
1

File Server Scaling with Network-Attached Secure Disks

Garth A. Gibson†, David F. Nagle*, Khalil Amiri*, Fay W. Chang†, Eugene M. Feinberg*, Howard Gobioff†,
Chen Lee†, Berend Ozceri*, Erik Riedel*, David Rochberg†, Jim Zelenka†

*Department of Electrical and Computer Engineering
†School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890
garth+nasd@cs.cmu.edu

http://www.cs.cmu.edu/Web/Groups/NASD/

Abstract

By providing direct data transfer between storage and client, net-
work-attached storage devices have the potential to improve scal-
ability for existing distributed file systems (by removing the server
as a bottleneck) and bandwidth for new parallel and distributed file
systems (through network striping and more efficient data paths).
Together, these advantages influence a large enough fraction of the
storage market to make commodity network-attached storage fea-
sible. Realizing the technology’s full potential requires careful
consideration across a wide range of file system, networking and
security issues. This paper contrasts two network-attached storage
architectures—(1) Networked SCSI disks (NetSCSI) are network-
attached storage devices with minimal changes from the familiar
SCSI interface, while (2) Network-Attached Secure Disks (NASD)
are drives that support independent client access to drive object
services. To estimate the potential performance benefits of these
architectures, we develop an analytic model and perform trace-
driven replay experiments based on AFS and NFS traces. Our
results suggest that NetSCSI can reduce file server load during a
burst of NFS or AFS activity by about 30%. With the NASD archi-
tecture, server load (during burst activity) can be reduced by a fac-
tor of up to five for AFS and up to ten for NFS.

1 Introduction

Users are increasingly using distributed file systems to access
data across local area networks; personal computers with hundred-
plus MIPS processors are becoming increasingly affordable; and
the sustained bandwidth of magnetic disk storage is expected to
exceed 30 MB/s by the end of the decade. These trends place a
pressing need on distributed file system architectures to provide

clients with efficient, scalable, high-bandwidth access to stored
data. This paper discusses a powerful approach to fulfilling this
need. Network-attached storage provides high bandwidth by
directly attaching storage to the network, avoiding file server
store-and-forward operations and allowing data transfers to be
striped over storage and switched-network links.

The principal contribution of this paper is to demonstrate the
potential of network-attached storage devices for penetrating the
markets defined by existing distributed file system clients, specifi-
cally the Network File System (NFS) and Andrew File System
(AFS) distributed file system protocols. Our results suggest that
network-attached storage devices can improve overall distributed
file system cost-effectiveness by offloading disk access, storage
management and network transfer and greatly reducing the amount
of server work per byte accessed.

We begin by charting the range of network-attached storage
devices that enable scalable, high-bandwidth storage systems. Spe-
cifically, we present a taxonomy of network-attached storage—
server-attached disks (SAD), networked SCSI (NetSCSI) and net-
work-attached secure disks (NASD)— and discuss the distributed
file system functions offloaded to storage and the security models
supportable by each.

With this taxonomy in place, we examine traces of requests
on NFS and AFS file servers, measure the operation costs of com-
monly used SAD implementations of these file servers and
develop a simple model of the change in manager costs for NFS
and AFS in NetSCSI and NASD environments. Evaluating the
impact on file server load analytically and in trace-driven replay
experiments, we find that NASD promises much more efficient
file server offloading in comparison to the simpler NetSCSI. With
this potential benefit for existing distributed file server markets,
we conclude that it is worthwhile to engage in detailed NASD
implementation studies to demonstrate the efficiency, throughput
and response time of distributed file systems using network-
attached storage devices.

In Section 2, we discuss related work. Section 3 presents our
taxonomy of network-attached storage architectures. In Section 4,
we describe the NFS and AFS traces used in our analysis and
replay experiments and report our measurements of the cost of
each server operation in CPU cycles. Section 5 develops an ana-
lytic model to estimate the potential scaling offered by server-off-
loading in NetSCSI and NASD based on the collected traces and
the measured costs of server operations. The trace-driven replay
experiment and the results are the subject of Section 6. Finally,
Section 7 presents our conclusions and discusses future directions.

This research was sponsored by DARPA/ITO through ARPA Order D306 under con-
tract N00174-96-0002 and in part by an ONR graduate fellowship. The project team is
indebted to generous contributions from the member companies of the Parallel Data
Consortium: Hewlett-Packard, Symbios Logic Inc., Data General, Compaq, IBM Cor-
poration, EMC Corporation, Seagate Technology, and Storage Technology Corpora-
tion. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or
implied, of any supporting organization or the U.S. Government.

© 1997 by the Association for Computing Machinery, Inc. Permission to make digital
or hard copies of part or all of this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for profit or commercial advan-
tage and that new copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request Permissions from Publications Dept,
ACM Inc. Fax +1 (212) 869-0481, or <permissions@acm.org>.

Appears in Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems
(Sigmetrics ‘97), Seattle, Washington, June 15-18, 1997.

2

2 Related Work

Distributed file systems provide remote access to shared file
storage in a networked environment [Sandberg85, Howard88,
Minshall94]. A principal measure of a distributed file system’s
cost is the computational power required from the servers to pro-
vide adequate performance for each client’s work [Howard88,
Nelson88]. While microprocessor performance is increasing dra-
matically and raw computational power would not normally be a
concern, the work done by a file server is data- and interrupt-inten-
sive and, with the poorer locality typical of operating systems,
faster microprocessors will provide much less benefit than their
cycle time trends promise [Ousterhout91, Anderson91, Chen93].

Typically, distributed file systems employ client caching to
reduce this server load. For example, AFS clients use local disk to
cache a subset of the global system’s files. While client caching is
essential for high performance, increasing file sizes, computation
sizes, and workgroup sharing are all inducing more misses per
cache block [Ousterhout85, Baker91]. At the same time, increased
client cache sizes are making these misses more bursty.

When the post-client-cache server load is still too large, it can
either be distributed over multiple servers or satisfied by a custom-
designed high-end file server. Multiple-server distributed file sys-
tems attempt to balance load by partitioning the namespace and
replicating static, commonly used files. This replication and parti-
tioning is too often ad-hoc, leading to the “hotspot” problem famil-
iar in multiple-disk mainframe systems [Kim86] and requiring
frequent user-directed load balancing. Not surprisingly, custom-
designed high-end file servers more reliably provide good perfor-
mance, but can be an expensive solution [Hitz90, Drapeau94].

