A First Step Towards Automated Detection of Buffer Overrun Vulnerabilities

David Wagner Jefrey S.Foster

Eric A. Brewer AlexanderAiken

University of California, Berkeley

Abstract

We describea new techniquefor finding potentialbuffer
overrunvulnembilities in security-criticalC code Thekey
to successs to use static analysis: we formulate detec-
tion of buffer overrunsas an integer range analysisprob-
lem. One major advantaye of static analysisis that secu-
rity bugs can be eliminatedbefore codeis deployed. We
haveimplementeaur designandusedour prototypeto find
new remotely-g&ploitable vulnembilities in a large, widely
deployedsoftwae padkage. An earlier hand audit missed
thesebugs.

1. Introduction

Buffer overrunvulnerabilitieshave plaguedsecurity ar
chitectsfor at leasta decade.In November1988, the in-
famouslinternetworm infectedthousandsor tensof thou-
sandsof network-connectedostsandfragmentednuchof
theknown net[17]. Oneof the primaryreplicationmecha-
nismswas exploitation of a buffer overrunvulnerability in
thefingerd daemon.

Sincethen,buffer overrunshave beena seriouscontinu-
ing menacedo systemsecurity If anything,theincidenceof
buffer overrunattackshasbeenincreasing SeeFigurel for
dataextractedfrom CERT advisoriesover the last decade.
Figure 1 shavs thatbuffer overrunsaccountfor up to 50%
of today'svulnerabilities andthis ratio seemgo beincreas-
ing overtime. A partial examinationof othersourcessug-
geststhat this estimateis probablynot too far off: buffer
overrunsaccountfor 27% (55 of 207) of the entriesin one
vulnerability databas¢29] andfor 23% (43 of 189)in an-
otherdatabas¢33]. Finally, adetailedexaminationof three
monthsof thebugtraq archives(Januaryto March,1998)
shaws that 29% (34 of 117) of the vulnerabilitiesreported
aredueto buffer overrunbugs[7].

Buffer overrunsare so commonbecauseC is inherently
unsafe.Array andpointerreferencesre not automatically
bounds-cheadkd, so it is up to the programmerto do the

*This researctwassupportedn partby the National ScienceFounda-
tion Young InvestigatorAward No. CCR-9457812NASA ContractNo.
NAG2-1210,andanNDSEGfellowship.

checksherself. More importantly mary of the string op-
erationssupporteddy the standardC library—strcpy()
strcat() , sprintf() , gets() , andsoon—areun-
safe.Theprogrammeis responsibldor checkingthatthese
operationsannotoverflow buffers,andprogrammersften
getthosecheckswrongor omit themaltogether

As aresult,we areleft with mary legagy applicationghat
usethe unsafestring primitivesunsafely Programsanritten
today still use unsafeoperationssuchas strcpy() be-
causethey are familiar. Even sophisticatedorogrammers
sometimescombinethe unsafeprimitives with somead-
hoc checks,or use unsafeprimitiveswhenthey somehav
“know” that the operationis safeor that the sourcestring
cannotcomeunderadwersarialcontrol.

Unfortunately programghatusejustthe “safe” subsenf
theC string API arenotnecessarilafe becaus¢he“safe”
string primitiveshave their own pitfalls [43]:

e Thestrn*() callshehaedissimilarly. For instance,
strncpy(dst, src, sizeof dst) is correct
but strncat(dst, src, sizeof dst) is
wrong. Inconsisteng makesit harderfor theprogram-
mer to rememberhow to use the “safe” primitives
safely

e strncpy() mayleavethetargetbufferunterminated.
In comparison,strncat() and snprintf() al-
ways appenda terminating\0’ byte, which is an-
otherexampleof dissimilarity.

e Usingstrncpy() hasperformancémplications,be-
causeit zero-fills all the available spacein the tar-
get buffer after the \0' terminator For example,
a strncpy() of a 13-bytebuffer into a 2048-byte
buffer overwritesthe entire2048-bytebuffer.

and strncat() encourageoff-by-
one bugs. For example, strncat(dst, src,
sizeof dst - strlen(dst) - 1) is correct,
but don't forgetthe-1 !

e strncpy()

e snprintf() is perhapghe bestof the “safe” primi-
tives:it hasintuitive rules,andit is very general How-
ever, until recentlyit was not available on mary sys-
tems,soportableprogramscouldnotrely onit.

30 60%

257 50% 1
201 40%-|

15- 30%-

10+ 20%-

il = Las Al
o DEDODE DD R 0% +—=—"—=, D: OB
1988 1990 1992 1994 1996 1998 1988 1990 1992 1994 1996 1998

Figure 1. Frequency of buffer overrun vulnerabilities, derived from a classification of CERT advisories. The
left-hand chart shows, for each year, the total number of CERT-reported vulnerabilities and the number that
can be blamed primarily on buffer overruns. The right-hand chart graphs the percentage of CERT-reported

vulnerabilities that were due to buffer overruns for each year.

In all casesthe programmemuststill keeptrack of buffer
lengthsaccurately which introducesanotheropportunity
for mistales.

In short,today’s C ervironmentsmake it easyto do the
wrongthing, and,worsestill, hardto dotheright thing with
buffers. This suggestghat an automatedool to help de-
tect this classof security-relgantcodingerrorsmay be of
considerabldenefit.

1.1. Overview

This paperdescribes tool we developedto detectbuffer
overrunsin C sourcecode. Thoughthis is only a first
prototype,early resultslook promising. For example,the
tool found several seriousnew vulnerabilitiesin onelarge
security-criticalapplication,eventhoughit hadbeenhand-
auditedpreviously.

This work involves a synthesisof ideasfrom several
fields, including programanalysis theory andsystemsse-
curity. The main ideais to apply standardstatic analy-
sis techniquesrom the programminglanguagediterature
to the taskof detectingpotentialsecurityholes. We focus
specificallyon staticanalysisso that vulnerabilitiescanbe
proactively identified and fixed beforethey are exploited.
We formulate the buffer overrun detectionproblemas an
integer constrint problem,andwe usesomesimplegraph-
theoretictechniquedo constructan efficient algorithmfor
solving the integer constraints. Finally, security knowl-
edgeis usedto formulateheuristicthatcapturethe classof
security-rel@antbugsthattendto occurin real programs.

Othershave appliedruntime code-testingechniqueso
the problem,using,e.qg.,black-boxtesting[41, 42] or soft-
warefaultinjection[21] to find buffer overrunsn real-world
applications However, runtimetestingseemdik ely to miss

mary vulnerabilities.Considerthefollowing example:

if (strlen(src)
break;
strcpy(dst, src);

> sizeof dst)

Note that off-by-one errorsin buffer managementsuch
asthe one showvn above, have beenexploited in the past
[36, 48]. Thefundamentaproblemwith dynamictestingis
thatthecodepathsof greatesinteresto asecurityauditor—
the oneswhich arenever followedin ordinaryoperation—
are also the onesthat are the hardestto analyzewith dy-
namictechniquesThereforejn thiswork we focuson static
analysis.

A themein this work is the trade-of betweenprecision
andscalability If scalabilityis notaddresseérom thestart,
programanalysesoften have trouble handlinglarge appli-
cations. Sincewe wish to analyzelarge programs suchas
sendmailtensof thousand®f lines of code),we explicitly
aim for scalability evenif it comesat somecostin preci-
sion. This motivatesour useof several heuristicsthattrade
off precisionfor scalability

As a resultof imprecision,our analysismay miss some
vulnerabilities (false negatived and producemary false
alarms(false positive$, but it is still a usefultool. In our
experience,even though our relatively impreciseanalysis
generatesnary falsealarmsi,it still reducesthe numberof
unsafestring operationgo be checledby handby anorder
of magnitudeor more;seeSection5.5.

Weintroducetwo fundamentalpew insightsin this paper:

1. Wetreat C strings as an abstract data type. In C,
pointersare the baneof programanalysis,and ary
codefragmentsthat manipulatebuffers using pointer
operationsare very difficult to analyze. However,

source —= C parser

integer constraint
generation

constraint solver — warnings

Figure 2. The architecture of the buffer overflow detection prototype.

mostC buffer overrunsarein string buffers,andmost
string operationausethe standardC library functions.
This suggestsnodelling C stringsas an abstractdata
type with operationdike strcpy() (copy strings),
strcat() (concatenatestrings), and so on. Any
buffer overrunscausedby manipulatingstringsusing
primitive pointer operationscannotbe detected,but
suchcodewon't otherwiseinterferewith the analysis.

2. Wemodel buffersas pairsof integer ranges. Rather
than tracking the contentsof eachstring variable di-
rectly, we summarizeeach string with two integer
guantitiesithenumberof bytesallocatedfor the string
buffer (its allocatedsize, andthenumberof bytescur-
rently in use(its length). The standardC library func-
tionscanbe modelledby whatthey doto theallocated
sizeandlengthof stringswithoutregardto the strings’
contents.

We formulate the problem of detectingbuffer over-
flowsin termsof integerrangetracking. Any algorithm
for integerrangeanalysiswill work: we justcheck,for
eachstringbuffer, whetherits inferredallocatedsizeis
atleastaslargeasits inferredmaximumlength.

