortest-paths
andnetwork flow problems.)The goal of the algorithmis
to find augmentingpathsandpropagateinformationalong
themby relaxingtheupperboundson thesolution.

If theresultingdirectedgraphis acyclic, we cantrivially
solve theconstraintsystemin lineartime: we topologically
sortthegraphandpropagateinformationalongeachedgein
sortedorder. Graphswith cyclesareharderto handle.

The approachgiven above canbe rephrasedin the per-
hapsmorefamiliar languageof fixpointsover lattices.Each
constraint

�'W q<� [ � q!� inducesa continuousfunction � on
assignmentsgivenby

W � W y [�[ W q � [ ��� y W q � [ 	 �'W y W q � [0[ if
~ � �y W q � [ otherwise

�
andin this way theconstraintsystemgivesusa setof such
functions

� � � . Now notethat a satisfyingassignmentfor
the constraintsystemforms a fixpoint for all the � ’s, and
vice versa. Therefore,we areseekingthe leastfixpoint of
the functions

� � � , becauseit will be the leastsolution to
theconstraintsystem.

Wecouldsearchfor thefixpoint usingastandardworklist
algorithmthatvisitsall theaugmentingpathsin breadth-first
orderandpropagatesinformationalongthemby relaxation.
However, thebasicworklist algorithmwouldexhibit serious
problems:in thepresenceof cycles,it might not terminate!
For instance,considertheconstraintsystemcontainingthe
two constraints

n � q and
q �U6 � q . A naive algorithm

wouldloopforever, revisingits initial estimatey W q [ � � n2�9nC�
to � n-�9oP� , � n2�i�!� , � n-�9�P� , etc.This “countingto infinity” behav-
ior arisesbecausethelatticeof rangeshasinfinite ascending
chains,andthusthemonotonicityof

� � � is not enoughto
ensuretermination.

At thispoint,wehavethreeoptionsfor restoringtermina-
tion.

1. We could restrictattentionto thoseprogramsthat in-
duceacyclic constraintsystems.
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2. We could introducea widening operatorthat raises
variables involved in cycles to the trivial solution� ��������� , aspioneeredin [10] and[11]. This avoids
infinite ascendingchains.

3. We coulddirectlysolve theconstraintsubsystemasso-
ciatedwith eachcycle,usingdomain-specificinforma-
tion abouttheconstraintlanguage.

The first is not very attractive, becausereal programsof-
ten involve cycles,suchas thosecreatedby loopsandre-
cursion. Even worse,cyclesarealmostunavoidablefor a
flow-insensitive analysis: for example, the C assignment
i = i 1+ will alwaysinducea cycle in theform of a con-
straint

 ��U6 �  . Onedisadvantageof the secondoption
is thatit introducesimprecision,i.e., it will only providean
approximatesolution(an upperboundon the leastsatisfy-
ing assignment).

This paperfollows the third option. We show how to
avoid divergent behavior, without introducingany impre-
cision,by directly solving for thefixpoint of theconstraint
subsystemassociatedwith eachcycle.

A typicalcycle lookslike�7�PW q � [ � q<� ��sOs=st� �P�-�t�PW q �Q�t� [ � q � � �<�tW q � [ � q � s
Transitively expandingthis cycle, we find that

�'W q � [ � q �
where

� � �P�Y�R�O�=�t�`�7�
. (We may view

�
loosely as

Shostak’s loopresidue[56] for thecycle.) Thecomposition
of affine functionsis affine, so

�
is affine. Theobservation

is that we canpreciselysolve this cyclic constraintsystem
without any divergencewhatsoever, by usinga simplefact
on thefixpointsof affine functions.

Lemma 1. Let
�'W ��[ � � �`�N� bean affinefunctionin

���
with ��� 8

, let � be a range, and let
( � ���

be the
minimal range satisfying� � ( and

�'W¡( [ � ( . Then(1).0/21 ( � � if .0/21 �'W � [ �¢.0/21K� ; also, (2) )e*2, ( � ���
if )+*-, �'W � [Y£ )+*-,m� . If neither clause(1) nor clause(2)
applies,we have

( � � . If both clausesapply, we have( � � ��������� .
Theorem 2. We cansolvetheconstraint subsystemassoci-
atedwith a cyclein linear time.

To restatethetheoremintuitively: if we everfind anaug-
menting path that traversesan entire cycle, the theorem
shows us how to immediatelyapply a widening operator
without any lossof precisionwhatsoever. This providesa
simpleway to avoid the“countingto infinity” behavior that
arisesfrom traversinga cyclemultiple times.Thus,thereal
contribution of Theorem2 is that it shows how to find the
fixpoint of thesystempreciselyandefficiently; sinceweare
working in a latticewith infinite ascendingchains,standard
techniquescannotprovidethis.

Figure 4 presentsan algorithm that usestheseideasto
handlecycles efficiently. This time, we usea depth-first

CONSTRAINT-SOLVER

1. Set y W q � [ $ �S� for all
 
, andsetdone

$ �
false.