Experience with disk arrays suggests another solution. If data
is striped over multiple independent disks of an array, then a high-
concurrency workload will be balanced with high probability as
long as individual accesses are small relative to the unit of inter-
leaving [Linvy87, Patterson88, Chen90]. Similarly, striping file
storage across multiple servers provides parallel transfer of large
files and balancing of high concurrency workloads [Hartman93];
striping of metadata promises further load-balancing [Dahlin95].

Scalability prohibits the use of a single shared-media net-
work; however, with the emergence of switched network fabrics
based on high-speed point-to-point links, striped storage can scale
bandwidth independent of other traffic in the same fabric
[Arnould89, Siu95, Boden95]. Unfortunately, current implementa-
tions of Internet protocols demand significant processing power to
deliver high bandwidth— we observe as much as 80% of a 233
MHz DEC Alpha consumed by UDP/IP receiving 135 Mbps over
155 Mbps ATM (even with adaptor support for packet reassem-
bly). Improving this bandwidth depends on interface board designs
[Steenkiste94, Cooper90], integrated layer processing for network
protocols [Clark89], direct application access to the network inter-
face [vonEiken92, Maeda93], copy avoiding buffering schemes
[Druschel93, Brustoloni96], and routing support for high-perfor-
mance best-effort traffic [Ma96, Traw95]. Perhaps most impor-
tantly, the protocol stacks resulting from these research efforts
must be deployed widely. This deployment is critical because the
comparable storage protocols, SCSI, and soon, Fibre Channel, pro-
vide cost-effective hardware implementations routinely included
in client machines. For comparison, a 175 MHz DEC Alpha con-
sumes less than 5% of its processing power fetching 100 Mbps
from a 160 Mbps SCSI channel via the UNIX raw disk interface.

To exploit the economics of large systems resulting from the
cobbling together of many client purchases, the xFS file system
distributes code, metadata and data over all clients, eliminating the
need for a centralized storage system [Dahlin95]. This scheme nat-
urally matches increasing client performance with increasing
server performance. Instead of reducing the server workload, how-
ever, it takes the required computational power from another, fre-
quently idle, client. Complementing the advantages of filesystems
such as xFS, the network-attached storage architectures presented
in this paper significantly reduce the demand for server computa-
tion and eliminate file server machines from the storage data path,
reducing the coupling between overall file system integrity and the
security of individual client machines.

As distributed file system technology has improved, so have
the storage technologies employed by these systems. Storage den-
sity increases, long a predictable 25% per year, have risen to 60%
increases per year during the 90s. Data rates, which were con-
strained by storage interface definitions until the mid-80s, have
increased by about 40% per year in the 90s [Grochowski96]. The
acceptance, in all but the lowest cost market, of SCSI, whose inter-
face exports the abstraction of a linear array of fixed-size blocks
provided by an embedded controller [ANSI86], catalyzed rapid
deployment of technology advances, resulting in an extremely
competitive storage market.

The level of indirection introduced by SCSI has also led to
transparent improvements in storage performance such as RAID;
transparent failure recovery; real-time geometry-sensitive schedul-
ing; buffer caching; read-ahead and write-behind; compression;
dynamic mapping; and representation migration [Patterson88,
Gibson92, Massiglia94, StorageTek94, Wilkes95, Ruemmler91,
Varma95]. However, in order to overcome the speed, addressabil-
ity and connectivity limitations of current SCSI implementations
[Sachs94, ANSI95], the industry is turning to high-speed pack-
etized interconnects such as Fibre Channel at up to 1 Gbps
[Benner96]. The disk drive industry anticipates the marginal cost
for on-disk Fibre Channel interfaces, relative to the common sin-
gle-ended SCSI interface in use today, to be comparable to the
marginal cost for high-performance differential SCSI (a difference
similar to the cost of today’s Ethernet adapters) while their host
adapter costs are expected to be comparable to high-performance
SCSI adapters [Anderson95].

The idea of simple, disk-like network-based storage servers
whose functions are employed by higher-level distributed file sys-
tems, has been around for a long time [Birrel80, Katz92]. The
Mass Storage System Reference Model (MSSRM), an early archi-
tecture for hierarchical storage subsystems, has advocated the sep-
aration of control and data paths for almost a decade [Miller88,
IEEE94]. Using a high-bandwidth network that supports direct
transfers for the data path is a natural consequence [Kronenberg86,
Drapeau94, Long94, Lee95, Menascé96, VanMeter96]. The
MSSRM has been implemented in the High Performance Storage
System (HPSS) [Watson95] and augmented with socket-level
striping of file transfers [Berdahl95, Wiltzius95], over the multiple
network interfaces found on mainframes and supercomputers.1

1Following Van Meter’s [VanMeter96] definition of network-attached
peripherals, we consider only networks that are shared with general local
area network traffic and not single-vendor systems whose interconnects are
fast, isolated local area networks [Horst95, IEEE92].

3

Striping data across multiple storage servers with indepen-
dent ports into a scalable local area network has been advocated as
a means of obtaining scalable storage bandwidth [Hartman93]. If
the storage servers of this architecture are network-attached
devices, rather than dedicated machines between the network and
storage, efficiency is further improved by avoiding store-and-for-
ward delays through the server.

Our notion of network-attached storage is consistent with
these projects. However, our analysis focuses on the evolution of
commodity storage devices rather than niche-market, very high-
end systems, and on the interaction of network-attached storage
with common distributed file systems. Because all prior work
views the network-based storage as a function provided by an
additional computer, instead of the storage devices itself, cost-
effectiveness has never been within reach. Our goal is to chart the
way network-attached storage is likely to appear in storage prod-
ucts, estimate its scalability implications, and characterize the
security and file system design issues in its implementation.

3 Taxonomy of Network-Attached Storage

Simply attaching storage to a network underspecifies net-
work-attached storage’s role in distributed file systems’ architec-
tures. In the following subsections, we present a taxonomy for the
functional composition of network-attached storage. Case 0, the
base case, is the familiar local area network with storage privately
connected to file server machines — we call thisserver-attached
disks. Case 1 represents a wide variety of current products,server-
integrated disks, that specialize hardware and software into an
integrated file server product. In Case 2, the obvious network-
attached disk design,network SCSI, minimizes modifications to
the drive command interface, hardware and software. Finally,
Case 3,network-attached secure disks, leverages the rapidly
increasing processor capability of disk-embedded controllers to
restructure the drive command interface.

3.1 Case 0: Server-Attached Disks (SAD)
This is the system familiar to office and campus local area

networks as illustrated in Figure 1. Clients and servers share a net-
work and storage is attached directly to general-purpose worksta-
tions that provide distributed file services.