Thesetwo ideasprovide a conceptuaframework for buffer
overrunanalysis.

Our formulation of the problemsuggests naturaldivi-
sion of labor for the implementation:a front end models
string operationsasinteger rangeconstraintswhile a back
endsolvestheresultingconstraintsystem.SeeFigure2 for
adiagramof the systemorganization.

A secondargontributionof thisresearclis ascalableand
very fastinteger rangeanalysis. One novel featureof this
analysisis the ability to handlecyclic datadependencies
without loss of precisionby invoking a fixpoint theorem.
However, we could easilyreplacethis algorithmwith some
othertechniqueor integerrangeanalysis.

Theorganizatiorof thefirst half of this papemparallelsthe
structureof our implementation. First, we needto define
a constraintlanguage(seeSection2). Given this mathe-
maticalfoundation we generateonstraintgrom thesource
code(seeSection3), solve the resultingconstraintsystem
(seeSectio), andcheckall of thestringvariablesfor over-
flow.

The secondhalf of this paperfocuseson analysisof our
approach,ncluding our initial experiencewith the proto-
type (Sectionb), areview of relatedwork (Section6), anda
few concludingremarks(Section7). AppendixA presents

the proofsfor all of ourtheoreticakesultsandAppendixB
expandson moredetailsof the constraintsolver.

2. The constraint language

In this sectionwe describethelanguageof constraintave
useto modelstringoperations.

Let Z denotethe setof integersandwrite Z*° = Z U
{—00, +0o0} for the extendedintegers. The subsetof Z >
form acompletelatticewith C asthe partialorder

We restrict our attentionto integer ranges However,
mary of the commentsherealso apply more generallyto
arbitrary subsetsof Z>°. A rangeis asetR C 7Z* of
the form [m,n] = {i € Z*° : m < i < n}. When
S is a subsetof Z>°, we write inf S and sup S for the
minimum and maximum element(with respectto <) of
S; in particular for rangeswe have inf[m,n] = m and
sup[m,n] = n. Therange closue of ary setS C Z> is
theminimal rangeR (with respecto C) containings, i.e.,
R = [inf S,sup S]. For example,thesetS = {-1,0,4}
hasrangeclosure[—1, 4], sinceinf S = —1 andsup S = 4;
notethatthe rangenotation[—1, 4] is shorthandor the set
{-1,0,1,2,3,4} C 7.

We extend the usualarithmeticoperatorsto act on sets
S, T C Z in thenaturalway:

S+T = {s+t:seS,teT}
S—-T = {s—t:se€S,teT}
SxT = {sxt:seS,teT}

For notationalcorveniencewe often write n as shorthand
for the singletonset{n}, whenn € Z. Thus,the expres-
sion2T acquiredts naturalinterpretatiore? = {2} x T' =
{2t:teT}.

Whenthe resultof an operationis not a range,we take
its range closure. When this rule is followed, the ex-
tendedarithmeticaloperatorsobey mostof the usualalge-
braic laws. Forinstance,S +T =T+ S5, S+0 = S,
S+5 =25, SxT=TxS5,0xS =0, andsoon.
However, the distributive rule doesnot hold (in generalwe
onlyhave S x (T +U) C S xT + S x U; see[32]) andthe
rule for subtractionintroducesa slightly ugly featuresince
in generalS — S # 0.

In practice,it is usefulto extendthe constrainianguage
to includemin andmax operators;

min(S,T) =
max(S,T)

{min(s,t):s € S,t €T}
{max(s,t):s € S,t € T}

C code

Interpretation

char s[n];

strlen(s)
strcpy(dst,src);
strncpy(dst,src,n);

S "foo";

p malloc(n);

p strdup(s);
strcat(s,suffix);
strncat(s,suffix,n);

p = getenv(...);
gets(s);

fgets(s,n,...);
sprintf(dst,"%s",src);
sprintf(dst,"%d",n);
snprintf(dst,n,"%s",src);
pln] = "0,

p strchr(s,c);

h gethostbyname(...);

n C alloc(s)
len(s) —1
len(src) C len(dst)
min(len(src),n) C len(dst)
4 Clen(s), 4 C alloc(s)
n C alloc(p)
len(s) C len(p), alloc(s) C alloc(p)
len(s) + len(suffix) —1 Clen(s)
len(s) + min(len(suffix) —1,n) Clen(s)
[1,00] C len(p), [1,00] C alloc(p)
[1,00] C len(s)
[1,n] C len(s)
len(src) C len(dst)
[1,20] C len(dst)
min(len(src),n) C len(dst)
min(len(p),n + 1) C len(p)
p = s+tn; [0,len(s)]Cn
[1,00] C len(h->h _name),
[—00,00] C h->h_length

Table 1. Modelling the effects of string operations: some examples.

For example,when S = {1,2,3,4} = [1,4] andT =
{3,4,5,6} = [3,6], theninf T" = 3, min(S,T) = [1,4],
andS — T =[-5,1].

We defineaninteger range expressiore as

ex=v|n|nxv|lete|le—e
| max(e, ... ,e) | mine,... ,e)

wheren € Z andv € Vars a setof rangevariables. An
integer range constaint hasthe form e C v. Notice we
requiretheright-handsideto beavariable.

Note thatequality constraintof theform v + n = w fit
within this framework, sincethey canbe equialently ex-
pressedasthe pair of simultaneougonstraint + n C w,
w —n C v. Equality constraintsare useful for unifying
variablesthatarediscovered(during constraintgeneration)
to referto the samememorylocation.

An assignmentx : v — a(v) C Z* satisfiesa sys-
temof constraintsf all of the constraintassertionsretrue
whentheformal variablenames arereplacedy thecorre-
spondingvaluesa(v). For assignments andg, we saythat
a C Bif a(v) C B(v) holdsfor all variablesv. Theleast
solutionto a constraintsystemis the smallestassignmenty
thatsatisfieghesystemj.e.,asatisfyingassignmend such
thatary othersatisfyingassignmeng obeysa C 3.

Theorem 1. Everyconstaint systenhasa uniqueleastso-
lution.

Proof. Seethe AppendixA for the proof. O

In fact,aswe shallsedater, theseconstrainsystemsisu-
ally canbe solvedefficiently.

3. Constraint generation

The first stepis to parsethe sourcecode; we usethe
BANE toolkit [2]. Our analysisproceedsy traversingthe
parsetreefor theinput C sourcecodeandgeneratinga sys-
temof integerrangeconstraintsWith eachintegerprogram
variablev we associat@arangevariablev. As discussedbe-
fore, with eachstringvariables we associatéwo variables,
its allocatedsize (the numberof bytesallocatedfor s), de-
notedallod(s), andits length(thenumberof bytescurrently
in use),denoteden(s). We modeleachstring operationin
termsof its effect on thesetwo quantities.

For corveniencethe length of a string is definedto in-
cludetheterminator\O’ . Thus,the safetypropertyto be
verifiedis

len(s) < alloc(s) for all stringvariabless.

For eachstatementin the input program,we generate
an integer rangeconstraint. Integer expressionsand inte-
ger variablesare modelledby correspondingangeopera-
tions.Foranassignmemnt = e, wegenerat¢éheconstraint
e C v. Forexample for theassignmenit = i+j ,wegen-
eratethe constraint + j C i. We ignoreassignmentsvith
dereferencegointersontheleft; seebelow for adiscussion.

For stringoperationsye pattern-matcto determinevhat
kind of constrainto generateSomesampleconstraintsare
summarizedn Tablel. Theleft columnshownsthe C code
for astringoperatiorof interestandtheright columnshawvs
thegeneratedonstraintsFor example thesecondine says
that the returnvalue of the strlen() library call is the
lengthof the string passedsits first algument,minusone

(for the string terminator). Thethird line in the table says
thatthe effect of the strcpy() ~ operationis to overwrite
the first agumentwith the secondargument,and thus af-
terthestrcpy() thelengthof the first algumentis equal
to the length of the secondargument. Note that although
strncpy() may leave its target unterminatedyve do not
modelthis behaior.

For scalabilityandsimplicity of implementationwe usea
flow-insensitiveanalysisj.e., we ignoreall controlflow and
disrggardthe orderof statements.Flow-insensitve analy-
sessacrificesomeprecisionfor significantimprovements
in scalability efficiency, and easeof implementation. We
do notclaimthatflow-insensitve analysisis necessarilyhe
bestapproachor a production-qualitybuffer overruntool;
instead we merelyobsene thatits advantagegeaseof im-
plementationscalability) mappedwell to our initial goals
(constructiorof a proof-of-concepprototypethatcanana-
lyze large,real-world applications).

Note that the strcat() operationis difficult to model
accuratelyin aflow-insensitve model,becauseve mustas-
sumethatit canexecutearbitrarily often (for instance,n-
sidealoop). As aresult,in aflow-insensitve analysisevery
non-trivial strcat() operationis flaggedas a potential
buffer overrun. Thisis a pricewe have to payfor the better
performancef flow-insensitve analysesFortunately most
of the C library string operationsare idempotent which
meansthat they do not presentary intrinsic problemsfor
aflow-insensitve analysis.