2. For eachconstraintof theform
� � w , do

3. Set y W w [ $ � RANGE-CLOSURE
W y W w [ 	 �O�'�P[ .

4. While done
]�

true,call ONE-ITERATION.

ONE-ITERATION

1. Set ¤ W q � [ $ � white for all
 

andsetdone
$ �

true.
2. For eachvariable

q
, do

3. If ¤ W q [ � white, do
4. Setprev

W q [ $ �
null andcall V ISIT(

q
).

V ISIT(
q
)

1. Set ¤ W q [ $ � gray.
2. For eachconstraintof theform

�'W q [ � w , do
3. If

�'W y W q [�[ ]��y W w [ , do
4. Set y W w [ $ � RANGE-CLOSURE

W y W w [ 	 �'W y W q [�[�[ .
5. Setdone

$ �
false.

6. If ¤ W w [ � gray, call HANDLE-CYCLE(
q
,
w

,prev).
7. If ¤ W w [ � white, do
8. Setprev

W w [ $ �^q
andcall V ISIT(

w
).

9. Set ¤ W q [ $ � black.

RANGE-CLOSURE(
(

)
1. Returntherange � )+*-, ( � .�/;1 ( � .

Figure 4. An algorithm that efficiently solves sys-
tems of integer range constraints.

searchso that we can recover the edgesparticipatingin
the cycle as soonas we seea back-edge.The HANDLE-
CYCLE procedure(left unspecifiedhere,for spacereasons)
retracesthecycle discoveredin thedepth-firstsearchusing
the predecessorpointersand thenprocessesthat cycle us-
ing the algorithmsketchedin the proof of Theorem2 (see
AppendixA).

In theory, this solutionprocesscould take ¥ W�W �Y� � [ � [
time in theworstcase,where � countsthenumberof cycles
in thegraph. In practice,though, � seemsto besmall,and
thealgorithmusuallyrunsin linear time, probablybecause
of sparsityandlocality in the constraintsystemsthat arise
duringtheanalysisof typicalprograms.

This concludesour treatmentof constraintsolving for
simpleconstraints.We haveextendedthealgorithmto han-
dlethefull constraintlanguage,includingmulti-variableex-
pressionsandmin/maxoperators.SeeAppendixB for the
details.

5. Early experience with the prototype

This sectiondetailssomeearly experiencewith the cur-
rentversionof theoverrundetectiontool.

Theexperimentalmethodologywassimple.Thetool was
appliedto severalpopularsoftwarepackages.Thetool typi-
cally produceda numberof warningsaboutpotentialbuffer
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overruns,and one of us examinedthe sourceby handto
screenout the falsealarms. Somesampleoutputis shown
in Figure5.

We appliedthe tool to abouta dozensoftwarepackages.
Dueto lackof space,weomit thecaseswherethetool found
nothingof interest.

5.1. Linux net tools

Thebestsuccessstorysofararosefrom ananalysisof the
Linux nettools package,whichcontainssourcefor stan-
dard networking utilities suchas netstat , ifconfig ,
route , andso on. The programsthemselvestotal about
3.5k lines of code,with another3.5k devotedto a support
library1.

This packagehad already beenauditedby hand once
in 1996 after several buffer overrunswere found in the
code[31], so it cameassomewhat of a surprisewhenthe
tool discoveredseveral seriousandcompletelynew buffer
overrun vulnerabilities. One library routine trusts DNS
responsesand blindly copiesthe result of a DNS lookup
into a fixed-lengthbuffer, trustingboth the hp->h_name
andhp->h_length valuesreturned. In both cases,this
trust is misplaced. Another routine blindly copies the
result of a getnetbyname() lookup into a fixed-size
buffer. At first glance, this may appearharmless;how-
ever, getnetbyname() may issuea NIS network query
in somecases,andthusits responseshouldnot be trusted.
Severalotherplacesalsoperformuncheckedstrcpy() ’s
into fixed-sizebuffers on the stackthat canapparentlybe
overrunby spoofingDNSor NIS resultsor by simply regis-
teringa hostwith anunexpectedlylongname.

These vulnerabilities seem likely to be remotely ex-
ploitable2. It is worth stressingthat theseholeswereprevi-
ouslyunknown,despiteanearliermanualauditof thecode.

5.2. Sendmail 8.9.3

Thelatestversionof sendmail(about32k linesof C code)
wasoneof the first programsanalyzed.Somesampleout-
put is shown in Figure5, which shows (for example)that
solving the constraintsystemtook lessthan two seconds;
also,Section5.5presentsamoredetailedstudyof thewarn-
ings from the tool. Sendmailmakesanespeciallyinterest-
ing test,becauseit hasbeenextensively auditedby handfor
buffer overrunsandothervulnerabilities.Also, we feel that
it makesfor a very thoroughtestof theapplicabilityof the
tool to large,complex applications.

Thetestingsessiondid not uncoverany securityvulnera-
bilities in sendmail-8.9.3.A few smallbugswereidentified
thatcouldin theoryleadto buffer overruns,but they do not

1Throughoutthispaper, weexcludecommentsandblanklinesfrom our
countsof codesizes.