3.2 Case 1: Server Integrated Disks (SID)
Since file server machines often do little other than service

distributed file system requests, it makes sense to construct spe-
cialized systems that perform only file system functions and not
general-purpose computation. This architecture is not fundamen-
tally different from SAD. Data must still move through the server
machine before it reaches the network, but specialized servers can
move this data more efficiently than general-purpose machines.
Since high performance distributed file service benefits the pro-
ductivity of most users, this architecture occupies an important
market niche [Hitz90, Hitz94]. However, this approach binds stor-
age to a particular distributed file system, its semantics, and its
performance characteristics. For example, most server-integrated
disks provide NFS file service, whose inherent performance has
long been criticized [Howard88]. Furthermore, this approach is
undesirable because it does not enable distributed file system and
storage technology to evolve independently. Server striping, for
instance, is not easily supported by any of the currently popular
distributed file systems. Binding the storage interface to a particu-
lar distributed file system hampers the integration of such new fea-
tures [Birrell80].

3.3 Case 2: Network SCSI (NetSCSI)
The other end of the spectrum is to retain as much as possible

of SCSI, the current dominant mid- and high-level storage device
protocol. This is the natural evolution path for storage devices;
Seagate’s Barracuda FC is already providing packetized SCSI
through Fibre Channel network ports to directly attached hosts
[Seagate96]. NetSCSI is a network-attached storage architecture
that makes minimal changes to the hardware and software of SCSI
disks. File manager software translates client requests into com-
mands to disks, but rather than returning data to the file manager to
be forwarded, the NetSCSI disks send data directly to clients, sim-
ilar to the support for third-party transfers already supported by
SCSI [Drapeau94]. The efficient data transfer engines typical of
fast drives ensure that the drive’s sustained bandwidth is available
to clients. Further, by eliminating the file manager from the data
path, its workload per active client decreases. However, the use of
third-party transfer changes the drive’s role in the overall security
of a distributed file system. While it is not unusual for distributed
file systems to employ a security protocol between clients and

1

3 24
Backplane Bus

Local Area Network

(Packetized) SCSI

Figure 1: Server-attached disks (SAD) are the familiar local area network distributed file
systems. A client wanting data from storage sends a message to the file server (1), which sends a
message to storage (2), which accesses the data and sends it back to the file server (3), which
finally sends the requested data back to the client (4). Server-integrated disk (SID) is logically the
same except that hardware and software in the file server machine may be specialized to the file
service function.

3

2

1

4

File Server

Controller

SCSI

Controller

SCSI

Network File System Protocol

Network Protocol

Network Driver

Local File System

SCSI Driver

SCSI InterfaceSystem MemoryNetwork Interface

4

servers (e.g. Kerberos authentication), disk drives do not yet par-
ticipate in this protocol.

We identify four levels of security within the NetSCSI model:
(1) accident-avoidance with a second private network between file
manager and disk, both locked in a physically secure room; (2)
data transfer authentication with clients and drives equipped with a
strong cryptographic hash function; (3) data transfer privacy with
both clients and drives using encryption and; (4) secure key man-
agement with a secure coprocessor.

Figure 2 shows the simplest security enhancement to
NetSCSI: a second network port on each disk. Since SCSI disks
execute every command they receive without an explicit authori-
zation check, without a second port even well-meaning clients can
generate erroneous commands and accidentally damage parts of
the file system. The drive’s second network port provides protec-
tion from accidents while allowing SCSI command interpreters to
continue following their normal execution model. This is the
architecture employed in the SIOF and HPSS projects at LLNL
[Wiltzius95, Watson95]. Assuming that file manager and NetSCSI
disks are locked in a secure room, this mechanism is acceptable for
the trusted network security model of NFS [Sandberg85].

Because file data still travels over the potentially hostile gen-
eral network, NetSCSI disks are likely to demand greater security
than simple accident avoidance. Cryptographic protocols can
strengthen the security of NetSCSI. A strong cryptographic hash
function, such as SHA [NIST94], computed at the drive and at the
client would allow data transfer authentication (i.e., the correct
data was received only if the sender and receiver compute the
same hash on the data).

For some applications, data transfer authentication is insuffi-
cient, and communication privacy is required. To provide privacy,
a NetSCSI drive must be able to encrypt and decrypt data.
NetSCSI drives can use cryptographic protocols to construct pri-
vate virtual channels over the untrusted network. However, since
keys will be stored in devices vulnerable to physical attack, the
servers must still be stored in physically secure environments. If
we go one step further and equip NetSCSI disks with secure copro-
cessors [Tygar95], then keys can be protected and all data can be
encrypted when outside the secure coprocessor, allowing the disks
to be used in a variety of physically open environments. There are
now a variety of secure coprocessors [NIST94a, Weingart87,

White87, National96] available, some of which promise crypto-
graphic accelerators sufficient to support single-disk bandwidths.

3.4 Case 3: Network-attached Secure Disks (NASD)
With network-attached secure disks, we relax the constraint

of minimal change from the existing SCSI interface and imple-
mentation. Instead we focus on selecting a command interface that
reduces the number of client-storage interactions that must be
relayed through the file manager, offloading more of the file man-
ager’s work without integrating file system policy into the disk.

Common, data-intensive operations, such as reads and writes,
go straight to the disk, while less-common ones, including
namespace and access control manipulations, go to the file man-
ager. As opposed to NetSCSI, where a significant part of the pro-
cessing for security is performed on the file manager, NASD
drives perform most of the processing to enforce the security pol-
icy. Specifically, the cryptographic functions and the enforcement
of manager decisions are implemented at the drive, while policy
decisions are made in the file manager. Because clients directly
request access to data in their files, a NASD drive must have suffi-
cient metadata to map and authorize the request to disk sectors.
Authorization, in the form of a time-limited capability applicable
to the file’s map and contents, should be provided by the file man-
ager to protect higher-level file systems’ control over storage
access policy. The storage mapping metadata, however, could be
provided dynamically [VanMeter96a] by the file manager or could
be maintained by the drive. While the latter approach asks distrib-
uted file system authors to surrender detailed control over the lay-
out of the files they create, it enables smart drives to better exploit
detailed knowledge of their own resources to optimize data layout,
read-ahead, and cache management [deJonge93, Patterson95,
Golding95]. This is precisely the type of value-added opportunity
that nimble storage vendors can exploit for market and customer
advantage. With mapping metadata at the drive controlling the lay-
out of files, a NASD drive exports a namespace of file-like objects.
Because control of naming is more appropriate to the higher-level
file system, pathnames are not understood at the drive, and path-
name resolution is split between the file manager and client. While
a single drive object will suffice to represent a simple client file,
multiple objects may be logically linked by the file system into
one client file. Such an interface provides support for banks of

Figure 2: Network SCSI (NetSCSI) is a network-
attached disk architecture designed for minimal changes
to the disk’s command interface. However, because the
network port on these disks may be connected to a hostile,
broader network, preserving the integrity of on-disk file
system structure requires a second port to a private (file
manager-owned) network or cryptographic support for a
virtual private channel to the file manager. If a client
wants data from a NetSCSI disk, it sends a message (1) to
the distributed file system’s file manager which processes
the request in the usual way, sending a message over the
private network to the NetSCSI disk (2). The disk
accesses data, transfers it directly to the client (3), and
sends its completion status to the file manager over the
private network (4). Finally, the file manager completes
the request with a status message to the client (5).

