
Adaptive Fault Tolerance in Distributed Systems

Roger Bharath, Melanie Dumas, and Mevlut Erdem Kurul
Department of Computer Science

University of California, San Diego
La Jolla, CA 92193-0114

frbharath, mdumas, mkurulg@cs.ucsd.edu

March 5, 2001

Abstract

Reliable distributed systems provide high avail-
ability for an important class of applications
through a combination of software and hardware
support. Redundancy and replication are essen-
tial features of these systems but both come with
a high cost. One trend that promises to provide
more intelligence to the allocation of resources
in this environment is adaptation. Adaptive fault
tolerance is the idea of adaptively configuring
system resources to respond to environmental
changes (i.e. faults). This paper presents an
overview of several adaptive fault tolerant sys-
tems, and describes the challenges involved in
their implementation.

1 Introduction

High availability is a desirable and sometimes
crucial characteristic for some scientific and
commercial programs. Applications like air
traffic control systems, security monitoring sys-
tems and real-time systems provide motivation
for assured reliability through distribution of
processes. However, cost is a consideration in
the design of any reliable system and efficient

use of resources can be a determining factor of
its viability.

Reliable distributed systems can benefit from
adaptive policiesthat utilize resources more ef-
ficiently and can also achieve greater flexibility.
To illustrate this further, consider that the level
of reliability provided by a system is closely
linked with the redundant resources that it uses.
From this, it can be inferred that a configurable
level of reliability (or resource usage) could po-
tentially yield resource cost savings compared
to a static plan of resource allocation which is
constrained by the worst case. Applications can
vary in their desired level of reliability, or Qual-
ity of Service (QoS) measure, and this variation
is not leveraged with a static resource allocation
policy.

Support for user-defined adaptive policies is
usually implemented apart from the base oper-
ating system. A common approach is to incor-
porate adaptation into a middleware layer that
also provides support for distributed computing.
Some examples of middleware layers available
commercially are DCOM [1], Java Beans [2]
and CORBA [3]. Fault tolerance is not inher-
ent in these products [4] and there is no inherent
support for user-defined adaptive policies. The
design problem is then to implement fault toler-

1



ance with adaptation starting with a foundation
of distributed communication primitives.

This paper is intended as an introduction to
adaptive fault tolerance and a survey of current
representative systems. We present a theoretical
framework for adaptive fault tolerance and ap-
ply these ideas to describe systems that feature
adaptive fault tolerance.

The remainder of this paper has the following
organization: Section 2 introduces the problem
domain that is considered. Section 3 presents
a model for adaptive fault tolerance. Section
4 presents adaptive fault tolerant systems eval-
uated upon the criteria proposed in the model,
concluding with Section 5.

2 Problem Statement

When dealing with fault tolerance, it is impor-
tant to characterize the types of faults a system
may encounter. Much work on understanding
faults (summarized in [5]) has provided the fol-
lowing model aimed at classifying faults.

Four broad types of failure classes are defined
[5]. Omission failures occur when a process
does not respond to an event. Timing failures
occur when a process does not respond before
a timeout has expired, or responds prematurely.
Crash failures are unrecoverable states when a
process completely stops executing. Byzantine,
or arbitrary failures, are the class of failures that
are unable to be accounted for in the design of a
system.

An established approach to achieving fault
tolerance is to have multiple copies of the same
process running simultaneously, possibly in dif-
ferent environments. From this strategy it is evi-
dent that the true cost of a single process is actu-
ally that of the process and its copies plus over-
head to coordinate their activities.

Typically, a fixed set of resources in a system
are reserved to provide redundancy for a task.

The reasoning for this is that failure is hard to
predict and providing a resource unconditionally
gives the best chance of avoiding failure. How-
ever, fixing the level of resource usage caters to
the worst case, which can be expensive. Varying
the level of redundancy allows for opportunities
to reduce cost, suggesting an adaptive approach.
Adaptive policies enable a system to change its
level of redundancy in harmony with its envi-
ronment, consistent with a user-defined level of
granularity.