2Wehaven’t writtenexploit codeto confirmthis,but examinationof the
sourcesuggeststhatstandardattacksarelikely to work.

seemexploitablein practicebecausetherelevantinputsare
not underadversarialcontrol. Nonetheless,the new bugs
identifieddodemonstratethepotentialto find subtlecoding
errorsin realcodeusingautomatedanalysistechniques.

The most important bug identified by the tool was a
complex off-by-one error in the managementof string
buffers. This bug is hinted at by the warning about
‘dfname@collect()’ : the tool discovered that 20
byteswereallocatedfor a buffer calleddfname (defined
in thecollect() procedure),andthatastringcontaining
possiblyasmany as257bytesmight becopiedinto the20-
bytebuffer. This is a potentialviolation of thesafetyprop-
erty. In this case,the tool suggeststhat the lengthystring
camefrom thereturnvalueof queuename() , but wasnot
ableto identify any furtherdependenciesof interest.

Upon further investigation,usingotherdiagnosticsfrom
the tool, we found that a complex sequenceof invocations
can causequeuename() to return a 21-bytestring (in-
cluding the terminating ’\0’ ). (The 257-bytefigure is
a result of imprecisionin the analysis.) The troublesome
sequenceis: orderq() readsa file from the queuedi-
rectory, and copiesits filename(possibly as many as 21
byteslong,includingthe’\0’ ) into d->d_name andthen
into w->w_name; thenrunqueue() calls dowork(w-
>w_name+2,...) , anddowork() storesits first argu-
ment (which can be as long as 19 bytes) into e->e_id ;
next queuename() concatenates"qf" and e->e_id ,
returning the result, which is copied into dfname ; but
queuename() ’sreturnvaluemightbeaslongas19+2=21
byteslong (including the ’\0’ ), which will overflow the
20-bytedfname buffer.

This minor bug is the result of a commonoff-by-one
error: the programmerapparentlyforgot to include the
stringterminator’\0’ whencountingthenumberof bytes
neededto storethereturnvaluefrom queuename() . The
very complex calling patternneededto trigger this pattern
illustrateswhy this type of bug is so difficult for humans
to find on their own andwhy automatedtools areso well
suitedfor this task.

We notethat this codingerrorsurvivedat leastoneman-
ual audit (the bug predatesversion8.7.5,andsurvived an
extensive sweepof the codeapparentlyinspiredby CERT
advisoryCA-96.20).

For completeness,we explain some of the other
warning messagesin Figure 5. The warning about
‘from@savemail()’ is causedby imprecisionin the
analysis.Therelevantcodelookssomethinglike this:

if (sizeof from
< strlen(e->e_from.q_paddr) + 1)

break;
strcpy(from, e->e_from.q_paddr);

A humanwould realizethat thestrcpy() is not reached
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Warning: function pointers; analysis is unsafe...
1.74user 0.07system 0:01.99elapsed 90%CPU
Probable buffer overflow in ‘dfname@collect()’:

20..20 bytes allocated, -Infinity..257 bytes used.
<- siz(dfname@collect())
<- len(dfname@collect()) <- len(@queuename_return)

Probable buffer overflow in ‘from@savemail()’:
512..512 bytes allocated, -Infinity..+Infinity bytes used.
<- siz(from@savemail())
<- len(from@savemail()) <- len((unnamed field q_paddr))

Slight chance of a buffer overflow in ‘action@errbody()’:
7..36 bytes allocated, 7..36 bytes used.
<- siz(action@errbody())
<- len(action@errbody())

...

Figure 5. Some example output from the analysis tool. This example is a small sample of some of the more
interesting output from an analysis run of sendmail 8.9.3.

unlessit is safeto execute.Thetool doesnot find thisproof
of safetybecausetherangeanalysisis flow-insensitive and
thusblind to the if statement.

The warning about ‘action@errbody()’ (another
falsealarm)is alsoinstructive. Therelevantsectionof code
hasthefollowing form:

char *action;
if (bitset(QBADADDR, q->q_flags))

action = "failed";
else if (bitset(QDELAYED, q->q_flags))

action = "delayed";

Wecanreadilyseethatalloc
W
action

[ �
len
W
action

[
al-

waysholdsfor thiscodesegment,sothereis nosafetyprob-
lem. However, the“boundingbox” rangeanalysisis funda-
mentallyunableto detectinvariantsdescribingthepossible
relationshipsbetweenvaluesof programvariables—another
form of imprecision—soit is unableto detectandexploit
this invariantto provethecodesafe.

In this case,the analysiscanonly assumethat the string
action may have as few as 7 bytesallocatedfor it but
asmany as8 bytescopiedinto it. This happensfairly of-
ten:whena pointercanreferto multiplestringsof different
lengths,theanalysisusuallyreportsthat its sizeandlength
bothhave thesamerange � �m� p � , andwhen p¦� � thereis no
way to rule out the possibility of a problem. We usesev-
eralheuristicsto try to detectthis classof falsealarmsand
prioritize all warnings:this classof violationsof thesafety
propertyis labelled“Slight chanceof a buffer overrun.”