Net

Controller

Net Security

Net

Net Security

Access Control

File System

File Manager
Net

Controller

Net Security

Private Peripheral Channel

Local Area Network

Private Peripheral Channel

Local Area Network

2

3
5

1

4

5

striped files [Hartman93], Macintosh-style resource forks, or logi-
cally-contiguous chunks of complex files [deJong93].

As an example of a possible NASD access sequence, consider
a file read operation depicted in Figure 3. Before issuing its first
read of a file, the client authenticates itself with the file manager
and requests access to the file. If access is granted, the client
receives the network location of the NASD drive containing the
object and a time-limited capability to access the object and for
establishing a secure communications channel with the drive.
After this point, the client may directly request access to data on
NASD drives, using the appropriate capability [Gobioff96].

In addition to offloading file read operations from the distrib-
uted file manager, later sections will show that NASD should also
offload file writes and attributes reads to the drive. High-level file
system policies, such as access control and cache consistency,
however, remain the purview of the file manager. These policies
are enforced by NASD drives according to the capabilities con-
trolled by the file manager.

3.5 Summary
This taxonomy, summarized in Table 1, splits into two

classes — SAD and SID offer a specific distributed file system
while NetSCSI and NASD offer enhanced storage interfaces. The
difference between SID and NASD merits further consideration.
Many of the optimizations we propose for NASD, such as short-
ened data paths and specialized protocol processing, can also be
implemented in a SID architecture. However, SID binds storage to
a particular distributed file system, requires higher-level (or multi-
ple-SID) file management to offer network striped files and, by not
evolving the drive interface, inhibits the independent development
of drive technology. For the rest of this paper, we focus on SAD,

NetSCSI, and NASD and present a coarse-grained estimate of the
potential benefit of network-attached storage. The results suggest
that by exploiting the processing power available in next genera-
tion storage devices, computation required from the file manager
machines can be dramatically reduced, enabling the per-byte cost
of distributed file service to be reduced.

4 Analysis of File System Workload

To develop an understanding of performance parameters crit-
ical to network-attached storage, we performed a series of mea-
surements to (1) characterize the behavior and cost of AFS and
NFS distributed file server functionality; and (2) identify and sub-
set busy periods during which server load is limiting.

4.1 Trace Data
Our data is taken from NFS and AFS file system traces sum-

marized in Table 2. The NFS trace [Dahlin94] records the activity
of an Auspex file server supporting 231 client machines over a one
week period at the University of California at Berkeley2. The AFS
trace records the activity of our laboratory’s Sparcstation 20 AFS
server supporting 250 client machines over a one month period3

2Some attribute reads were removed from the NFS trace by the Berkeley
researchers based on a heuristic for eliminating excessive cache consis-
tency traffic. Because this change is pessimistic to our proposed architec-
ture, we choose to continue to use these traces, already familiar to the
community, rather than collect new traces.
3The trace covers three periods of activity - 9/9-10, 9/13-15, and 9/20-10/3.

1

2Backplane Bus

Local Area Network

5 3 4

Figure 3: Network-attached secure disks (NASD) are designed to offload more of the file system’s simple and
performance-critical operations. For example, in one potential protocol a client, prior to reading a file, requests
access to that file from the file manager (1), which delivers a capability to the authorized client (2). So equipped,
the client may make repeated accesses to different regions of the file (3, 4) without contacting the file manager
again unless the file manager chooses to force reauthorization by revoking the capability (5).

5

NASD File Manager

Access Control

Network Interface

Network Protocol

Network Driver

Object Storage

Controller

Network Security

Security

Case 0 Case 1 Case 2 Case 3

FM per byte X X

FM per operation X

FM on open/close X

specialization X X X

Table 1. Comparison of network-attached storage architectures. SAD
and SID require the file manager (file server) to handle each byte of data,
but SID allows specialization of the hardware and software to file service.
NetSCSI allows direct transfers to clients, but requires file manager
interaction on each operation to manage metadata.

NFS trace AFS trace

Number of client machines 231 250

Total number of requests 6,676,479 1,615,540

Read data transferred (GB) 8.1 2.9

Write data transferred (GB) 2.0 1.6

Trace period 9/20/93-9/24/93
40 hours

9/9/96-10/3/96
435 hours3

Table 2. Description of the traces used in the experiments. The NFS
trace was collected in a study performed at the University of California
at Berkeley. The AFS trace was collected by logging requests at the AFS
file server in our laboratory.

6

Both the NFS and AFS traces document each client request
with an arrival timestamp, a unique client host id, and an indica-
tion of the request type. The AFS trace records the exact type of
primitive AFS file system request and also includes a response
timestamp. The NFS trace only records the general class of the
issued request which leaves some ambiguity in determining
exactly which primitive NFS requests were issued (e.g., a request
recorded as a directory read may have been either a lookup or
readdir request).

The original NFS trace is dominated by overnight backup
activity. Since users are mostly insensitive to backup performance,
and this is not a major concern of this study, we exclude this activ-
ity by only including requests timestamped Monday through Fri-
day between 9am and 5pm in our data set. The AFS trace does not
include any backup activity because AFS backups are handled by a
separate task on the file server machine.

4.2 Cost of NFS and AFS Operations
Our trace data captures the types and relative frequencies of

client requests but does not include the amount of CPU work per-
formed by the file server in handling each request. To estimate this
cost, we measured NFS and AFS server code paths on Digital
Equipment Alpha workstations. Specifically, we used the ATOM
binary annotation tool [Srivastava94] and the Alpha’s on-chip
cycles counters to identify the code paths traversed and measure
the work required for each type of primitive file system operation.