This gives motivation for the theme of adap-
tation as applied to fault tolerance. We define
adaptive fault tolerance as the property that en-
ables a system to maintain and improve fault tol-
erance by adapting to changes in environment
and policy. Our problem domain focuses pri-
marily on adaptive fault tolerance in distributed
systems.

Conventional approaches to designing an
adaptive fault tolerant system start with a means
of providing rudimentary support for organized
distributed computing. This is often done with
a middleware technology. Fault tolerance is
implemented on top of this middleware layer
by some standard techniques that will be dis-
cussed in the next section. Finally, another
layer of functionality is added to support adap-
tation, including an interface of some kind be-
tween the system and the user. This layered
approach is beneficial for establishing correct-
ness. However, an integrated approach has the
advantage of escaping the temporal ordering im-
posed by layering. In particular, adaptivity may
be thought about earlier in the design cycle of a
system. This could result in more cohesive sup-
port for adaptive policies. Such support would
become part of the lower level design of the sys-
tem and could improve efficiency. We feel that
this design strategy has been at least partially re-
alized [6] [7] [8]. With this in mind, our goal is
to provide an integrated model for adaptive fault
tolerance.

2



3 An Adaptive Fault Tolerant
Model

Several system characteristics have been iden-
tified as fundamental components of an adap-
tive fault tolerant system [5] [9]. The objective
of this section is to present a unified picture of
these required characteristics and to provide a
justification for their inclusion in the model, as
well as detail the types of problems and deci-
sions that are required to architect an adaptive
fault tolerant system.

3.1 Timing

Adaptive fault tolerant systems require differ-
ent degrees of system responsiveness, based on
the service they are providing to users. Real-
time systems such as air traffic controllers re-
quire synchronous communication between pro-
cesses, compared to an academic search engine
for publications, where processes may commu-
nicate asynchronously. The complexity of a real
time system, and the cost of providing a high
availability service to users is a critical design
decision that underlies development of all com-
ponents of a system.

3.2 Replication

In a distributed system, groups of processes are
often clustered together to create an abstraction
for higher level processes, such as user applica-
tions. These groups look like a single process to
the higher level applications, providing an inter-
face for communication and supporting internal
mechanisms for handling faults. Replication of
processes across nodes provides redundancy to
continue servicing requests despite partial sys-
tem failures.

Replication strategies vary depending on the
level of transparency required by particular ap-
plications. The degree of replication, or num-

ber of redundant processes, may be defined by
user parameters, or dynamically configured by
the application based on program requirements
and specific knowledge of the environment.

3.3 Group Membership

Given a set of redundant processes, a policy for
including or removing a particular process in a
group must be considered. Upon partial sys-
tem failures, members of a group must recog-
nize which processes have been partitioned from
the group, and each process’ perspective of who
is in the group must be reconciled. Upon group
initialization, or overloading of a particular pro-
cess, additional processes may be added, and a
consistent state of the group must be passed to
the new processes.

Modifications to group membership may be
controlled by a leader process which was nom-
inated by the other processes, or processes may
be more democratic by broadcasting messages
and agreeing upon the requested modifications
to the group structure.

3.4 Group Communication

A critical component of group architecture is a
strategy for reliable communication, which must
include a mechanism for handling send omis-
sion failures. Policies for communication vary
based on the group structure, depending upon
whether a leader controls communication be-
tween members, or a more loquacious message
broadcast protocol is used.

The advantages of using a leader process in-
clude simplicity in design and a constant point
of contact, but the tradeoff introduces a single
point of failure into the system, which must be
detected and handled. Alternatively, broadcast-
ing messages between processes requires addi-
tional network traffic and maintenance of a list
of all active processes.

3



3.5 Group Agreement

A group of redundant processes must have a
mechanism for agreeing on changes detected in
an environment, and agreeing on a policy for ac-
tion. A system that does not guarantee agree-
ment between processes runs the risk of reach-
ing an inconsistent state.