Oneaspectof this trial thatis not apparentfrom Figure5
is the large numberof falsealarmsencountered(seeSec-
tion 5.5). Weedingthroughthefalsealarmstook a full day
of staringat warningmessagesandsourcecode. A devel-
operalreadyexperiencedin sendmailinternalsmight have

completedthetaskmorequickly, but it wouldstill undoubt-
edlybea time-consumingprocess.

5.3. Sendmail 8.7.5

Findingnew securityvulnerabilitiesis a compellingway
to validatetheeffectivenessof thetool, but it requirescon-
siderabletime with no guaranteeof positive results. As a
time-saving alternative,we appliedthetool to old software
known to containseriousvulnerabilitiesto seeif the bugs
couldhavebeendetected.Sendmailis oneof theclassicex-
amplesof anapplicationthathasbeenvulnerableto buffer
overrunsin thepast.SinceCERT reportedseveraloverruns
in sendmail8.7.5 (seeCA-96.20),andsincethe next ver-
sionwasauditedby handto try to eliminatesuchbugs,we
decidedto usethis asa testplatform.

Thetool foundmany potentialsecurityexposuresin send-
mail 8.7.5:� An uncheckedsprintf() from theresultsof aDNS

lookupto a 200-bytestack-residentbuffer; exploitable
from remotehostswith long DNS records. (Fixed in
sendmail8.7.6.)� An unchecked sprintf() to a 5-byte buffer from
a command-line argument (indirectly, via several
other variables); exploitable by local users with
“sendmail -h65534 ... ”. (Fixedin 8.7.6.)� An unchecked strcpy() to a 64-bytebuffer when
parsingstdin;locally exploitableby “echo /canon
aaaaa... | sendmail -bt ”. (Fixedin 8.7.6)� An uncheckedcopy into a 512-bytebuffer from stdin;
try “echo /parse aaaaa... | sendmail
-bt ”. (Fixedin 8.8.6.)
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Improvedanalysis Falsealarmsthatcouldbeeliminated

flow-sensitive
6!§
¨P:58�©�:
�
ª

flow-sens.with pointeranalysis
>5n5¨P:58�©^o5?
ª

flow- andcontext-sens.,with linearinvariants
>7�
¨P:58�©S�<8
ª

flow- andcontext-sens.,with pointeranalysisandinv.
?5�
¨P:58�©^§
n5ª

Table 2. Expected reduction in false alarms from several potential improvements to the analysis.

� An uncheckedsprintf() to a 257-bytebuffer from
a filename;probablynot easilyexploitable. (Fixed in
8.7.6.)� A call to bcopy() could create an unterminated
string,becausetheprogrammerforgotto explicitly add
a ’\0’ ; probablynot exploitable.(Fixedby 8.8.6.)� An unchecked strcpy() in a very frequentlyused
utility function. (Fixedin 8.7.6.)� An uncheckedstrcpy() to a(static)514-bytebuffer
from a DNS lookup; possibly remotely exploitable
with long DNS records,but the buffer doesn’t live on
the stack, so the simplestattacksprobablywouldn’t
work. Also, thereis at leastoneotherplacewherethe
resultof a DNS lookup is blindly copiedinto a static
fixed-sizebuffer. (Fixedin 8.7.6.)� Several placeswhere the results of a NIS network
queryis blindly copiedinto a fixed-sizebuffer on the
stack; probably remotely exploitable with long NIS
records.(Fixedin 8.7.6and8.8.6.)

Mostof thesecodingerrorsbecameathreatonly becauseof
subtleinteractionsbetweenmany piecesof theprogram,so
thebugswould not beapparentfrom localizedspot-checks
of thesource.Thisseemsto beagooddemonstrationof the
potentialfor finding realvulnerabilitiesin realsoftware.

To our knowledge,noneof the vulnerabilitiesfound in
sendmail8.7.5by our tool havebeendescribedpublicly be-
fore.

5.4. Performance

In our experience,theperformanceof thecurrentimple-
mentationis sub-optimalbut is usable. For example, the
analysisof sendmail(about32k linesof C code)tookabout
15 minutesof computationon a fastPentiumIII worksta-
tion: a few minutesto parsethe source,the rest for con-
straintgeneration,anda few secondsto solve the resulting
constraintsystem.

Theprototypegeneratesextensive debuggingoutputand
hasnot beenoptimized,sowe expectthat theanalysistime
couldbereducedwith additionaleffort. On theotherhand,
thetime requiredto examineall thewarningsby handcur-
rently dwarfs the CPU time neededby the tool, so better
performanceis notanimmediatepriority. For now, themost

importantpropertyof thesystemis that it scalesup readily
to fairly largeapplications3.

5.5. Limitations

Themain limitation of theprototypeis the largenumber
of falsealarmsit produces,dueto imprecisionin therange
analysis.As a consequence,a humanmuststill devotesig-
nificanttime to checkingeachpotentialbuffer overrun.

Our tool generates44 warningsmarked Probable for
sendmail8.9.3. Four of thesewere real off-by-onebugs,
which leaves40 falsealarms.Despitethehigh successrate
(1 in 10warningsindicatedrealbugs),eliminatingthefalse
alarmsbyhandstill requiresanon-negligible levelof human
effort.