To minimize measurement overhead and improve accuracy,
cost measurements were taken in two steps. First, we used ATOM
to annotate the entry and exit points of each procedure and issued
specific requests, producing a dynamic call graph for each primi-
tive operation. Then we re-annotated the server routines, starting at
packet arrival and ending at response packet dispatch, limiting
annotation to the critical components of each operation’s code
path. For each operation, file system requests were repeatedly

applied to the selectively annotated server, generating traces that
recorded code-path execution times. Measurements were repeated
for a range of request sizes where appropriate and all the measure-
ments are summarized in Table 3(b,c,d) and Table 4(b,c,d).

4.3 Relative Importance of NFS and AFS Operations
Table 3(a) and Table 4(a) report the frequency distribution of

various server operations for the traces. Each table describes the
types of primitive operations and reports their frequencies and the
total number of occurrences in the trace. This data shows that
attribute read requests (AttrRead, FetchStatus, BulkStatus) are the
most frequently executed operations. While frequency statistics
emphasize attribute operations, the cycle count data indicate that
data movement can place a significantly larger per request burden
on the server CPU.

To assess the relative importance of various primitive opera-
tions in the total workload applied to a file server, we estimate the
total amount of work performed by a server per request type dur-
ing the execution of each trace. Specifically, we estimate the total
server workload per operation type by multiplying the per-type
count of occurrences by the measured average per-type cycle
count. Since the NFS trace groups certain operation types together,
as indicated by Column 2 of Table 3(a) we use a representative
member of each group to perform our NFS calculations. The rela-
tive importance of operation types can be deduced from the per-
centage of the server load attributable to each type, as shown in the
last column of Table 3(a) and Table 4(a). These calculations show
that data-moving operations contribute 51% of the NFS workload
and 36% of the AFS workload. Because these fractions are far
short of 100%, the performance gained by directly moving data
between clients and disks may be limited [Drapeau94]. As the next
subsection shows, this limits the benefit of NetSCSI for offloading
file manager workload and motivates the design of a NASD drive
interface.

Trace
Record

NFS
Operations

Description Percent
Quantity
(millions)

% of Cycles

AttrRead getattr Get metadata information 42.5 2.84 11.8
AttrWrite setattr Update metadata information 0.3 0.02 0.3
BlockRead read Get data from server 20.4 1.36 31.6
BlockWrite write Send data to server 4.2 0.28 19.3

DirRead lookup, readdir
Convert filename to filehandle,
get directory entries

31.4 2.10 35.5

DirReadWrite create, mkdir,
rename, etc.

Create new files/directories,
rename, etc.

1.0 0.07 1.0

DeleteWrite unlink, rmdir Remove file/directory 0.2 0.01 0.4

Operation
Cycles

(thousands)

create 81

unlink (last link) 135

Table 3: Distribution and average costs of NFS operations. Cycle counts were taken on an ATOMized DEC 3000/400 (133 MHz, 64 MB of memory,
Digital UNIX 3.2c) kernel, including NFSv3 server functionality. ATOM overhead was calculated and removed. The server’s caches were warmed, and
trials that produced misses in the buffer cache were discarded. The write and create operations were measured using a RAM-based file system.

Table 3(a) - NFS Trace Operations

Operation
Cycles

(thousands)

getattr 33

setattr 64

lookup 50

readdir (1 entry) 63

readdir (40 entries) 105

Data Size
(bytes)

Read Cycles
(thousands)

Write Cycles
(thousands)

1 54 117

1K 61 —

2K 68 —

4K 78 148

8,000 100 199

Table 3(b) - NFS Cost Measurements Table 3(c) Table 3(d)

7

4.4 Busy Client-Minutes
A distributed file system scales if an increase in aggregate cli-

ent demand, and the corresponding increase in storage capacity
and bandwidth, does not result in a decrease in client-observed
performance. In a previous study [Riedel96], we examined the cor-
relation between hourly averages of client response times, network
round-trip times and server load. Users may be satisfied with their
response times when servers are idle, but experience periods of
dramatically longer response times which correlate with periods of
high server load. Since client dissatisfaction is strongly determined
by prolonged periods of considerably higher than average response
time, this study focuses on server performance during such bursts
of high load. For such a burst to have client impact, it must persist
for a sufficiently long time. In this paper we have chosen to exam-
ine load during one minute intervals — long enough for interactive
users to identify a slowdown, but not so long that poor perfor-
mance during bursts is hidden by overall averages. Our previous
study also observed that periods of high server load may exhibit a
different distribution of request types — data movement is more
prevalent. In order to capture the distribution of operations during
these critical bursty periods, we restrict the rest of our analysis to

AFS Operation Description Percent
Quantity

(thousands)
% of Cycles

FetchStatus Get metadata information 65.1 1052.2 39.3
BulkStatus Perform a group of FetchStatus operations 5.8 93.4 10.9
StoreStatus Update metadata information 2.5 40.4 2.2
FetchData Get data from server 13.9 224.0 27.9
StoreData Send data to server 3.8 61.5 8.5
CreateFile Create a new file 1.7 27.0 2.4
Rename Rename a file/directory 0.6 10.4 0.9
RemoveFile Remove a file 1.5 25.0 2.4
Others ACL manipulation, symbolic links, directory

creation/deletion, lock management, etc.
5.0 81.6 5.4

Table 4: Distribution and average costs of AFS operations. Cycle counts were taken on a DEC 3000/500 (150MHz, 128 MB of memory,
Digital UNIX 3.2c) running an ATOMized AFS version 3.4 server. ATOM tracing overhead was negligible compared to other system-level effects on the
server. The server's caches were warmed and trials that produced misses in the local file system cache were discarded. The number of cycles for “Others”
was estimated as the average of the four size-independent operations that were measured individually (FetchStatus, StoreStatus, CreateFile, Rename).

Table 4(a) - AFS Trace Operations

 Cycles according to Size of Operation (thousands)

Operation 0 1 512 1K 2K 4K 8K 16K 32K 64K 1M

FetchData — 179 192 191 204 270 330 439 788 1,544 —

StoreData 259 — 291 303 363 371 410 578 750 1,242 16,752

RemoveFile — 331 396 396 410 411 412 414 429 452 1,053

BulkStatus Size
(directory entries)

Cycles
(thousands)

1 151

3 178

10 324

20 578

25 662

Operation
Cycles

(thousands)

FetchStatus 128

StoreStatus 189

CreateFile 307

Rename 285

Others 227

Table 4(b) - AFS Cost Measurements

Table 4(c) Table 4(d)

Figure 4: Cumulative distribution of estimated server work for NFS and
AFS intervals. The graph shows that 98% of NFS client-minutes and 95%
of AFS client-minutes require less than 0.1 seconds of estimated server
work.