Typical strategies for maintaining agreement
depend upon the structure of the group. The
most common strategy for processes executing
independently is to require a majority voter.
This mechanism works because the number of
failures tolerated by a system is less than three
times the total number of processes, so the faulty
processes may never hold the majority. An alter-
native strategy is that a leader may broadcast to
its followers any changes detected, or any action
requests.

3.6 Group Synchronization

Synchronization between members of a group is
required in order to detect a faulty process and
to avoid reaching an inconsistent state. In ad-
dition, processing dependent messages or exe-
cuting sequential commands also demand syn-
chronization between processes, otherwise the
outputs of particular requests may vary between
group members.

Strategies for handling synchronization typi-
cally require a mechanism for multicasting mes-
sages reliably between processes, and allowing
only atomic actions. Reliable multicast restricts
receipt of the message to group members only.
Atomic actions guarantee that an action either
completes executing, or does not execute at all.
If a leader desires to broadcast a message, these
mechanisms ensure that either the message was
seen by all other processes, or none.

3.7 Fault Detection

Detection of faults is limited to the types of
faults that a system may handle. The potentially
exhaustive list of faults generally avoids the in-
clusion of arbitrary, or Byzantine faults, which
simplifies the system design. The remaining
send omission, crash, and timing failures may be
detected by processes devoted to their detection,
such as network monitors, or may be detected
by any member of the group. It is the respon-
sibility of the monitoring process to notify the
group members so a decision can be made. In
the case of crash failures, a crashed process may
be detected when the process fails to respond to
a message within a timeout period. The send-
ing process then has the responsibility to notify
all other members of the group that the process
failed.

An alternate model is to designate a group as
a monitor for another group. This model defines
a dependence relation between objects where an
object A is dependent on an object B if B is re-
sponsible for monitoring the state of A. An ex-
ample of this is to consider when a parent pro-
cess monitors the state of the child. The advan-
tage of this approach is a single point of respon-
sibility, but the disadvantage is that if an error
occurs in a parent process, the state and data of a
child process may be irrevocably separated from
the system. More robust relations can be defined
by introducing cyclic dependencies.

3.8 Fault Transparency

Two models are generally applied to handle ac-
tions when faults occur and have been detected
in a system. The first model views faults as ex-
ceptions to be propagated to the higher layers of
the system for handling, with the reasoning that
the fault would be reprocessed at a higher layer.

The objective of most fault-tolerant models,
however, is to provide uninterrupted service to
users and handle all faults within the lower lev-

4



els of the system, thereby masking that the fail-
ure ever occurred. This process of handling
and masking failures is called fault transparency,
and many systems will continue service based
on sheer numbers of redundant processes. This
(second) model allows a certain number of faults
to be tolerated, and above the threshold the sys-
tem may notify the user or discontinue service.

3.9 Environment Awareness

This rather undeveloped area of fault toler-
ant adaptive systems includes the detection of
changing resources automatically and dynami-
cally. Many fault tolerant systems require the
user to notify the system when additional re-
sources become available, since most of the
models handle only the case when resources fail
and become unavailable. Automatic detection
of additional resources would provide additional
flexibility in a system, and allow a system to
continue running longer without user interven-
tion. This strategy could be viewed as a proac-
tive attempt to effectively utilize all available re-
sources, and should be examined carefully in fu-
ture systems.

4 Systems

The purpose of this section is to survey represen-
tative systems based on the criteria developed in
our model.

4.1 Electra

Electra [4] [10] provides an infrastructure for
users to develop reliable distributed comput-
ing applications, including an adaptive compo-
nent for dynamic updates. Electra is built using
CORBA, and addresses a number of issues re-
sulting from CORBA’s inherent inability to pro-
vide reliable distributed communication.