One way to reducethe numberof false alarmsrequir-
ing humanattentionis to trade off time for precisionin
the integeranalysis.For example,we couldenvision mov-
ing to a flow-sensitive or context-sensitive analysis. This
obviously raisesthe questionof which improvementsare
worth the effort andat what cost. To estimatethe poten-
tial benefitsof variouspossibleimprovementsto theanaly-
sis,weclassified—byhand—thecausesof eachfalsealarm
in sendmail8.9.3. SeeTable 2 for the results. (A linear
invariant is a simple, linear relationshipbetweenprogram
variables—suchasx

�
y
£�n

or alloc
W
buf

[D«
buflen —

thatholdsin all programexecutions.)
Thesefiguressuggestthat, in retrospect,it might have

beenbetterto usea moreprecisebut slower analysis.We
expectthatstandardanalysistechniques(suchasSSAform
[13], Pratt’s method[49] or Shostak’s loop residues[56],
anda points-toanalysis)could be usedto improve on our
currentprototypeby anorderof magnitudeor more. How-
ever, significantengineeringeffort is probablyrequiredto
getthere.

Despitethe unwieldy numberof falsealarmsproduced
by our tool, our approachis still a substantialimprovement
over the alternative: in a typical codereview, one would
identify all thepotentiallyunsafestringoperations(perhaps
usinggrep ), tracebackall executionpathsleadingto those
unsafeoperations,andmanuallyverify that noneof them
lead to exploitable overruns. For comparison,there are
about695 call sitesto potentiallyunsafestring operations

3We have no experiencewith very large applications,e.g., programs
with hundredsof thousandsof lines of code,so it remainsunknown how
our techniquesscaleup to suchprogramsizes.
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in thesendmail8.9.3sourcewhich would needto beman-
ually checked in a typical codeaudit—

6Cn M
morethanthe

numberthat mustbe examinedwith our tool—sowe con-
cludethatour tool is a significantstepforward.

Oneimportantgapin ourunderstandingof theprototype’s
limitations is that it is difficult to rigorously measurethe
falsenegative rate. As a first approximation,we may ex-
amineall the buffer overrunsin sendmailthat have been
fixed in the threeyearssincethe releaseof version8.7.5;
any suchbugnot reportedby thetool is a falsenegative. To
our knowledge,theonly publicly-reportedoverrunin send-
mail 8.7.5is thechfn vulnerability[44], wherealocaluser
canoverflow a257-bytebuffer by changingtheirgecosfield
in /etc/passwd . Due to pointeraliasingandprimitive
pointer operations,our tool doesnot find the chfn bug,
althougha betterpointeranalysiswould have revealedthe
problem.A detailedmanualexaminationof thesourcecode
revision history shows that a numberof otherbuffer over-
runsin sendmail8.7.5have beenquietly fixedwithout any
public announcements4. As far aswe know, our tool finds
all of thosevulnerabilities(seeSection5.3 for examples).
This evidencesuggeststhatour tool’s falsenegative rateis
non-negligible but still acceptable.

A final problemwith the tool is that it doesnot provide
asmuchinformationabouteachpotentialbuffer overrunas
we might like. As canbe seenfrom Figure 5, the output
shows only which buffer overflowed, not which statement
wasat fault. Thisambiguityis arguablyanunfortunatecon-
sequenceof the constraint-basedformulation. To improve
the situationsomewhat, we extendedthe constraintsolver
to reportwhich variable(s)contributedto eachviolation of
thesafetyproperty. Thisheuristicis notalwaysreliable,but
it doeshelp.

6. Related work

L INEAR PROGRAMMING. Many papershavesuggestedus-
ing linearprogrammingtechniquesto discoverprogramin-
variants, including the simplex method, Fourier-Motzkin
variableelimination[53], theOmegamethod[50], theSUP-
INF method[5, 55], Shostak’s loop residues[56], andal-
gorithmsfor specialclassesof linear systems[30, 9, 38].
Typically, onecombineslinearprogrammingwith abstract
interpretationoversomesimpledomain(convex polyhedra,
octagons,etc.) [10, 11, 23, 25, 26, 24, 52]. In this context,
linear programmingalgorithmsprovide a tool for manipu-
lating subsetsof

���
, with operationssuchas

	
, ¬ , projec-

tion, widening, and testingfor feasibility. Seeespecially
[11] for anearlyexampleof a tool that infers linear invari-
antsof smallprogramsusingabstractinterpretationandthe

4We do not know whetherthesebugs were known to the sendmail
developers,or whetherthey were fortuitously eliminatedby the more-
defensive programmingstyleinitiatedin versions8.7.6and8.8.0.

simplex method. Although the simplex-basedtechniques
offer moreprecisionthanour rangeanalysis,it is not clear
how well they scale.

PARALLELIZING COMPILERS. One importantapplication
for arrayreferenceanalysisis in discoveringimplicit paral-
lelism in sequentialFortranprograms[40, 4, 50]; however,
thosetechniquesdo not seemto help with the buffer over-
runproblembecausethey focustoonarrowly on thespecial
caseof loop optimization.