Finally, we modelfunction calls monomorphicallyi.e.,
we meme informationfor all call sitesof the samefunc-
tion. Letf() be a function definedwith the formal in-
teger parameteformal . We add a variablef return
to denotethe returnvalueof f() . A return statement
in f() is treatedasan assignmento f return . Each
function call b = f(a) is treatedas an assignmentof
the actualsto the formals (i.e., formal = a) followed
by anassignmenthat carriesthereturnvalueof f() (i.e.,
b = f_return). Notethatthebodyof eachfunctionis
processednly once,sothis stratgy is simpleandefficient,
but not necessarilyrecise.

After the possiblerangesof all variablesareinferred,we
may checkthe safetypropertyfor eachstrings. Suppose
the analysisdiscoversthatlen(s) andalloc(s) take onval-
uesonly in [a,b] and e, d], respectiely. Therearethree
possibilities:

1. If b < ¢, wemayconcludethatthestrings neverover
flowsits buffer.

2. If a > d, thena buffer overrunalwaysoccursin ary
executionthatusess.

3. If thetwo rangesoverlap,thenwe cannotrule out the
possibility of aviolation of the safetyproperty andwe

char s[20], *p, t[10];
strepy(s, "Hello");

p =s +5;

strepy(p, " world!);
strepy(t, S);

Figure 3. A buffer overrun that the analysis would
not find due to the pointer aliasing. In this exam-
ple, a 13-byte string is copied into the 10-byte
buffert .

consenatively concludethatthereis the potentialfor a
buffer overrunvulnerabilityin s.

3.1. Handling pointers

Ideally, wewouldlik etheconstraingeneratioralgorithm
tobesound if « is asatisfyingassignmenfor theconstraint
systemgeneratedy this algorithmon someprogram,then
a(v) shouldcontainevery possiblevalue that the integer
programvariablev cantake on duringthe executionof the
program.Our algorithmis, however, unsafein the presence
of pointersor aliasing.

Table 1 is deliberatelyvagueabout pointer operations.
This is becausejn the simplistic model usedin the pro-
totype, pointeraliasingeffectsarelargely ignored,andthe
rules for dealingwith pointer expressionsare highly ad-
hoc. For example,the statementy = p+j; isinterpreted
asalloc(p) — j C alloc(q), len(p) — j C len(q). This
interpretationis correctin the absencef writesto *p and
*q , but dueto theimplicit aliasingof p andq awrite to one
stringis not reflectedwhenthe otherstringis readin some
subsequenprogramstatement.Figure 3 givesan example
of acodeseggmentwith a staticbuffer overrunthatis unde-
tectedby the analysis. Thus, ignoring pointeraliasingcan
causethe analysisto miss somevulnerabilitiesand, aswe
shallseelater, canoccasionallycausefalsealarms.

Doubly-indirectedpointers(e.g.,char **) arehardto
handlecorrectlywith our heuristicsandthusareignoredin
ourtool. Arraysof pointerspresenthe sameproblemsand
aretreatedsimilarly. As an unfortunateresult,command-
line aguments(char *argv[]) are not treatedin ary
systematiavay.

Functionpointersare currentlyignored. We alsoignore
uniontypes. Thesesimplificationsareall unsoundin gen-
eral,but still usefulfor alargenumberof realprograms.

It seemsthat one can retain some benefits of static
analysisdespite (largely) ignoring pointers and aliasing.
Nonethelessin practicethereis onerelatedC idiom that
cannotbeignored:useof C struct 's. Structuredorm es-
sentiallytheonly mechanisnfor abstractioror construction
of datastructuressoit is not surprisingthatthey arewidely
used. Experiencesuggestghat modelling structuresprop-
erly is crucial to obtaininggoodresults:an earlieranalysis

tool that ignoredstructureswas mostly uselessfor under
standingreal programsof arny non-trivial compleity. One
aspectthat complicatesanalysisof structuresis that they
arecommonlyusedin conjunctionwith pointers(for exam-
ple, we might wantto know whetherp->left->right
refersto the sameobjectasq->right->right), yetone
of the goalsof the prototypewasto avoid theimplementa-
tion compleity associateavith afull treatmenof pointers,
if possible.

This seemingparadoxis resohedwith a simpletrick for
modellingstructuresall structureobjectswith the same(or
compatible)C typeareassumedb bepotentiallyaliasedand
are modelledwith a single variablein the constraintsys-
tem (seealso[16]). In addition, structurefield references
arefurtherdisambiguatedisinglexical field namessothat
hp->h_length is notconsideredhe samememoryloca-
tion ashp->h_addr . Thistechniquecanintroducefalse
alarms(but doesnt missrealvulnerabilitiesunlessthe pro-
gramusescastsn unusuaways),yetit seemgo work well
enoughin practice,in lieu of afull pointeranalysis.

4. Solving integer range constraints

The designof the constrainfanguagés motivatedby the
following intuition. Supposewe are analyzinga program
with k variables. Considerthe statespacé&* whosei-th
componentecordsthe value of the i-th programvariable.
We may consideran execution of the programas a path
throughthe statespaceWith this perspectie, our goalis to
find aminimal boundingbox thatenclosesll of thedynam-
ically possiblepathsthroughthe k-dimensionabktatespace.

In this section,we give an efficient algorithm for find-
ing a boundingbox solutionto a systemof constraints.In
practice,our algorithm scaledinearly on our benchmarks.
Notice that the solution to the constraintsystemgives us
boundson the rangesof eachprogramvariable standing
alone,but cannotgive us ary informationon relationships
that hold betweenmultiple programvariables. As an al-
ternatve, we could imagine computinga minimal convex
polyhedrorthatenclosesll theexecutionpaths(using,e.g.,
the simplex method). This would return more precisere-
sults, but it would probably also scaleup very poorly to
the large problem instancesencounteredvhen analyzing
real-world programsFor instancesendmailcontainsabout
32k non-commentnon-blanklines of C code,andit yields
a constraintsystemwith about9k variablesand 29k con-
straints. The simplificationto boundingboxesis what al-
lows the constraintsolver to run very efficiently.

We developaboundingbox algorithmby beginning with
the simplestcase:assumeahatarithmeticandmin/maxex-
pressionsare omitted, so that eachconstrainthasthe form
f(vi) Cvj,wheref e AF ={x —wax+b:a€Zbe
Z} is an affine function on Z*° extendedto operateon
rangesin the naturalway, i.e., f(R) = {f(r) : r € R} C

7.
We form a directedgraphwhoseverticesare the vari-
ablesv;. For eachconstraintf(v;) C v; we addthe la-

beleddirectededgew; i> v;. Eachvertex v; is marked
with a rangea(v;) giving the currentestimateof the so-
lution. All rangesareinitially setto a(v;) := 0. Then
constraintsof the form n C v are processedy setting
a(v;) == RANGE-CLOSURE(a(v;) U {n}) andthe solver
is called.

The solver works by propagatinginformation in this
graph. We say that an edge v; EN v; is active if
f(a(v;)) € a(v;). To propagatenformationalongsuch
anactive edge(alsoknown asrelaxatior), we seta(v;) :=
RANGE-CLOSURE(a(v;)U f(a(v;))). An augmentingath
is one containingonly active edges. (This wording is in
deliberateanalogyto standardalgorithmsfor shortest-paths
andnetwork flow problems.) The goal of the algorithmis
to find augmentingpathsand propagatanformationalong
themby relaxingthe upperboundson the solution.

If theresultingdirectedgraphis agyclic, we cantrivially
solve the constraintsystemin lineartime: we topologically
sortthegraphandpropagaténformationalongeachedgein
sortedorder Graphswith cyclesareharderto handle.

The approachgiven above can be rephrasedn the per
hapsmorefamiliar languageof fixpointsover lattices.Each
constraintf(v;) C v; inducesa continuousfunction F' on
assignmentgivenby

(F(a))(vk) — { a(vj) U f(a(v,))

a(vg)

ifj=k
otherwise

andin this way the constraintsystemgivesus a setof such
functions{F}. Now notethata satisfyingassignmenfor
the constraintsystemforms a fixpoint for all the F’s, and
vice versa. Therefore we are seekingthe leastfixpoint of
the functions{F'}, becauset will be the leastsolutionto
theconstraintsystem.

We couldsearctfor thefixpoint usinga standardvorklist
algorithmthatvisits all theaugmentingpathsin breadth-first
orderandpropagateiformationalongthemby relaxation.
However, thebasicworklist algorithmwould exhibit serious
problems:in the presencef cycles,it might notterminate!
For instance considerthe constraintsystemcontainingthe
two constraints$s C v andv + 1 C v. A nawe algorithm
wouldloopforever, revisingitsinitial estimatex(v) = [5, 5]
to[5,6], [5, 7], [5, 8], etc. This “countingto infinity” beha-
ior arisesbecaus¢helatticeof rangeshasinfinite ascending
chains,andthusthe monotonicityof { F'} is not enoughto
ensurgermination.

At this point, we have threeoptionsfor restoringtermina-
tion.

1. We could restrictattentionto thoseprogramsthatin-
duceagyclic constraintsystems.

2. We could introduce a widening operatorthat raises
variablesinvolved in cycles to the trivial solution
[—00, 00|, aspioneeredn [10] and[11]. This avoids
infinite ascendinghains.