The core CORBA technology does not in-
clude a mechanism for multicasting requests be-
tween objects in a group, which is a critical com-
ponent of distributed computing. Landis and
Maffeis [4] provide a solution by developing
a CORBA Object Group, which is a group of
replicated processes that maintain state consis-
tency. An object group allows the user to define
the number of processes within a group, dynam-
ically adjusting the level of replication of an ap-
plication.

Synchronization among members of a group
is maintained by an active replication object
within the group, which monitors each member
to provide assurance that members are actively
maintaining replicated state. Active replication
ensures consistency within a group, and allows
service requests to a group as long as one of any
of its members is accessible. Active replication
also provides the foundations for load balancing
and object migration across servers.

Addition of new processes to a group are re-
quested by the active replication object. After
a new process is started, its state is synchro-
nized by receiving a state transfer from the ac-
tive replication object. This transfer of state
may only occur when the existing members of
a group are in a consistent state. Each object
within a group maintains a view, which is a dy-
namic list of the objects within its group. To
complete the addition of a new group mem-
ber, an external Object Monitor process notifies
each existing group member of the membership
change.

CORBA Object Groups are able to ensure
consistent states by requiring atomic requests to
a group. In addition, the user may request a par-
ticular level of synchronization by specifying ei-
ther total or causally ordered message passing
[4]. These conditions coupled with reliable mul-
ticasting of all messages facilitate reliable com-
munication that is seen in the same order by all
processes within a group. Since all processes
are running from the same code base, and they

5



all see the same messages, agreement is implicit.
A difference in the results of processes indicate
that a process has gone out of synch with respect
to the group and the process is halted.

A user-specified parameter establishes the
maximum number of process failures, allow-
ing Electra to determine the size of the process
group that will ensure a majority of nonfaulty
processes. Faults within a group are transpar-
ent outside the group, since the nonfaulty pro-
cesses will agree on actions, and external pro-
cesses will see only a single resultant value.

Electra provides an infrastructure that allows
a programmer to easily write and customize an
application given a reliable, distributed frame-
work. Therefore, constraints upon the timing
of an application must be imposed and im-
plemented by the user. Electra allows asyn-
chronous and synchronous communication be-
tween processes, which may require an upper
bound on the length of a communication trans-
action. In addition, the programmer is also re-
sponsible for implementing the degree of en-
vironmental awareness in an application, since
this is not inherently provided within this frame-
work.

4.2 AFTM

AFTM [8] is an adaptive fault-tolerant mid-
dleware, which uses a CORBA-compliant ob-
ject request broker. The objective is to pro-
vide complex, mission critical applications with
a uniform interface between the application and
the underlying software layers that transparently
monitors and adaptively reconfigures system re-
sources. Additionally, the system incorporates a
generic, scalable adaptation policy.

AFTM is implemented on a network of So-
laris workstations due to ease of implementa-
tion and support for real-time threads. Real-time
facilities are provided by a layer which imple-
ments RTO.k objects, where each RTO.k object
uses a time-triggered method that is associated

with a completion deadline, a concurrency con-
straint, and an upper bound on the life of the
object data.

The components of the AFTM architecture
include the Adaptation Manager (AM), Re-
source Allocation Executive (RAE), Network
Reconfiguration Manager (NRM), and System
Monitor (SM). Each of the components of
AFTM are dedicated to a specific operation such
as fault detection, decision making, or recon-
figuration. Through cooperation, these compo-
nents support resource management, fault toler-
ance, response to environmental changes, and
application-specific adaptation. The user may
specify the level of adaptation and can be op-
tionally informed of the health of system re-
sources through the SM. However, task commu-
nication and synchronization are handled by the
underlying CORBA and application layers.

Three databases are used to implement the
AFTM adaptation. These are the environmental
database which stores environmental conditions
and demands maintained by the sensors and SM,
the internal state database which maintains the
recent failure history as well as the history of
system resources maintained by NRM and RAE,
and user requirement database which is main-
tained by the user for application specific repli-
cation and adaptation policies. An Adaptation
Manager uses these databases to select a suitable
fault-tolerance and resource allocation strategy,
which is implemented by the RAE.