ARRAY BOUNDS CHECKING. One way to avoid buffer
overrunsis to use runtime array boundschecks. There
areseveral implementationsof arrayboundscheckingfor
C, including SCC [3], gcc extensions[35], Purify [51],
and BoundsChecker [46]. However, many of thesetools
imposea large performanceoverhead(instrumentedpro-
gramsaretypically 2–3

M
slower thantheoriginal versions

[3, 35, 8, 22]). As a result,the tools areusuallyusedonly
for debugging,not for productionsystems.

To reducethehigh costof runtimeboundschecking,sev-
eral researchershave studiedoptimization techniquesfor
eliminatingredundantchecks[22, 39, 57]. However, they
typically focuson moving boundschecksto lessfrequently
executedlocations,rather than on eliminating all bounds
checks.For example,hoistingboundschecksout of loops
using loop invariantsgreatly reducesthe performanceim-
pact of the boundschecksbut cannotreducethe number
of checksin the program’s sourcecode. Therefore,these
optimizationtechniquesarenot well suitedfor proactively
findingbuffer overruns.

Otherworkshaveconcentratedoneliminatingall bounds
checksfor sometype-safelanguages.For example,Necula
andLeedevelopacertifyingcompilerfor atype-safesubset
of C that eliminatesmost boundschecksusing Shostak’s
loopresidues[45]. Also,Xi andPfenningproposeamethod
to eliminateruntime array boundscheckingfor ML with
the help of someassertionsaddedby the programmerto
capturecertainprograminvariants[60, 61]. Of course,none
of thesetoolscaneliminatebuffer overrunsin large legacy
applicationswritten in C.

RANGE ANALYSIS. Our approachto rangeanalysisbuilds
on muchprior work in the literature,including early work
on abstractinterpretation[10] and rangepropagation[27]
aswell asmorematurework on systemsfor staticdebug-
ging [6], generalizedconstantpropagation[59], andbranch
prediction[47]; however, our emphasison analysisof large
programsspurredusto developnew techniqueswith better
scalingbehavior.

CONSTRAINT-BASED ANALYSES. Philosophically, our
analysismay be viewed asa constraint-basedanalysis[1];
however, it is unusualto incorporatearithmeticexpressions
in thesetconstraintlanguageandsolver(but see[28] for an
importantpartialexception).
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Note also that techniquesfor solving integer constraint
systemsmaybefoundin theartificial intelligenceliterature
[14, 32, 37, 58]; however, their algorithmstypically stress
generalityfor smallproblems(“hundredsof nodesandcon-
straints”[14]) over scalabilityandthusarenot directly ap-
plicablehere.

L INT-LIKE TOOLS. Severalcommonlyusedtools [34, 18,
19] usestaticanalysisandsomeheuristicsto detectcom-
mon programmingerrors(suchas type errors,abstraction
violations,andmemorymanagementbugs),but thesetools
don’t detectbuffer overruns.

Many practitionershave notedthat grep canbe a use-
ful if crudetestfor finding buffer overrunsby searchingfor
all usesof unsafestring operations;however, a substantial
time investmentis oftenrequiredto dealwith thevery large
numberof falsealarms. Our resultsdemonstratean

6Cn M
improvementovergrep for thecaseof sendmail8.9.3(see
Section5.5).

PROGRAM VERIFICATION. ESCis an automatedprogram
checker for Modula-3andJava thatcatchesmany program-
ming errors at compile-time, using program verification
techniques[15]. Onedisadvantageof ESCis thatit requires
codersto annotatemoduleinterfaceswith informationabout
expectedpre-andpost-conditions,but it canusethis infor-
mationto find avery largeclassof potentialbugs.

STACKGUARD. Stackguardis a runtimetool which detects
buffer overrunson the stackbeforethey causeharm[12].
Stackguardimposesvery little performanceoverheadand
hasbeenappliedto large suitesof applications,including
anentireLinux distribution. Stackguardis a powerful tool
that canserve asa strongdeterrentagainstmany existing
buffer overrunattacks;however, it doesnot stopall overrun
attacks,andthusshouldnot berelieduponastheonly line
of defense.

7. Conclusion

This paperintroducesa simple techniquefor the auto-
mateddetectionof buffer overrunvulnerabilities. Of par-
ticular significanceis its ability to analyzelarge, complex
programs. Becausewe tradeoff precisionfor scalability,
our tool generatesa relatively largenumberof falsealarms,
but it seemslikely thata moresophisticatedanalysiscould
reducethefrequency of falsealarms.Wealsodemonstrated
thatourprototypeimplementationcanfind evenverysubtle
bugsthat eludehumanauditors. Although the tool is cer-
tainly no substitutefor defensiveprogrammingor a careful
codereview, ourexperiencesuggeststhatit cancomplement
andreducetheburdenof theseapproaches.