3. We coulddirectly solve the constrainisubsystenasso-
ciatedwith eachcycle, usingdomain-specifiégnforma-
tion aboutthe constrainfanguage.

The first is not very attractve, becauseeal programsof-
ten involve cycles, suchasthosecreatedby loopsandre-
cursion. Evenworse,cyclesare almostunavoidablefor a
flow-insensitve analysis: for example, the C assignment
i = i 1+will alwaysinducea cyclein theform of a con-
strainti + 1 C 7. Onedisadwantageof the secondoption
is thatit introducesmprecision,i.e., it will only providean
approximatesolution (an upperboundon the leastsatisfy-
ing assignment).

This paperfollows the third option. We shov how to
avoid divergent behavior, without introducingary impre-
cision, by directly solving for the fixpoint of the constraint
subsystenassociateavith eachcycle.

A typicalcycle lookslike

fl(vl) Q V2, «vvy fnfl(vnfl) g Un, fn(vn) g U1.

Transitvely expandingthis cycle, we find that f (v1) C vy
wheref = f, 0o---0 fi. (We may view f loosely as
Shostaksloop residug[56] for thecycle.) Thecomposition
of affine functionsis affine, so f is affine. The obsenation
is that we canpreciselysolve this cyclic constraintsystem
without ary divergencewhatsoeer, by usinga simplefact
onthefixpointsof affine functions.

Lemmal. Let f(z) = az + b beanaffinefunctionin AF
witha > 0, let R bea range, andlet S C Z bethe
minimal range satisfyingR C S and f(S) C S. Then(1)
sup S = oo if sup f(R) > sup R; also, (2) inf S = —o0
if inf f(R) < inf R. If neitherclause(1) nor clause(2)
applies,we haveS = R. If bothclausesapply, we have
S = [—00,00].

Theorem 2. We cansolvethe constaint subsystemassoci-
atedwith a cyclein linear time

To restatehetheoremintuitively: if we everfind anaug-
menting path that traversesan entire cycle, the theorem
shavs us how to immediatelyapply a widening operator
without any loss of precisionwhatso&er. This providesa
simpleway to avoid the “countingto infinity” behavior that
arisesfrom traversinga cycle multiple times. Thus,thereal
contribution of Theorem?2 is thatit shawvs how to find the
fixpoint of the systempreciselyandefficiently; sincewe are
workingin alatticewith infinite ascendinghains standard
techniguesannotprovide this.

Figure 4 presentsan algorithm that usestheseideasto
handlecycles efficiently. This time, we usea depth-first

CONSTRAINT-SOLVER

1. Seta(v;) := @ for all 4, andsetdone:= false.

2. For eachconstraintof theformn C w, do

3. Seta(w) := RANGE-CLOSURE(a(w) U {n}).
4. While done# true,call ONE-ITERATION.

ONE-ITERATION

1. SetC(v;) := whitefor all ¢ andsetdone:= true
2. For eachvariablev, do

3. If C(v) = white, do

4. Setprev(v) := null andcall VISIT(v).

VIsIT(v)

1. SetC(v) := gray.

2. For eachconstraintof theform f(v) C w, do

3. If fla(v)) € a(w), do

4, Seta(w) := RANGE-CLOSURE(a(w) U f(a(v))).
5. Setdone:= false.

6 If C(w) = gray, call HANDLE-CY CLE(v,w,prev).
7. If C(w) = white, do

8. Setprev(w) := v andcall VISIT(w).

9. SetC(v) := black

RANGE-CLOSURE(S)
1. Returntherange[inf S, sup S].

Figure 4. An algorithm that efficiently solves sys-
tems of integer range constraints.

searchso that we can recover the edgesparticipatingin
the cycle as soonaswe seea back-edge. The HANDLE-
cvycLE procedurgleft unspecifiechere,for spacereasons)
retraceghe cycle discoveredin the depth-firstsearchusing
the predecessopointersand then processeshat cycle us-
ing the algorithm sketchedin the proof of Theorem?2 (see
AppendixA).

In theory this solutionprocesscouldtake O((n + m)k)
timein theworstcasewherek countsthe numberof cycles
in thegraph. In practice though,k seemgo be small,and
thealgorithmusuallyrunsin lineartime, probablybecause
of sparsityandlocality in the constraintsystemghat arise
duringtheanalysisof typical programs.

This concludesour treatmentof constraintsolving for
simpleconstraintsWe have extendedhe algorithmto han-
dlethefull constraintanguageincludingmulti-variableex-
pressionand min/maxoperators.SeeAppendixB for the
details.

5. Early experience with the prototype

This sectiondetailssomeearly experiencewith the cur-
rentversionof the overrundetectiontool.

Theexperimentaimethodologywassimple. Thetool was
appliedto sereralpopularsoftwarepackagesThetool typi-
cally produceda numberof warningsaboutpotentialbuffer

overruns,and one of us examinedthe sourceby handto
screenout the falsealarms. Somesampleoutputis shavn
in Figure5.

We appliedthe tool to abouta dozensoftware packages.
Dueto lack of spacewe omitthecasesvherethetool found
nothingof interest.

5.1. Linux net tools

Thebestsuccesstorysofararosefrom ananalysisof the
Linux nettools packagewhich containssourcefor stan-
dard networking utilities suchasnetstat , ifconfig
route , andsoon. The programsthemselestotal about
3.5k lines of code,with another3.5k devotedto a support
library?.

This packagehad already been audited by hand once
in 1996 after several buffer overrunswere found in the
code[31], soit cameassomeavhatof a surprisewhenthe
tool discoveredseveral seriousand completelynew buffer
overrun vulnerabilities. One library routine trusts DNS
responsesnd blindly copiesthe resultof a DNS lookup
into a fixed-lengthbuffer, trustingboth the hp->h_name
andhp->h_length valuesreturned. In both casesthis
trust is misplaced. Another routine blindly copies the
result of a getnetbyname() lookup into a fixed-size
buffer. At first glance, this may appearharmless;how-
ever, getnetbyname() mayissuea NIS network query
in somecasesandthusits responseshouldnot be trusted.
Several otherplacesalsoperformunchecledstrcpy() 's
into fixed-sizebuffers on the stackthat can apparentlybe
overrunby spoofingDNS or NIS resultsor by simply regis-
teringa hostwith anunexpectediylong name.

These vulnerabilities seemlikely to be remotely ex-
ploitabl€. It is worth stressinghattheseholeswereprevi-
ouslyunknown, despiteanearliermanualauditof thecode.

5.2. Sendmail 8.9.3

Thelatestversionof sendmailabout32klinesof C code)
wasoneof thefirst programsanalyzed.Somesampleout-
putis shavn in Figure 5, which shavs (for example)that
solving the constraintsystemtook lessthantwo seconds;
also,Sections.5presentamoredetailedstudyof thewarn-
ings from thetool. Sendmailmakesan especiallyinterest-
ing test,becausé hasbeenextensively auditedby handfor
buffer overrunsandothervulnerabilities.Also, we feel that
it makesfor a very thoroughtestof the applicability of the
tool to large,complex applications.

Thetestingsessiordid notuncover ary securityvulnera-
bilities in sendmail-8.9.3A few smallbugswereidentified
thatcouldin theoryleadto buffer overruns but they do not

1Throughouthis paperwe excludecommentsandblanklinesfrom our
countsof codesizes.

2\We haven't written exploit codeto confirmthis, but examinationof the
sourcesuggestshatstandardattacksarelikely to work.

seemexploitablein practicebecausgherelevantinputsare
not underadwersarialcontrol. Nonethelessthe new bugs
identifieddo demonstratéhe potentialto find subtlecoding
errorsin realcodeusingautomatednalysistechniques.

The most important bug identified by the tool was a
complex off-by-one error in the managemenbf string
buffers. This bug is hinted at by the warning about
‘dfname@collect()’ the tool discovered that 20
byteswere allocatedfor a buffer called dfname (defined
in thecollect() procedure)andthata stringcontaining
possiblyasmary as257 bytesmight be copiedinto the 20-
byte buffer. Thisis a potentialviolation of the safetyprop-
erty. In this case,the tool suggestghat the lengthy string
camefrom thereturnvalueof queuename() , butwasnot
ableto identify ary furtherdependenciesf interest.

Upon further investigation,using otherdiagnosticsfrom
thetool, we found that a comple< sequenc®f invocations
can causequeuename() to returna 21-bytestring (in-
cluding the terminating\0’). (The 257-bytefigure is
a result of imprecisionin the analysis.) The troublesome
sequencas: orderq() readsa file from the queuedi-
rectory and copiesits filename (possibly as mary as 21
byteslong,includingthe’\O’)intod->d_name andthen
into w->w_name; thenrunqueue() calls dowork(w-
>w_name+2,..) ,anddowork() storesits first agu-
ment (which canbe aslong as 19 bytes)into e->e_id ;
next queuename() concatenatesgf* ande->e id
returning the result, which is copiedinto dfname ; but
queuename() ’sreturnvaluemightbeaslongas19+2=21
byteslong (includingthe \0’), which will overflow the
20-bytedfname buffer.