The leader node makes group decisions by re-
questing services from local AM and RAE com-
ponents, to distribute the workload evenly for
reliability and efficiency. The leader also im-
plements voting policies within the group. In
the case of a leader failure, a follower node de-
tects the failure through a timeout and is pro-
moted to a new leader. Determination of faulty
processes is accomplished through timeouts and
the NRM, with the leader coordinating removal
of group members and reallocation of new mem-
bers if necessary.

6



Figure 1: AFTM Adaptation Mechanism

The AFTM middleware enhances the sys-
tem reliability, performance, survivability and
effectiveness through the use of its compo-
nents. The ”Most Suitable” fault tolerant and
resource allocation scheme is selected dynami-
cally through user requests and the parameters
in the three databases (Figure 1), which is coor-
dinated through the Adaptable Distributed Re-
covery Block (ADRB). The ADRB is replicated
across nodes, tolerating failures and providing a
specific fault tolerant execution mode for each
node. These services provide automatic recon-
figuration of the groups, transparently masking
faults from the user.

4.3 Proteus

AQuA is an operating system architecture,
which provides a flexible infrastructure upon
which a distributed, fault-tolerant system may
be built. AQuA is supported by CORBA, and
provides dynamic replication of objects satisfy-
ing the dependability requirements of the users.

The AQuA infrastructure contains Proteus
[11], which is the fundamental component pro-
viding dynamic fault tolerance for user-specified
faults through adaptive reconfiguration. Proteus
provides applications the means to specify their
level of dependability through the use of Quality

Objects (QuO). The QuO runtime application is
responsible for interfacing with AQuA and de-
tecting and handling faults.

Proteus is organized into three modules (see
Figure 2), which are connected to AQuA via the
QuO runtime. The first module is the depend-
ability manager, which consists of an advisor
and a protocol coordinator. The Advisor makes
system-wide decisions based on the system in-
formation and application requests, and deter-
mines a strategy for handling faults. Advisor re-
quests are propagated to the other components
of Proteus using the Protocol Coordinator. The
Protocol Coordinator uses the Ensemble group
communication system to ensure reliable mes-
sage passing between groups.

The Object Factory module is instantiated on
each local node, and is responsible for monitor-
ing, creating and killing local processes. Re-
quests for process replication originate at the
Advisor, and instantiation and registration of
processes is provided by the Object Factory. The
factory is assumed to maintain handles on all
local processes, and provide any membership
services as requested from the Advisor or from
within the local processes.

The final Gateway module provides critical
pieces of the group infrastructure. The Gate-
way implements four different groups, manag-
ing replication, connection, point-to-point, and
broadcast communication services. The Gate-
way ensures agreement between this set of
groups by implementing a simple voting mecha-
nism and communicating the results to all nodes
through group leaders. Each group specifies a
leader that sends a message, which is ensured to
be reliably multicast and atomic using Ensem-
ble. Synchronization of processes is maintained
through message passing and acknowledgments
between the leader and follower processes.

Faults may occur at either the leader or fol-
lower processes. A faulty follower process is
detected by the leader when a process failed to
send an acknowledgment to a message within a

7



Figure 2: Proteus Object Model

timeout period, or when the leader detects an er-
ror in the state of a process. If the leader fails,
the follower process that detected the failed
leader becomes the new leader, and updates its
view of the system.

Adaptive responses to the environment are not
dynamic, but Proteus provides the user with the
ability to manually register additional resources
through the QuO runtime to the Advisor. The
system is not designed to provide real-time ser-
vices, instead focusing on visibility and provid-
ing the user with finer grained control of de-
pendability requirements.