AFS Traces
NFS Traces

0.001 0.01 0.1 1 10
0

25

50

75

95
100

Cumulative CPU Work (seconds)

P
er

ce
nt

 o
f A

ll
In

te
rv

al
s

Estimated Server Work

8

the busiest one-minute intervals as measured by the amount of
work detailed in Section 4.3.

Based on this metric and the data in Figure 4, we chose to
restrict analysis toclient-minutes (single minutes of a single cli-
ent’s activity) that consume more than 0.1 seconds of server CPU
(top 2% of NFS and top 5% of AFS client-minutes). Table 5 sum-
marizes these busy client-minutes.

5 Analytic Model

When a distributed file system is ported to NetSCSI or NASD
environments, the disposition of client requests is adjusted accord-
ing to the goals described in Section 3. The principal benefit we
expect for an existing file system such as NFS or AFS is a more
cost-effective scaling of throughput by a reduction in the file man-
ager load. In this section, we develop a simple estimate of this
scaling. Following the work estimates of Section 4.3, where total
file manager work is estimated as the sum of operation costs
weighted by the frequency of each operation, we derive estimates
of the NetSCSI and NASD file manager work done by NFS and
AFS operations by approximating these costs with SAD operations
which accomplish similar amounts of work, as reported in Table 6.
These estimates are only coarse approximations, but provide a rea-
sonable estimate of the potential benefit of network-attached stor-
age over SAD in terms of file manager scaling.

In the NetSCSI model, the only change from SAD is that the
read/write datapath avoids the file manager. However, each read or
write request must still be authorized and translated to NetSCSI
block addresses. As we see in Table 7, this severely limits the scal-
ability of NetSCSI even though we optimistically model the man-
ager cost of read or write as a simple attribute read in SAD.
Specifically, this model estimates file manager work with

NetSCSI to be at least two-thirds and three-quarters as much as
with SAD during busy NFS and AFS client-minutes.

In our NASD model, all read operations, including attribute
and directory reads, are sent directly to the NASD drive. We fur-
ther assume that NFS clients in NASD systems replace directory
lookup operations with NASD (directory) object reads and execute
the lookup locally. The data in file writes are also sent directly to
the NASD drive. However, in order to support AFS consistency
semantics, data writes generate an additional request to the file
manager. This request, which would allow the AFS file manager to
perform the appropriate consistency maintenance (e.g. breaking
callbacks), is estimated to require the same work as an attribute
read request. NFS, which has a weaker consistency model, does
not require this additional request. For attribute and directory
writes, we assume that clients must send their requests to the file
manager. To estimate the file manager’s pre-authorization and
capability setup work prior to any access, we introduced a NASD
open request which we emulate with an attribute read operation.
Since NASD capabilities are valid for a limited time (twenty-four
hours in this model), unless revoked by a change in access rights
(an operation that is extremely rare in our traces), transforming the
traces in this way adds one additional operation when a file is first
referenced on a given day. Finally, remove operations, whose
deallocation work is done by the NASD drive, require file man-
ager work comparable to the removal of an empty file.

For AFS, Table 7 shows that NASD systems may reduce file
manager workload during busy client-minutes by a factor of two
over NetSCSI systems and a factor of three over SAD systems. For
NFS, where directory and attribute reads dominate the workload,
file managers using NASD drives may benefit from a factor of
fourteen decrease in file manager load over SAD systems.

6 Replay Experiment

The analytic model neglects several factors. Particularly con-
cerning is its inability to account for system-level activity (e.g.
page faults, scheduler activity, thread overhead, queueing effects)
that could significantly impact the behavior and performance of
NetSCSI and NASD systems. Given our goal of justifying further
implementation studies, we chose to explore system overheads and
interactions by replaying the traces, modified according to Table 6
to coarsely model the work of a NetSCSI or NASD server, against
existing SAD implementations. This experiment allows us to mea-
sure expected file manager load under SAD, NetSCSI and NASD,

Table 5: Statistics for the top 2% of NFS client-minutes, and top 5%
of AFS client-minutes, as measured by estimated work.

NFS AFS

Number % of total Number % of total

Busy client-minutes 4,636 2 2,809 5

Client machines 135 58 78 31

Requests 3,730,031 56 1,199,419 74

Read data (GB) 4.8 59 2.8 96

Write data (GB) 1.7 84 1.3 84

Table 6. Description of what the operations in the filesystem traces translate to in the SAD, NetSCSI and NASD models. The tables list the operations as
recorded in the trace and the corresponding RPC request issued by a client during replay for each of SAD, NetSCSI and NASD and used in the analytic
calculations to estimate server load in each model. The operations not listed for AFS are the same across SAD, NetSCSI and NASD. The last row in each
table corresponds to the NASD open operation, which we added to the traces.

NFS trace SAD NetSCSI NASD

AttrRead getattr getattr —
AttrWrite setattr setattr setattr

BlockRead read(size) getattr —
BlockWrite write(size) getattr —
DirRead lookup lookup —
DirRW create create create

DeleteWrite remove(size) remove(size) remove(0 byte)

NasdOpen — — getattr

AFS trace SAD NetSCSI NASD

FetchStatus FetchStatus FetchStatus —
StoreStatus StoreStatus StoreStatus StoreStatus

FetchData FetchData(size) FetchStatus —
StoreData StoreData(size) FetchStatus FetchStatus

RemoveFile RemoveFile(size) RemoveFile(size) RemoveFile(0 byte)

BulkStatus BulkStatus BulkStatus —
NasdOpen — — FetchStatus

9

capturing system-level activities not accounted for in the analytic
model and more accurately estimating the increase in scalability
possible with NetSCSI- and NASD-based systems.

6.1 Experiment
The replay environment, as illustrated in Figure 5, is com-

posed of a single file manager (i.e. an NFS or AFS server) and sev-
eral host workstations. We refer to these host workstations, used to
replay (modified) trace requests to the file manager, asreplay
hosts. Each replay host merges several client-minute traces which
it then replays using an open-loop request-issue model where mul-
tiple threads replay each of the requests according to the issue
timestamps. When the total load applied is well under the server’s
capability, the timing of operations approximates the original
traces and the replay completes in about one minute. However, as
the number of client-minutes grows, the work required of the
server exceeds its capability and responses may be delayed so long
that all client threads are blocked when a timestamp requires a
request to be replayed. When such deadlines are missed often, the
system degrades to a closed-loop experiment and the runtime can
be significantly longer than one minute. During replay, file man-
ager CPU load is measured by recording time spent in the kernel
idle loop, and subtracting this from the total duration of the replay.