This minor bug is the result of a common off-by-one
error; the programmerapparentlyforgot to include the
stringterminator\O’ whencountingthe numberof bytes
neededo storethereturnvaluefrom queuename() . The
very complex calling patternneededo trigger this pattern
illustrateswhy this type of bug is so difficult for humans
to find on their own andwhy automatedools are so well
suitedfor thistask.

We notethatthis codingerror survivedat leastoneman-
ual audit (the bug predatessersion8.7.5, and survived an
extensive sweepof the codeapparentlyinspiredby CERT
advisoryCA-96.20).

For completeness,we explain some of the other
warning messagesin Figure 5. The warning about
‘from@savemail()’ is causedby imprecisionin the
analysis.Therelevantcodelooks somethindik e this:

if (sizeof from
< strlen(e->e_from.q_paddr) + 1)
break;

strepy(from, e->e_from.q_paddr);

A humanwould realizethatthe strcpy() is notreached

Warning: function pointers; analysis is unsafe...
1.74user 0.07system 0:01.99elapsed 90%CPU

Probable buffer overflow in ‘dfname@collect()"

20..20 bytes allocated, -Infinity..257 bytes used.

<- siz(dfname@collect())

<- len(dfname@collect()) <- len(@queuename_return)
Probable buffer overflow in ‘from@savemail()’:

512..512 bytes allocated, -Infinity..+Infinity bytes used.
<- siz(from@savemail())

<- len(from@savemail()) <- len((unnamed field g_paddr))
Slight chance of a buffer overflow in ‘action@errbody():
7..36 bytes allocated, 7..36 bytes used.

<- siz(action@errbody())
<- len(action@errbody())

Figure 5. Some example output from the analysis tool. This example is a small sample of some of the more
interesting output from an analysis run of sendmail 8.9.3.

unlessit is safeto execute.Thetool doesnot find this proof
of safetybecauséhe rangeanalysisis flow-insensitve and
thusblind to theif statement.

The warning about ‘action@errbody()’ (another
falsealarm)is alsoinstructive. Therelevantsectionof code
hasthefollowing form:

char *action;

if (bitset(QBADADDR, g->q_flags))
action = "failed";

else if (bitset(QDELAYED, g->q_flags))
action = "delayed";

We canreadilyseethatalloc(action) = len(action) al-
waysholdsfor this codesegment,sothereis no safetyprob-
lem. However, the “boundingbox” rangeanalysisis funda-
mentallyunableto detectinvariantsdescribingthe possible
relationshipdetweervaluesof progranmvariables—another
form of imprecision—sait is unableto detectand exploit
thisinvariantto provethe codesafe.

In this case the analysiscanonly assumehatthe string
action may have asfew as 7 bytesallocatedfor it but
asmary as8 bytescopiedinto it. This happendairly of-
ten: whena pointercanreferto multiple stringsof different
lengths the analysisusuallyreportsthatits sizeandlength
bothhave the samerange[d, e], andwhene > d thereis no
way to rule out the possibility of a problem. We useser-
eralheuristicsto try to detectthis classof falsealarmsand
prioritize all warnings:this classof violationsof the safety
propertyis labelled“Slight chanceof a buffer overrun”

Oneaspecbf thistrial thatis notapparenfrom Figure5
is the large numberof falsealarmsencounteredseeSec-
tion 5.5). Weedingthroughthe falsealarmstook a full day
of staringat warningmessageand sourcecode. A devel-
operalreadyexperiencedn sendmailinternalsmight have

completedhetaskmorequickly, but it would still undoubt-
edly beatime-consumingrocess.

5.3. Sendmail 8.7.5

Finding new securityvulnerabilitiesis a compellingway
to validatethe effectivenesof the tool, but it requirescon-
siderabletime with no guaranteef positive results. As a
time-saving alternatve, we appliedthetool to old software
known to containseriousvulnerabilitiesto seeif the bugs
couldhave beendetected Sendmails oneof theclassicex-
amplesof anapplicationthathasbeenvulnerableto buffer
overrunsin the past.SinceCERT reportedseveraloverruns
in sendmail8.7.5 (seeCA-96.20), and sincethe next ver
sionwasauditedby handto try to eliminatesuchbugs,we
decidedo usethis asatestplatform.

Thetool foundmary potentialsecurityexposuresn send-
mail 8.7.5:

¢ An unchecledsprintf() from theresultsof aDNS
lookupto a 200-bytestack-residertbuffer; exploitable
from remotehostswith long DNS records. (Fixed in
sendmaiB.7.6.)

¢ An unchecled sprintf() to a 5-byte buffer from
a command-line argument (indirectly, via several
other variables); exploitable by local users with
“sendmail -h65534 ”. (Fixedin 8.7.6.)

¢ An unchecled strcpy() to a 64-byte buffer when
parsingstdin;locally exploitableby “echo /canon
aaaaa... | sendmail -bt ". (Fixedin 8.7.6)

e An unchecledcopy into a 512-bytebuffer from stdin;
try “echo /parse aaaaa... | sendmail
-bt . (Fixedin 8.8.6.)

| Improvedanalysis

Falsealarmsthatcouldbeeliminated |

flow-sensitve
flow-sens.with pointeranalysis

flow- andcontext-sens. with linearinvariants
flow- andcontet-sens.with pointeranalysisandinv.

19/40 ~ 48%
25/40 ~ 63%
28/40 ~ 70%
38/40 ~ 95%

Table 2. Expected reduction in false alarms from several potential improvements to the analysis.

An unchecledsprintf() to a 257-bytebuffer from
a filename;probablynot easily exploitable. (Fixedin
8.7.6.)

A call to bcopy() could createan unterminated
string,becausé¢heprogrammeforgotto explicitly add
a’\0’ ; probablynotexploitable.(Fixedby 8.8.6.)

An unchecled strcpy() in a very frequentlyused
utility function. (Fixedin 8.7.6.)

An unchecledstrcpy() to a(static)514-bytebuffer
from a DNS lookup; possibly remotely exploitable
with long DNS records but the buffer doesnt live on
the stack, so the simplestattacksprobably wouldn’t
work. Also, thereis at leastoneotherplacewherethe
resultof a DNS lookupis blindly copiedinto a static
fixed-sizebuffer. (Fixedin 8.7.6.)

Several placeswhere the resultsof a NIS network
queryis blindly copiedinto a fixed-sizebuffer on the
stack; probably remotely exploitable with long NIS
records.(Fixedin 8.7.6and8.8.6.)

Most of thesecodingerrorsbecameaathreatonly becausef
subtleinteractionsbetweermmary piecesof the program,so
the bugswould not be apparenfrom localizedspot-checks
of thesource.This seemgo be agooddemonstratiorf the
potentialfor finding realvulnerabilitiesin real software.

To our knowledge, none of the vulnerabilitiesfound in
sendmailB.7.5by ourtool have beendescribedublicly be-
fore.

5.4. Performance

In our experiencethe performanceof the currentimple-
mentationis sub-optimalbut is usable. For example, the
analysisof sendmailabout32k linesof C code)took about
15 minutesof computationon a fastPentiumlll worksta-
tion: a few minutesto parsethe source,the restfor con-
straintgenerationanda few secondgo solve theresulting
constraintsystem.

The prototypegenerategxtensie dehuggingoutputand
hasnot beenoptimized,sowe expectthatthe analysistime
couldbereducedwith additionaleffort. Onthe otherhand,
thetime requiredto examineall the warningsby handcur-
rently dwarfs the CPU time neededby the tool, so better
performancés notanimmediatepriority. For now, themost

10

importantpropertyof the systemis thatit scalesup readily
to fairly largeapplications.

5.5. Limitations

The mainlimitation of the prototypeis the large number
of falsealarmsit producesdueto imprecisionin therange
analysis.As a consequenceg humanmuststill devote sig-
nificanttime to checkingeachpotentialbuffer overrun.

Our tool generategl4 warningsmarked Probable for
sendmail8.9.3. Four of thesewere real off-by-one bugs,
which leaves40 falsealarms.Despitethe high successate
(1in 10warningsindicatedrealbugs),eliminatingthefalse
alarmsby handstill requiresanon-ngligible level of human
effort.

One way to reducethe numberof false alarmsrequir
ing humanattentionis to trade off time for precisionin
theintegeranalysis.For example,we could ervision mov-
ing to a flow-sensitve or context-sensitve analysis. This
obviously raisesthe questionof which improvementsare
worth the effort and at what cost. To estimatethe poten-
tial benefitsof variouspossibleimprovementgo the analy-
sis,we classified—byhand—thecause®f eachfalsealarm
in sendmail8.9.3. SeeTable 2 for the results. (A linear
invariant is a simple, linear relationshipbetweenprogram
variables—suclasx +y < 5 or alloc(buf) > buflen —
thatholdsin all programexecutions.)

Thesefigures suggestthat, in retrospect,it might have
beenbetterto usea more precisebut slower analysis. We
expectthatstandardanalysistechniquegsuchasSSAform
[13], Pratts method[49] or Shostaks loop residueg56],
anda points-toanalysis)could be usedto improve on our
currentprototypeby anorderof magnitudeor more. How-
ever, significantengineeringeffort is probablyrequiredto
getthere.