Our implementationhingeson two key designconsidera-
tions. First, treatingstringsasan abstractdatatypeallows
us to recognizenaturalabstractionboundariesthat areob-
scuredby theCstringlibrary. Second,formulatingtheprob-

lem in termsof integerrangetrackingallowsusto build on
techniquesfrom programanalysis.

We concludethat this providesa powerful andsuccess-
ful new approachto finding buffer overrunvulnerabilities.
Weattributeits successto thenew methodologyintroduced,
wherewe apply staticanalysisto securityproblems. One
major advantageof static analysisis that it allows us to
proactivelyeliminatesecuritybugsbeforecodeis deployed.

Ideally, wewould likeatool thatcouldcatcheverybuffer
overrun. Although our tool doesnot detectall exploitable
overruns,it still finds morethanhumansdo, which shows
thatwe havemaderealprogresstowardthis greatergoal.
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A. Proofs of the theorems

Theorem 1. Everyconstraint systemhasa uniqueleastso-
lution.

Proof. There is a natural intersectionoperatoron assign-
ments,definedby

W yJ¬L| [ W q [ � y W q [ ¬V| W q [ . The inter-
sectionof two satisfyingassignmentsis also a satisfying
assignment,sinceif y W p [ ��y W q [ and | W p [ ��| W q [ , thenW yL¬Y| [ W p [ � W yV¬V| [ W q [ . This meansthat if a constraint
systemhasa leastsolution,it is unique:supposingthereare
two minimalsatisfyingassignmentsy ]� | , then yH¬H| is an-
other, smallersatisfyingassignment,which contradictsthe
assumptionof non-uniqueness.To show thataleastsolution
exists,let y betheintersectionof all satisfyingassignments.
This intersectionis non-empty, sincethetrivial assignmentq^z{ � ��������� satisfiesevery constraintsystem. Clearly,
if | satisfiesthe system,then y��­| . Therefore, y is a
satisfyingassignment,andit is theleastsuch.

Lemma 1. Let
�'W ��[ � � �`�N� bean affinefunctionin

���
with ��� 8

, let � be a range, and let
( � ���

be the

minimal range satisfying�®� ( and
�'W¡( [ � ( . Then(1).0/21 ( � � if .�/21 �'W � [ ��.0/21K� ; also, (2) )+*-, ( � ���

if )+*-, �'W � [Y£ )+*-,m� . If neitherclause(1) nor clause(2)
applies,we have

( � � . If both clausesapply, we have( � � ���^�i�F� .
Proof. Let � � � �m� p � , so that .0/21 �'W � [ � �'W p [ (since

�
is monotoneand � «¯6 ). If

�'W p [ �xp , then
�'W �°[ � � for

all
��« p (since � «�6

), so that
�'Wd�'W p [0[ � �'W p [ �±p ,

etc.,and(1) is provedby induction. (2) follows similarly.
Finally, if neitherclauseapplies,then

�'W � [ �²� , andby
theminimality of

(
we have

( � � .

Theorem 2. We cansolvetheconstraint subsystemassoci-
atedwith a cyclein linear time.

Proof. Let
�'W ��[ � � �b�#� betheaffine functionassociated

with thecycle. It sufficesto show that theclaim is true for�F� 8 . (If � � 8 , the theoremis trivial; if � £³8 , we tra-
versethecycle twice andconsider

�k���
.) We show that it

suffices to simply compute
�'W y W q � [0[ andcomparethe re-

sult with y W q � [ . If
�'W y W q � [�[ �Uy W q � [ , the leastsolutionisy W q � [ , andwecanstoptraversingthecycle. Otherwise,one

or both of the clausesof the lemmaapply. If both apply,
we are done: set y W q � [ $ � � ���^�i�F� , and let the work-
list algorithmtraceout the implicationsfor the

q �
. If just

oneapplies—say, clause(1)—we simply apply the lemma
(a secondtime) to �µ´ � � )+*-,m� �i�F� , andwe will be done
after this secondapplication. Computing

�
requirestime

linear in the lengthof thecycle, andpropagatingtheresult
of theanalysisaroundthecyclealsorequireslineartime,so
thewholeprocessrunsin lineartime.

B. More on constraint solving

In this section,we extendthe basicalgorithmpresented
in Section4 to handlemoregeneralconstraints.Let usfirst
review how far we have come. We have an efficient algo-
rithm thathandlessimpleconstraints, i.e.,constraintsof the
form � q � �R� � q � . Wehaveprecisetechniquesfor handling
cycles. But the algorithmspresentedso far cannothandle
arithmeticor min/maxexpressionson the left handsideof
theconstraint.Suchconstraintsarerelatively rare: for typi-
calprogramanalysistasks,only about2%of theconstraints
usecomplex arithmeticalexpressions,andlessthan1%use
min/maxexpressions.Nonetheless,they arestill important
enoughthat they cannotbe ignored: consider, e.g., the C
statement sprintf(dst, "foo: %s %s", s, t)
to see why we need complex arithmetical expressions;
also,modellingthestandardlibrary functionsstrncpy() ,
snprintf() , etc., clearly requiressupportfor min/max
expressions.We now describehow to extendthealgorithm
to handlethesemoregeneraltypesof constraints.
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Let ¶ be a constraintsystemconsistingof a systemof
simpleconstraints¶t´ alongwith thecomplex constraint