To measure file server load as a function of increasing client
demand, we varied the number of client-minutes replayed simulta-
neously. To replaym client-minutes, we randomly selectm client-

minutes from the pool of busy client-minutes described in Section
4.4. As indicated by the long tails of the distributions in Figure 4,
different randomly selected sets ofm client-minutes may have

Table 7: Estimated work performed by the NFS and AFS file managers to handle requests issued during busy client-minutes. This table reports the
estimates of our analytic model comparing the relative scalability of file managers in SAD, NetSCSI, and NASD environments. “%” in the NetSCSI and
NASD columns represents the percentage difference between each particular NetSCSI or NASD operation cycle count and the SAD total cycle count.

NFS
Operation

Count in top
2% by work
(thousands)

SAD NetSCSI NASD

Cycles
(billions)

%
Cycles

(billions)
%*

Cycles
(billions)

%*

Attr Read 792.7 26.4 11.8% 26.4 11.8% 0.0 0.0%
Attr Write 10.0 0.6 0.3% 0.6 0.3% 0.6 0.3%
Block Read 803.2 70.4 31.6% 26.8 12.0% 0.0 0.0%
Block Write 228.4 43.2 19.4% 7.6 3.4% 0.0 0.0%
Dir Read 1577.2 79.1 35.5% 79.1 35.5% 0.0 0.0%
Dir RW 28.7 2.3 1.0% 2.3 1.0% 2.3 1.0%
Delete Write 7.0 0.9 0.4% 0.9 0.4% 0.9 0.4%
Open 95.2 0.0 0.0% 0.0 0.0% 12.2 5.5%
Total 3542.4 223.1 100.0% 143.9 64.5% 16.1 7.2%

AFS
Operation

Count in top
5% by work
(thousands)

 SAD NetSCSI NASD

Cycles
(billions)

%
Cycles

(billions)
%*

Cycles
(billions)

%*

FetchStatus 770.5 98.6 37.9% 98.6 37.9% 0.0 0.0%
BulkStatus 91.3 36.6 14.1% 36.6 14.1% 0.0 0.0%
StoreStatus 16.2 3.1 1.2% 3.1 1.2% 3.1 1.2%
FetchData 193.7 83.7 32.1% 24.8 9.5% 0.0 0.0%
StoreData 23.1 15.1 5.8% 3.0 1.1% 3.0 1.1%
CreateFile 12.1 3.7 1.4% 3.7 1.4% 3.7 1.4%
Rename 6.4 1.8 0.7% 1.8 0.7% 1.8 0.7%
RemoveFile 14.6 4.8 1.9% 4.8 1.9% 4.8 1.9%
Others 57.3 13.0 5.0% 13.0 5.0% 13.0 5.0%
Open 480.8 0.0 0.0% 0.0 0.0% 61.5 23.6%
Total 1665.9 260.5 100.0% 189.4 72.7% 90.9 34.9%

...

...

threads

File manager

Network

Replay hosts

RPC requestRPC request

Replay process

Figure 5: Setup of the trace-driven replay experiments. Multi-threaded
processes on each replay host submit requests from a set of client-minutes
to the file server emulating the expected traffic in the case of SAD,
NetSCSI, and NASD.

single client-minute

CPU idle time

requests in the traces

issued at the recorded
timestamp for the

(trace segment)

merged
trace

10

widely varying load. Therefore, we constructp (=5) samples for
each set ofm client-minutes, and report the mean and 90% confi-
dence intervals. For comparison, Figure 6 reports the mean and
90% confidence intervals in estimated file manager work accord-
ing to the analytic model of Section 5 applied to the client-minutes
selected for replay.

6.2 Results
Comparing Figure 6 and Figure 7, we see that replay experi-

ences significantly more CPU work — work that was overlooked
by the analytic model. At 90 client-minutes, the analytic
NFS/NASD model predicts less than 30 CPU seconds while the
replay model consumes over 60 CPU seconds. In spite of these dif-
ferences, the replay results and the analytic data display a strong
correlation in the relative performance of SAD, NetSCSI and
NASD. For example, at 90 NFS client-minutes, both show a 40%
difference in load between SAD and NetSCSI, and a 90% differ-

ence between SAD and NASD, with similar correspondence in the
AFS case. The similarities between the results of Section 5 and 6
suggest that, provided implementations on NetSCSI and NASD
have operation costs similar to those in Table 6, NetSCSI provides
limited benefit to existing distributed file systems (a factor of
about 1.5 improvement). In contrast, NASD promises substantially
lower file manager costs per client (factors of up to ten for NFS
and up to five for AFS).

From Figure 7, it appears that each data point required less
than 60 seconds of file manager CPU, the amount available in
these one minute replay experiments. However, when CPU satura-
tion of the manager slows the generation of trace events, it causes
the replay to run longer than 60 seconds. For NFS, replay overrun
occurs with 80 or more client-minutes in SAD and NetSCSI and
does not occur in NASD. For AFS, this overrun occurs with 25 or
more client-minutes in SAD, 50 or more client-minutes in
NetSCSI and 120 or more client-minutes in NASD. AFS suffers

Figure 6: Mean and 90% confidence intervals according to the analytic model described in Section 5 applied to the five randomly selected samples ofm
client-minutes constructed for the replay experiment.

SAD

NetSCSI

NASD

10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

30

35

40

45

50

Number of Client−Minutes

T
ot

al
 S

er
ve

r
W

or
k

(C
P

U
 s

ec
on

ds
)

File Manager Scalability − Anayltic Results (NFS Traces)

SAD

NetSCSI

NASD

0 20 40 60 80 100 120

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Number of Client−Minutes

T
ot

al
 S

er
ve

r
W

or
k

(C
P

U
 s

ec
on

ds
)

File Manager Scalability − Anayltic Results (AFS Traces)

Figure 7. Mean and 90% confidence intervals of measured load for NFS and AFS replay experiments for five samples ofm client-minutes.

The file manager was a DEC 3000/500 (150 MHz, 128 MB of memory, Digital UNIX 3.2g) with five fast wide differential SCSI busses, each with four HP
C2247 disks. To balance I/O, we stripe data across the twenty disks using a 64KB stripe unit. The replay hosts were ten DEC AlphaStation 255, 3000/400,
and 3000/600 workstations interconnected by a switched OC-3 ATM network (NFS replay used up to eight additional machines connected via Ethernet).