Despitethe unwieldy numberof falsealarmsproduced
by ourtool, our approachs still a substantialmprovement
over the alternatve: in a typical codereview, one would
identify all thepotentiallyunsafestringoperationgperhaps
usinggrep), tracebackall executionpathseadingto those
unsafeoperations,and manuallyverify that noneof them
lead to exploitable overruns. For comparison,there are
about695 call sitesto potentially unsafestring operations

3We have no experiencewith very large applications,e.g., programs
with hundredsof thousand®f lines of code,soit remainsunknavn how
ourtechniquescaleup to suchprogramsizes.

in the sendmail8.9.3sourcewhich would needto be man-
ually checledin atypical codeaudit—15x morethanthe
numberthat mustbe examinedwith our tool—sowe con-
cludethatourtool is a significantstepforward.

Oneimportantgapin ourunderstandingf theprototypes
limitations is thatit is difficult to rigorously measurethe
falsenegative rate. As a first approximation,we may ex-
amineall the buffer overrunsin sendmailthat have been
fixedin the threeyearssincethe releaseof version8.7.5;
ary suchbug notreportedby thetool is afalsenegative. To
our knowledge the only publicly-reportecoverrunin send-
mail 8.7.5isthechfn vulnerability[44], wherealocaluser
canoverflow a257-bytebuffer by changingheirgecodield
in /etc/passwd . Due to pointeraliasingand primitive
pointer operations,our tool doesnot find the chfn bug,
althougha betterpointeranalysiswould have revealedthe
problem.A detailedmanualexaminationof thesourcecode
revision history shavs that a numberof otherbuffer over
runsin sendmail8.7.5have beenquietly fixed without ary
public announcements As far aswe know, our tool finds
all of thosevulnerabilities(seeSection5.3 for examples).
This evidencesuggestshat our tool’s falsenegative rateis
non-neagligible but still acceptable.

A final problemwith the tool is thatit doesnot provide
asmuchinformationabouteachpotentialbuffer overrunas
we might like. As canbe seenfrom Figure5, the output
shaws only which buffer overflowed, not which statement
wasatfault. Thisambiguityis arguablyanunfortunatecon-
sequencef the constraint-basetbrmulation. To improve
the situationsomavhat, we extendedthe constraintsolver
to reportwhich variable(s)contributedto eachviolation of
thesafetyproperty This heuristicis notalwaysreliable,but
it doeshelp.

6. Related work

LINEAR PROGRAMMING. Many papershave suggestedis-
ing linear programmingechniquedo discoser programin-
variants, including the simplex method, FourierMotzkin
variableelimination[53], theOmegamethod50], the SUP-
INF method[5, 55], Shostaks loop residueq56], andal-
gorithmsfor specialclassesof linear systemd30, 9, 38§].
Typically, onecombinedinear programmingwith abstract
interpretationover somesimpledomain(corvex polyhedra,
octagonsetc.) [10, 11, 23, 25, 26, 24, 52]. In this context,
linear programmingalgorithmsprovide a tool for manipu-
lating subsetf Z*, with operationssuchasu, N, projec-
tion, widening, and testingfor feasibility. Seeespecially
[11] for anearly exampleof atool thatinferslinearinvari-
antsof small programausingabstracinterpretatiorandthe

4We do not know whetherthesebugs were known to the sendmail
developers,or whetherthey were fortuitously eliminatedby the more-
defensie programmingstyleinitiatedin versions8.7.6and8.8.0.

11

simplex method. Although the simplex-basedtechniques
offer more precisionthanour rangeanalysisit is not clear
how well they scale.

PARALLELIZING COMPILERS. Oneimportantapplication
for arrayreferenceanalysisis in discoveringimplicit paral-
lelism in sequentiaFortranprogramg40, 4, 50]; however,
thosetechniquesio not seemto help with the buffer over-
run problembecausehey focustoo narronvly onthespecial
caseof loop optimization.

ARRAY BOUNDS CHECKING. Oneway to avoid buffer
overrunsis to use runtime array boundschecks. There
are several implementationf array boundscheckingfor

C, including SCC [3], gcc extensions[35], Purify [51],

and BoundsCheckr [46]. However, mary of thesetools
imposea large performanceoverhead(instrumentedpro-
gramsaretypically 2—3x slower thanthe original versions
[3, 35, 8, 22]). As aresult,thetoolsareusuallyusedonly
for delugging,notfor productionsystems.

To reducethe high costof runtimeboundschecking sev-
eral researcherfiave studiedoptimizationtechniquesfor
eliminatingredundanthecks[22, 39, 57]. However, they
typically focuson moving boundschecksto lessfrequently
executedlocations, ratherthan on eliminating all bounds
checks. For example,hoisting boundschecksout of loops
using loop invariantsgreatly reduceshe performancam-
pact of the boundschecksbut cannotreducethe number
of checksin the programs sourcecode. Therefore,these
optimizationtechniquesarenot well suitedfor proactvely
finding buffer overruns.

Otherworks have concentratedn eliminatingall bounds
checksfor sometype-safdanguagesFor example,Necula
andLeedevelopacertifying compilerfor atype-safesubset
of C that eliminatesmost boundschecksusing Shostaks
loopresidueg45]. Also, Xi andPfenningproposeamethod
to eliminate runtime array boundscheckingfor ML with
the help of someassertionsaddedby the programmerto
capturecertainprograminvariantg60, 61]. Of coursenone
of thesetools caneliminatebuffer overrunsin large legag
applicationswrittenin C.

RANGE ANALYSIS. Our approacho rangeanalysisbuilds
on much prior work in the literature,including early work
on abstractinterpretation[10] and rangepropagation27]

aswell asmore maturework on systemsgor staticdehug-
ging [6], generalized:onstanpropagatiorf59], andbranch
prediction[47]; however, our emphasi®n analysisof large
programsspurredusto developnew techniquesvith better
scalingbehaior.

CONSTRAINT-BASED ANALYSES. Philosophically our
analysismay be viewed asa constraint-basednalysis[1];
however, it is unusuako incorporatearithmeticexpressions
in thesetconstrainianguageandsolver (but see[28] for an
importantpartialexception).

Note also that techniquesor solving integer constraint
systemsnaybefoundin theatrtificial intelligenceliterature
[14, 32, 37, 58]; however, their algorithmstypically stress
generalityfor smallproblemg*hundredsof nodesandcon-
straints”[14]) over scalabilityandthusarenot directly ap-
plicablehere.

LINT-LIKE TOOLS. Severalcommonlyusedtools[34, 18,
19] usestatic analysisand someheuristicsto detectcom-
mon programmingerrors(suchastype errors, abstraction
violations,andmemorymanagemenbugs), but thesetools
don't detectbuffer overruns.

Many practitionershave notedthatgrep canbe a use-
ful if crudetestfor finding buffer overrunsby searchingor
all usesof unsafestring operationshowever, a substantial
time investments oftenrequiredto dealwith theverylarge
numberof falsealarms. Our resultsdemonstratean 15x
improvementovergrep for thecaseof sendmaiB.9.3(see
Section5.5).

PROGRAM VERIFICATION. ESCis anautomatecprogram
checlerfor Modula-3andJava thatcatchesnary program-
ming errors at compile-time, using program verification
technique$l15]. Onedisadwantageof ESCis thatit requires
codergo annotatenoduleinterfacesvith informationabout
expectedpre- andpost-conditionsbut it canusethis infor-

mationto find avery large classof potentialbugs.

STACKGUARD. Stackguards aruntimetool which detects
buffer overrunson the stackbeforethey causeharm[12].
Stackguardmposesvery little performanceoverheadand
hasbeenappliedto large suitesof applications,including
anentireLinux distribution. Stackguards a powerful tool
that can sene asa strongdeterrentagainstmary existing
buffer overrunattackshowever, it doesnot stopall overrun
attacks,andthusshouldnot berelieduponastheonly line
of defense.

7. Conclusion

This paperintroducesa simple techniquefor the auto-
mateddetectionof buffer overrunvulnerabilities. Of par
ticular significanceis its ability to analyzelarge, comple
programs. Becausewe trade off precisionfor scalability
ourtool generatesa relatively largenumberof falsealarms,
but it seemdikely thata moresophisticatednalysiscould
reducethefrequeng of falsealarms.We alsodemonstrated
thatour prototypeimplementatiorcanfind evenvery subtle
bugsthat elude humanauditors. Although the tool is cer
tainly no substitutefor defensve programmingor a careful
codereview, ourexperiencesuggestshatit cancomplement
andreducethe burdenof theseapproaches.

Ourimplementatiorhingeson two key designconsidera-
tions. First, treatingstringsasan abstractdatatype allows
us to recognizenaturalabstractiorboundarieghat are ob-
scurecby theC stringlibrary. Secondformulatingtheprob-

12

lemin termsof integerrangetrackingallows usto build on
techniquegrom programanalysis.

We concludethat this provides a powerful and success-
ful new approachto finding buffer overrunvulnerabilities.
We attributeits success$o the new methodologyintroduced,
wherewe apply static analysisto securityproblems. One
major advantageof static analysisis that it allows us to
proactively eliminatesecuritybugsbeforecodeis deployed.

Ideally, we would lik e atool thatcould catcheverybuffer
overrun. Although our tool doesnot detectall exploitable
overruns,it still finds morethan humansdo, which showvs
thatwe have madereal progressowardthis greatergoal.