� � q � � �=�O� � � � q � �N� � w s (1)

We show how to constructa reducedconstraint system�µ· W ¶ [ containingonly simpleconstraints,wherethe least
solutionto �4· W ¶ [ givesa useful lower boundon the solu-
tion to ¶ . The ideais to notethat, for each

~
, (1) implies� � q � �#� � � w , wherethe

� �
’s aregivenby� ��� �f� ¸�e¹ ��º¼»¼»¼»½º �5¾ �l¿¹°� � � y W q<� [

and y is any lowerboundon theleastsatisfyingassignment
to ¶ . Thuswe may take �4· W ¶ [ � ¶ ´ 	 � � � q � ��� � � w $~ � 65�=sOs=st���'� 	 � y W q � [ � q �k$ ~ � 67�=sOs=st�0�'� , wherethe
constants

� �
aredefinedin termsof y asabove. By con-

struction,any satisfyingassignmentfor ¶ will thensatisfy�µ· W ¶ [ .
In principle, this immediately yields an algorithm for

solvingaconstraintsystem¶ containingcomplex arithmeti-
cal expressions:computethe least solution | to � · W ¤ [
(usingthe algorithmin Figure4) andset y $ � y 	 | , re-
peatingthesetwo stepsiteratively until convergence.Ter-
minationis guaranteedsincea cycle in ¶ will inducea cy-
cle in �µ· W ¶ [ andthuswill be processedefficiently by the
HANDLE-CYCLE procedure.

In practice,our implementationexploits a moreefficient
approach,wherewe updatethe reducedsystem�µ· W ¤ [ in
placeas y is updated. In the optimizedalgorithm, each
changeto y W q � [ in the algorithmof Figure4 immediately
forcesan updateto �4· W ¤ [ whenever

q �
participatesin the

left-handsideof somecomplex constraint.This technique
seemsto work verywell for ourpurposes,probablybecause
complex constraintsarerelatively rare.

The approachusedto handleto min/max constraintsis
currentlyverysimplistic: thecurrentimplementationpropa-
gatesinformationthroughmin/maxconstraintsbut doesnot
attemptto handlecyclescontainingmin/maxconstraints.In
principle,thiscouldintroduce“countingto infinity”, but we
have yet to encounterthis behavior. This simplificationre-
flectsimplementationconsiderationsmorethanany funda-
mentaldifficulty with handlingthis type of constraints.If
weeverencountercyclescontainingmin or maxoperations,
we will implementthe following extensionof Lemma1 to
min/maxconstraints:
Lemma 2. Let

�'W ��[ � _`)e* �=À �CW �°[j�=s=sOs3��À �°W �°[j� � � forÀ � �Os=sOst�½À � "³�G�
and � " ��� , where each

À �
is of the

form
À � W ��[ � � � �k��� � for � � � 8 . Let � bea range, and

let
( � ��� be the minimal range satisfying �Á� ( and�'Wd( [ � (

. Then(1) )e*2, ( � ���
if )+*-, �'W � [\£ )+*-,m� ;

also,(2) .0/21 ( � � if .0/21 �'W � [ �T.0/21K� . If neitherclause
(1) nor clause(2) applies,wehave

( � � . If bothclauses
apply, wehave

( � � ���^�i�F� .

Proof. Clause (1) is an immediate consequenceof
Lemma1: if )e*-, À � W � [�£ )e*-,°� , then

��� " (
, since)+*-, �'W¡( [ &¯)e*-, À � W¡( [ for all

(
. To prove clause(2), note

that .�/;1 ( &�� , so it suffices to prove that .0/21 ( « � .
Supposenot, i.e., that .0/21 ( £ � . Let p � .�/;1K� . Since.0/21 �'W � [ �v.�/21K� , we have

À � W p [ �³p for all
~
. Also, by

Lemma1,
À � W ��[ � � for all

�^« p andfor each
~
. Since�'W¡( [ � (

, we must have _`)e* �=À �CW¡( [��Os=sOsÂ�½À ��Wd( [�� � � &.0/21 ( , andso
À � W .�/;1 ( [ &Ã.0/21 ( for all

~
. At the same

time, �®� ( implies .�/21 ( « p , so
À � W .�/;1 ( [ �v.0/21 ( , a

contradiction,which establishesclause(2). Finally, if nei-
therclauseapplies,then

�'W � [ �S� , andby theminimality
of
(

we have
( � � .

The algorithm could be further improved with slightly
moresophisticatedtechniques.For example,wecouldcom-
putetheacyclic componentgraph(whereeachstronglycon-
nectedcomponentis shrunkdown to onevertex) andthen
iteratively processeachstrongly connectedcomponentin
topologicallysortedorder, usinga depth-firstsearchto dis-
coverthecycleswithin eachstronglyconnectedcomponent.
However, we have not exploredthesepossibilitiesfor opti-
mization,becausetheexistingsolver is alreadymuchfaster
thannecessary.
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