4.4 Chameleon

Chameleon [6] is a reconfigurable software
layer that employs ARMORs (Adaptive, Re-
configurable, Mobile Objects for Reliability) to
provide fault tolerance and adaptability. An
ARMOR is composed ofbasic building blocks
which are objects that correspond to low level
mechanisms. Some examples are Message-
Send and MessageDispatch which are responsi-
ble for sending and receiving messages to and
from other ARMORs. Blocks support host-
independent primitives which define the func-
tionality of ARMORs.

An ARMOR abstractly represents a charac-
teristic type of dependability. A base set of AR-

MORs are defined for the architecture with well
defined semantics. They can be extended into
applications by the application programmer. Ta-
ble 1 summarizes the functionality of each type
of ARMOR.

ARMOR Functionality
Fault Tol-
erance
Manager
(FTM)

Coordinates application
requests.

Backup
FTM

Monitors health of FTM. As-
sumes duties if FTM fails.

Daemon Monitors Execution AR-
MORS. Coordinates node
communications.

Heartbeat Monitors health of Daemons
via heartbeat messages.

Surrogate
Manager
(SM)

Coordinates the execution of
an application under a particu-
lar strategy (FTES).

Initialization Obtains node-specific informa-
tion upon Daemon start-up,
sending it to the FTM.

Execution Installs, executes and cleans up
the application. Returns results
to FTM via SM.

Fanout Coordinates multicast and dis-
tribution of data within a repli-
cation group.

Voter Collects and determines group
agreement based on a user-
defined voting policy.

Checkpoint Provides checkpointing and re-
covery mechanisms for an ap-
plication.

Table 1: Chameleon ARMORs

The Chameleon architecture is composed of
two layers. The upper layer is a dynamic col-
lection of ARMORs that may be distributed and

8



replicated over a networked system. The lower
layer is the Chameleon API that supports AR-
MORs and direct calls from applications. Both
layers are supported by the OS. Further details
can be found in [6].

Support for real-time applications is provided
in Chameleon through the use of subclasses. A
subclass of FTM can be instantiated to support
real-time operation. This ARMOR, called a real
time manager (RTM), provides similar function-
ality to the FTM but is composed of different
building blocks. The distinction is basic build-
ing blocks for real-time operations have pre-
dictable (bounded) latencies. Using these build-
ing blocks, subclasses of all ARMORs can be
constructed resulting in predictable execution
times.

Chameleon provides a language with which
users can devise fault tolerant execution strat-
egy (FTES). These plans detail precise numbers
and distribution of group members. A registry
of these plans is maintained by the FTM. Com-
mon schemes can be tuned for performance or
reliability. For example, the first result produced
by a group member can be returned (for perfor-
mance) or a majority voter can be used for reli-
ability.

Faults experienced by a group member may
require the addition of a new group member and
a transfer of state, which is handled by FTES.
Several possible situations may occur. The func-
tional ARMOR that coordinates the recovery is
the Surrogate Manager (SM). Techniques for re-
covery may include process migration, applica-
tion restart or the creation of a new group mem-
ber. Transfer of state is required for the last op-
tion and can be done with a checkpointed copy
of a current group member.

Group communication is handled by the Dae-
mon. A Daemon is installed on each node and
implements at least one network protocol. All
intra-node communication is directed first to the
Daemon and from the Daemon to the destina-
tion. This is done using standard inter-process

communication facilities. Inter-node communi-
cation is directed through the Daemon on the
sender’s node to the Daemon on the receiver’s
node.

Synchronizing group members provides chal-
lenges that require help from the application
to be effectively performed. The Fanout AR-
MOR is the primary instrument of synchroniza-
tion providing atomic multicast and total mes-
sage ordering facilities. Applications that use
nondeterminism need to devise protocols to en-
sure group consistency. Different nodes could
have different pseudo random seeds and algo-
rithms; with some coordination, a single random
value can be broadcast to all group members so
that a meaningful result is produced. Another
problem occurs with cooperating processes. In-
terposing the Fanout ARMOR between the com-
munications of the processes is an adequate so-
lution.