8. Acknowledgements

We aregratefulto a numberof readeravhosecomments
have substantiallyimproved the paper including Crispin
Cowan,GeogeNecula,Adrian Perrig,JohnViega,andthe
anorymousreviewers. Thanksespeciallyto StevenBellovin
(for bringing our attentionto someof the limitations of
dynamic testing in security applications)and to Manuel
Fahndrich(for early discussionsn the basicapproachto
modellingstring buffers).

References

[1] A. Aiken,“Set constraints:results,applicationsandfuture
directions; PPCP’94: PrinciplesandPracticeof Constaint
Programming SpringefVerlag,pp.326—335.

[2] A. Aiken, M. Fahndrich, J.S. Foster Z. Su, “A toolkit
for constructingtype- and constraint-basegrogramanaly-
ses; TIC'98: Typesin Compilation SpringerVerlag,1998,
pp.78-96.

[3] T.M. Austin, S.E.Breach,G.S.Sohi,“Efficient Detectionof
All PointerandArray AccessErrors; PLDI'94, ACM.

[4] U. Banerjee, Dependenceanalysis for supecomputing
Kluwer AcademicPublishersNorwell, MA, 1988.

[5] W.W. Bledsoe,“The SUP-INF methodin Preslurger arith-
metic;, Memo ATP-18,Math Dept.,U. TexasAustin, Dec.
1974.

[6] F. Bourdoncle,'Abstractdehuggingof higherorderimpera-
tive languages,PLDI'93, ACM.

[7] Thebugtrag mailinglist,
http://www.securityfocus.com/

[8] F Chow, “A portable machine-independentglobal
optimize—Design and measurements, Tech. report
83-254,PhDthesis,ComputerSystemd.ab, StanfordUniv.,
1983.

[9] E. Cohen,N. Megiddo, “Improved algorithmsfor linearin-
equalitieswith two variablesperinequality’ SIAMJ. Com-
puting vol.23n0.6,pp.1313-1347ec.1994.

[10] P.CousotR.Cousot, Staticdeterminatiorof dynamicprop-
ertiesof programs, Proc. 2ndIntl. Symp.on Programming
Paris,Apr. 1976.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

P. Cousot,N. Halbwachs,“Automatic Discovery of Linear
RestraintamongVariablesof a Progrant, 5th ACM POPL,
1978,pp.84-97.

C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang,"“StackGuard:Automatic
Adaptive Detectionand Prevention of Buffer-Overflov At-
tacks; Proc. 7th USENIXSecurityConf, Jan.1998.

R. Cytron, J. Ferrante,B.K. Rosen,M.N. Wegman, F.K.
Zadeck,"An Efficient Method of ComputingStatic Single
Assignmenform; POPL89.

E. Davis, “Constraintpropagatiorwith interval labels; Arti-
ficial Intelligence vol.32n0.3,July 1987,pp.281-331.

D.L. Detlefs,K.R.M. Leino,G. Nelson,J.B.Saxe, “Extended
StaticChecking, CompagSRCResearcliReport159,1998.

A. Diwan,K. McKinley, E. Moss,“Type-Basedlias Anal-
ysis; PLDI'98.
M.W. Eichin, J.A. Rochlis,“With microscopeandtweezers:

an analysisof the Internetvirus of Nov. 1988; 1989 IEEE
Symp Securityand Privacy.

D. Evans,J. Guttag,J. Horning, Y.M. Tan,“LCLint: atool
for usingspecificationgo checkcode, SIGSOFTSymp.on
Foundationsof Softwae Engineering Dec.1994.

D. Evans, “Static detectionof dynamic memory errors,
PLDI'96.

R. Ghiya, L.J. Hendren,"Putting pointeranalysisto work,’
POPL98.

A.K. Ghosh,T. O'Connor G. McGraw, “An automatedap-
proachfor identifying potentialvulnerabilitiesin software’
Proc. IEEE Symp.on Security and Privacy, May 1998,
pp.104-114.

R. Gupta,“Optimizing arrayboundcheckausingflow analy-
sis; ACM Letters on ProgrammingLanguaesand Systems
vol.2 no.1-4 Mar.—Dec.1993,pp.135-150.

N. Halbwachs,Y.-E. Proy, P. Raymond,*Verificationof lin-
ear hybrid systemsby meansof convex approximations,
SAS’94: Static Analysis Symp, SpringefVerlag, 1994,
pp.223-237.

N. Halbwachs,Y.-E. Proy, P. Roumandf “Verification of

real-time systemsusing linear relation analysis, CA/'93:

ComputerAided Verification, Publishedin Formal Methods
in SystenDesign vol.11no.2,Aug. 1997, Kluwer Academic
Publisherspp.157-185.

M. Handjieva, “Abstract interpretation of constraint
logic programs using corvex polyhedrd, Tech. report
LIX/RR/96/06,LIX, EcolePolytechniqueMay 1996.

M. Handjiesa, “STAN: A staticanalyzerfor CLP(R) based
on abstracinterpretatiorf, SAS’96:StaticAnalysisSymp.

W.H. Harrison, “Compiler analysis of the value ranges
for variables, IEEE Trans. Softwae Engineering vol.SE-3
no.3,May 1977,pp.243-250.

N. Heintze,"Setbasedanalysisandarithmetic; Tech.report
CS-93-221Carngjie Mellon Univ.

13

(29]

(30]

(31]

(32]

(33]
(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

(44]

(45]

[46]

[47]

(48]

G. Helmer “Incompletelist of Unix vulnerabilities),
http://www.cs.iastate.edu/"ghelmer/
unixsecurity/unix_vuln.html

D.S.HochbaumJ.S.Naor, “Simple andfastalgorithmsfor
linear andinteger programswith two variablesperinequal-
ity,” SIAMJ. Computing vol.23 no.6,Dec.1994,pp.1179—
1192.

D. Holland, http://www.hcs.harvard.edu/
“dholland/computers/netkit.html

E. Hyvdnen,“Constraintreasoningoasedon interval arith-
metic: thetolerancepropagatiorapproach, Artificial Intelli-
gence vol.58,1992,pp.71-112.

http://www.infilsec.com/vulnerabiliti es/ .

S.C.Johnson;'Lint, a C programchecler,” ComputerSci-
enceTech.report65, Bell Laboratories1978.

R. JonesP Kelly, “BoundsCheckingfor C;’
http://www-ala.doc.ic.ac.uk/"phjk/
BoundsChecking.htmi

O. Kirch, “The poisonedNUL byte; postto the bugtraq
mailing list, Oct. 1998.

O. Lhomme, “Consistenyg techniquesfor numeric CSPS,
IJCN'93: 13th Intl. Joint Conf on Atrtificial Intelligence
vol.1,1993.

G. Lueker, N. Megiddo,V. RamachandratiLinear program-
ming with two variablesper inequality in poly-log time;
SIAMJ. Computingvol.19n0.6,Dec.1990,pp.1000-1010.

V. Markstein,J. Cocle, P. Markstein,“Optimizationof range
checking, SIGPLANNotices vol.17 no.6, Proc. Symp.on
CompilerConstruction,Junel982,p.114-119.

D.E.Maydan,J.L.HennessyM.S. Lam,“EfficientandExact
DataDependencénalysis; PLDI'91.

B.P. Miller, L. FredricksenB. So,“An empiricalstudyof the
reliability of Unix utilities,” CACM, vol.33n0.12,Dec.1990,
pp.32-44.

B.P. Miller, D. Koski, C.P. Lee, V. Maganty R. Murphy; A.
Natarajan,). Steidl, “Fuzz revisited: a re-examinationof the
reliability of Unix utilities and services, Tech.reportCS-
TR-95-1268U. Wisconsin Apr. 1995.

T.C. Miller, T. de Raadt,“strlcpy and strlcat—Consistent,
Safe, String Copy and Concatenatioh, FREENIX'99
USENIX Assoc.,Berkeley, CA.

Mudge, “Sendmail 8.7.5 vulnerability” post to the
bugtraq mailinglist, Sep.1996.

G.C.Necula,P. Lee, “The Designand Implementatiorof a
Certifying Compiler” PLDI'98.

NuMegaBoundsCheatr, http://www.numega.com/
products/aed/vc_more.shtml

J. Patterson.“Accurate Static Branch Predictionby Value
RangePropagation”PLDI'95, pp.67-78.

Phrack Magazine, “The Frame Pointer Overwrite] Sep.
1999,vol.9 no.55.

[49] V.R. Pratt,“Two easytheorieswhosecombinationis hard;
unpublishednanuscriptSep.1977.

[50] W.PughD. Wonnacott;Eliminating falsedatadependences
usingtheOmegatest, PLDI'92, pp.140-151.

[51] PureAtria Purify, http://www.rational.com/
products/purify_unix/index.jtmpl

[52] P. Raymond,X. Nicollin, N. Halbwachs,D. Weber “Auto-
matic testing of reactive systems, Proc. 19th IEEE Real-
Time SystemS$ymp, 1998,pp.200-209.

[53] A. Schrijver, Theoryof linear andinteger programming Se-
riesin DiscreteMathematics,JohnWiley & Sons,1986.