Fault detection in Chameleon is accomplished
by timeouts and a dependence relation. The re-
lation specifies which component of the system
is responsible for detecting faults in other com-
ponents. The dependency is cyclic, which en-
ables knowledge of fault discoveries to propa-
gate backwards, notifying other components of
the failure. Omission, crash and timing failures
can be detected per normal operation. In ad-
dition, it is possible for users to code a notion
of forward progress and with this user-supplied
procedure, an ARMOR can detect livelock (a
specific form of omission fault).

Much of an application’s desired behavior
when faulting is specified in its FTES. In partic-
ular, transparency can be implemented when it
is possible to gain meaningful results from some
group members. The Voter ARMOR can imple-
ment a user specified voting policy for the situ-
ations when group members return different re-
sults (i.e. value fault). Crash and omission faults
can be masked when at least one group member
continues executing. With the aid of the Check-
point ARMOR, it is possible to mask failure of

9



an application with only one group member pro-
vided that results are returned to the user only
after a checkpoint completes.

Chameleon relies on explicit representation of
adaptive policies providing some support for en-
vironmental awareness.

5 Conclusions

In this paper, we presented a unified model high-
lighting fundamental components in the design
of an adaptive fault tolerant system. We used our
model to describe a selection of recent represen-
tative systems and expose the design decisions
made during their construction.

Adaptive fault tolerance can increase avail-
ability, reliability and decrease cost in a dis-
tributed computing environment. Present-day
AFT systems are mature in their use of redun-
dancy, communication and synchronization but
to further the goal of reliability other directions
need to be explored. Environment awareness
and other proactive measures are features of
AFT that we believe future systems will attempt
to leverage.

Acknowledgements

We would like to thank Keith Marzullo for his
feedback on our approach to the topic of relia-
bility in distributed systems.

References

[1] Microsoft Corporation

[2] Sun Microsystems

[3] The Object Management Group

[4] S. Landis, S. Maffeis. ”Building Reli-
able Distributed Systems with CORBA,”

in Theory and Practice of Object Systems,
John Wiley, New York, April, 1997.

[5] F. Cristian. ”Understanding Fault-Tolerant
Distributed Systems,” in Communications
of the ACM, 34(2):56-78, 1991.

[6] Z. Kalbarczyk, R.K. Iyer, S. Bagchi, K.
Whisnant. ”Chameleon: a software in-
frastructure for adaptive fault tolerance,”
in IEEE Transactions on Parallel and
Distributed Systems 10(6):560-579, June,
1999.

[7] J. Ren, M. Cukier, P. Rubel, W. Sanders,
D. Bakken, D. Karr. ”Building Dependable
Distributed Applications using AQuA,” in
Proceedings of the 4th IEEE International
Symp. on High-Assurance Systems Engi-
neering, pp. 189-196, November, 1999.

[8] E. Shokri, H. Hecht, P. Crane, J. Dus-
sault, K. Kim. ”An Approach for Adap-
tive Fault-Tolerance in Object-Oriented
Open Distributed Systems,” Workshop on
Object-Oriented Reliable Distributed Sys-
tems, February, 1997.

[9] M. Hiltunen, R. Schlichting. ”Adaptive
Distributed and Fault-Tolerant Systems,”
in International Journal of Computer Sys-
tems Science and Engineering, 11(5):125-
133, September, 1996.

[10] S. Maffeis. ”A Flexible System Design
to Support Object-Groups and Object-
Oriented Distributed Programming,” in
Proceedings of the ECOOP 1993 Work-
shop on Object-Based Distributed Pro-
gramming,

[11] C. Sabnis, M. Cukier, J. Ren, P. Rubel,
W. Sanders. ”Proteus: A Flexible Infras-
tructure to Implement Adaptive Fault Tol-
erance in AQuA,” in Proceedings of the 7th
IFIP International Working Conference in
Dependable Computing for Critical Appli-
cations, pp. 137-156, January, 1999.

10