[54] M. Shapiro,S. Horwitz, “The effectsof precisionof pointer
analysis, SAS’97: Static AnalysisSymp. Springe#Verlag,
pp.16-34.

[55] R.Shostak;Onthe SUP-INFmethodfor proving Preslirger
formulas; J. ACM, vol.24no.4,0ct. 1977,pp.529-543.

[56] R.Shostak;Deciding linearinequalitiesby computingloop
residues, J. ACM, vol.28n0.4,0ct. 1981,pp.769-779.

[57] N. Sosuki, K. Ishihata, “Implementation of array bound
checler,” POPL77, pp.132—-143.

[58] P.VanHentenryckH. Simonis,M. Dincbas,'Constraintsat-
isfactionusing constraintiogic programmind, Artificial In-
telligence vol.58,1992,pp.113-159.

[59] C. Verbrugge,P. Co, L.J. Hendren,“Generalizedconstant
propagationA studyin C;” CompilerConstruction6th Intl.
Conf, LNCS 1060,Apr. 1996,pp.74-90.

[60] H. Xi, F. Pfenning, “Eliminating array bound checking
throughdependentypes; PLDI'98, pp.249-257.

[61] H. Xi, F. Pfenning,"DependenfTypesin PracticalProgram-
ming; POPL99.

A. Proofs of thetheorems

Theorem 1. Everyconstaint systenhasa uniqueleastso-
lution.

Proof. Thereis a naturalintersectionoperatoron assign-
ments,definedby (a N B)(v) = a(v) N B(v). Theinter-
sectionof two satisfyingassignmentss also a satisfying
assignmentsinceif a(e) C a(v) andB(e) C B(v), then
(anp)(e) C (an B)(v). Thismeanshatif a constraint
systemhasaleastsolution,it is unique:supposinghereare
two minimal satisfyingassignmenta # 3, thenangisan-
other smallersatisfyingassignmentwhich contradictsthe
assumptiorof non-uniquenesslo shav thataleastsolution
exists,let a betheintersectiorof all satisfyingassignments.
This intersectionis non-empty sincethetrivial assignment
v = [—00,00] satisfiesevery constraintsystem. Clearly,
if B satisfiesthe system,thena C 3. Therefore,a is a
satisfyingassignmentandit is theleastsuch. O

Lemmal. Let f(z) = az + b bean affinefunctionin AF
with a > 0, let R bearange, andlet S C Z* bethe

14

minimal range satisfyingR C S and f(S) C S. Then(1)
supS = oo if sup f(R) > sup R; also, (2)inf S = —o0
if inf f(R) < inf R. If neitherclause(1) nor clause(2)
applies,we haveS = R. If both clausesapply, we have

S = [—00, 0.

Proof. Let R = [d,e], sothatsup f(R) = f(e) (sincef
is monotoneanda > 1). If f(e) > e, then f() > z for
all z > e (sincea > 1), sothatf((e) fle) > e,

etc.,and(1) is proved by induction. (2) follows similarly.
Finally, if neitherclauseapplies,then f(R) C R, andby
theminimality of S wehave S = R. O

Theorem 2. We cansolvethe constaint subsystemassoci-
atedwith a cyclein linear time

Proof. Let f(z) = az + b betheaffine functionassociated
with thecycle. It sufficesto show thatthe claimis true for
a > 0. (If a = 0, thetheoremis trivial; if a < 0, we tra-
versethe cycle twice andconsiderf o f.) We show thatit
sufficesto simply computef(a(v;)) and comparethe re-
sultwith a(vy). If f(a(v1)) C a(vy), theleastsolutionis
a(vy), andwe canstoptraversingthecycle. Otherwise one
or both of the clausesof the lemmaapply. If both apply
we aredone: seta(v;) := [—o0, 0], andlet the work-
list algorithmtraceout the implicationsfor thev;. If just
oneapplies—sayclause(1)—we simply apply the lemma
(asecondtime) to R' = [inf R, oo], andwe will be done
after this secondapplication. Computing f requirestime
linearin thelengthof the cycle, andpropagatinghe result
of theanalysisaroundthecycle alsorequiredineartime, so
thewhole processunsin lineartime. O

B. Moreon constraint solving

In this section,we extendthe basicalgorithm presented
in Section4 to handlemoregeneralkonstraintsLet usfirst
review how far we have come. We have an efficient algo-
rithm thathandlessimpleconstaints i.e., constraintf the
formav; +b C v;. We have precisetechniquegor handling
cycles. But the algorithmspresentedso far cannothandle
arithmeticor min/maxexpressionn the left handside of
theconstraint.Suchconstraintsarerelatively rare: for typi-
calprogramanalysigasksonly about2% of theconstraints
usecomplex arithmeticalexpressionsandlessthan1% use
min/maxexpressionsNonethelessthey arestill important
enoughthat they cannotbe ignored: considey e.g.,the C
statement sprintf(dst, "foo: %s %s", s, t)
to see why we need complex arithmetical expressions;
also,modellingthestandardibrary functionsstrncpy()
snprintf() , etc., clearly requiressupportfor min/max
expressionsWe now describehow to extendthe algorithm
to handlethesemoregenerakypesof constraints.

Let C be a constraintsystemconsistingof a systemof
simpleconstraintg’ alongwith the complex constraint

avy + -+ apv, +b Cw. (1)

We shov how to constructa reducedconstaint system
R, (C) containingonly simple constraintswherethe least
solutionto R, (C) givesa usefullower boundon the solu-
tion to C. Theideais to notethat, for eachj, (1) implies
a;v; +b; C w, wheretheb;'s aregivenby

D

i=1,...,n;i#]

bj = b+ a,-oz(v,-)

anda is ary lower boundon theleastsatisfyingassignment
to C. Thuswe maytake R, (C) = C' U {a;jv; + b; C w :
j=1,...,n}U{a(v;) Cv; : j =1,...,n}, wherethe
constants; aredefinedin termsof a asabove. By con-
struction,ary satisfyingassignmentor C will thensatisfy
R, (C).

In principle, this immediately yields an algorithm for
solvingaconstrainsystentC containingcomplex arithmeti-
cal expressions: computethe leastsolution 8 to R, (C)
(usingthe algorithmin Figure4) andseta := a U g, re-
peatingthesetwo stepsiteratively until corvergence. Ter-
minationis guaranteedincea cycle in C will inducea cy-
clein R,(C) andthuswill be processeefficiently by the
HANDLE-CYCLE procedure.

In practice,our implementatiorexploits a moreefficient
approachwherewe updatethe reducedsystemR, (C) in
placeas « is updated. In the optimized algorithm, each
changeto a(v;) in the algorithm of Figure 4 immediately
forcesan updateto R, (C) wheneer v; participatesn the
left-handside of somecomplex constraint. This technique
seemgo work verywell for our purposesprobablybecause
comple constraintarerelatively rare.

The approachusedto handleto min/max constraintsis
currentlyverysimplistic: thecurrentimplementatiorpropa-
gatesnformationthroughmin/maxconstraintsut doesnot
attemptto handlecyclescontainingmin/maxconstraintsin
principle,this couldintroduce*countingto infinity”, butwe
have yet to encountethis behaior. This simplificationre-
flectsimplementatiorconsiderationsnorethanary funda-
mentaldifficulty with handlingthis type of constraints.If
we ever encountecyclescontainingmin or maxoperations,
we will implementthe following extensionof Lemmal to
min/maxconstraints:

Lemma2. Let f(z) min{g;(z),...,gn(x),c} for

91,---,9n € AF andc € Z°, whee ead g; is of the
formg;(xz) = ajx + b; fora; > 0. Let R bearange, and
let S C Z bethe minimal range satisfyingR C S and
f(S) € S. Then(1) infS = —oc if inf f(R) < inf R;

also,(2) sup S = cif sup f(R) > sup R. If neitherclause
(1) nor clause(2) applies,wehaveS = R. If bothclauses
apply wehaveS = [—o0, 00].

15

Proof. Clause (1) is an immediate consequenceof
Lemmal: if infg;(R) < inf R, then—oo € S, since
inf f(S) < inf g;(S) for all S. To prove clause(2), note
thatsup S < ¢, soit suficesto prove thatsup S > c.
Supposenot, i.e., thatsup S < c¢. Lete = sup R. Since
sup f(R) > sup R, we have g;(e) > e for all j. Also, by
Lemmal, g;(z) > z for all z > e andfor eachj. Since
f(S) € S, we musthave min{g;(S), ... ,gn(S),c} <
sup S, andso g;(sup S) < sup S for all j. At the same
time, R C S impliessup S > e, sog;(supS) > sup S, a
contradiction which establisheglause(2). Finally, if nei-
therclauseappliesthen f(R) C R, andby the minimality
of Swehave S = R. O

The algorithm could be further improved with slightly
moresophisticatedechniquesFor example we couldcom-
putetheagyclic componengraph(whereeachstronglycon-
nectedcomponenis shrunkdown to onevertex) andthen
iteratively processeachstrongly connectedcomponentn
topologicallysortedorder, usinga depth-firstsearcho dis-
coverthecycleswithin eachstronglyconnecteacomponent.
However, we have not exploredthesepossibilitiesfor opti-
mization,becausé¢he existing solver is alreadymuchfaster
thannecessary