Prior to replaying a set of client-minutes, we build a filesystem which allows the clients to access files touched in those client-minutes (the original file
system hierarchy was not collected with the traces). We create the correct number of files, sizing each file heuristically as the largest offset accessed in the
trace. In NFS replay, each replay host was responsible forc (=5) client-minutes. Therefore, the number of replay hosts,h, varied with the number of
client-minutes replayed. In AFS replay, the client-minutes were always evenly divided amongsth (=10) replay hosts.

SAD

NetSCSI

NASD

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

Number of Client−Minutes

S
er

ve
r

C
P

U
 W

or
k

(s
ec

on
ds

)

File Manager Scalability − Replay Results (NFS Traces)

SAD

NetSCSI

NASD

10 20 30 40 50 60 70 80 90 100 110 120

0

10

20

30

40

50

60

70

80

90

Number of Client−Minutes

S
er

ve
r

C
P

U
 W

or
k

(s
ec

on
ds

)

File Mananger Scalability − Replay Results (AFS Traces)

11

more from this effect because its file manager is user-level with
only one kernel thread — the entire file manager blocks on every
disk access (NFS is in-kernel and the file manager has sixteen
threads at its disposal).

6.3 Cache Effects
A limitation of the results in Figure 7 relates to our handling

of file manager cache state. The use of samples constructed from
random, busy one-minute intervals makes it difficult to determine
what constitutes a realistic initial state for the data and metadata
caches. Because a cache miss induces more file manager work
than a cache hit, biases which increase misses also increase work.
Further, because the file manager work in SAD, NetSCSI and
NASD differs, with far fewer cache accesses done by NetSCSI and
NASD, it is reasonable to expect that SAD file manager work is
over-estimated more by excess misses than the other cases.

For this reason we should have run all workloads with warm
caches, biasing in favor of SAD file managers. Unfortunately, our
ability to control cache contents carefully was best when using
cold caches.4 Therefore, to bound the bias against SAD, we ran a
simple experiment. For NFS’s 10 and 20 client-minute workloads,
the entire set of data accessed during those client-minutes fits in
the file manager’s buffer cache. This allowed us to perform the
NFS replay with an initially cold data cache, then repeat the same
replay without flushing the contents of the cache (thus starting
from an optimally-warmed cache, containing all the data which
will be accessed in the second run). In this case, the CPU load on
the file manager in SAD decreased by 10-18%, which we take as
the upper bound on the effect of warm versus cold data caches on
the CPU load of a SAD file manager. To restate, Figure 7 may
falsely penalize SAD performance by up to 18% because of cold
data caches during replay.

7 Conclusion and Future Directions

Network-attached storage, by enabling direct transfers
between client and storage, can substantially increase distributed
file system scalability while simultaneously enabling striped stor-
age to satisfy the bursty, high-bandwidth demands of the increas-
ingly high-performance clients populating local area networks.
This promises benefits in a wide enough range of storage markets
and makes commodity network-attached storage feasible.

In this paper we have presented a simple classification of
storage architectures for distributed file systems with four models.
The traditional, server-attached disk (SAD) model is our base case.
Server-integrated (SID) disk systems, including specialized NFS
server products, are architecturally identical, but have hardware
and software designed specifically for file service. We do not
emphasize this model because it binds storage products to a partic-
ular choice of distributed file system.

The remaining two storage models exploit the potential of
network-attached storage. Network SCSI (NetSCSI) drives are
very similar to current SCSI disks in that all file requests go
through the file manager, but the resulting data transfers go
directly between client and drive. This may reduce file manager
workload during busy periods by about 30%. Different security
models can be provided using NetSCSI depending on the crypto-
graphic support provided in the drive.

4Even here our control was incomplete; NFS used a cold data cache, but a
warm metadata cache. AFS uses both cold data and metadata caches.

Network-attached secure disks (NASD) support storage
semantics at a level between that of block-level protocols like
SCSI and distributed file systems like NFS and AFS. The parti-
tioning of file system functionality between NASD drive and file
manager is optimized to reduce file manager load while maintain-
ing system flexibility. To operate securely in the face of this parti-
tion, NASD drives rely on cryptographic support for security and
authorization. Our studies show that, by offloading data read and
write and attribute and directory read operations, distributed file
system server load during busy periods may be reduced by a factor
of fourteen (NFS) and three (AFS) in the analytic model, and up to
ten (NFS) and five (AFS) in the replay experiments.

Our analysis focuses on describing the distinct methods of
organizing storage architecture and estimating the potential
improvement each promises for existing distributed file systems.
With the positive results given here, our future directions are clear.
We plan to demonstrate that distributed file systems can be imple-
mented around network-attached storage, preserving powerful
security models and yielding considerable scalability and client
performance advantages. Along this path, many open questions
remain. Our NASD model, in particular, expects a disk drive to be
capable of computation not normally associated with cost-sensi-
tive commodity peripherals; drive micro-architectures and soft-
ware structures must be developed and demonstrated.

Further, NASD’s out-of-datapath file manager does not natu-
rally provide the server caching found in traditional systems which
store-and-forward data through the server. We must evaluate the
penalty of distributing the caches among storage. This penalty may
be mitigated if storage objects are striped over drives because
striping inherently eliminates hotspots [Livny87]. On the other
hand, server caching is significantly less important to performance
than client caching and becomes less important still with coopera-
tive caching in idle clients [Dahlin94, Feeley95] and aggressive
prefetching by clients [Patterson95, Cao95].

Finally, in the NASD models presented, we assume that cli-
ents “open” files by contacting the distributed file system server
one file at a time to set up the state needed for direct transfers to
and from storage and allow the file manager to handle consistency.
A clear improvement, similar to the effect of client caching in
AFS, might be provided by pre-authorization or group-authoriza-
tion schemes.

8 Acknowledgments

We would like to thank Michael Dahlin from Berkeley for
providing us their NFS traces and helping us understand some of
the details. We thank Doug Tygar for his comments. We would
also like to thank all of the members of the Parallel Data Lab who
allowed us to trace their AFS accesses over the course of several
months and provided much helpful feedback on the ideas and
experiments presented here. Finally, we thank the anonymous
reviewers for their helpful comments.

9 Bibliography

[Anderson91]Anderson, T.E. et al., “The Interaction of Architec-
ture and Operating System Design,” 4th ASPLOS,
Sept. 1991.

[Anderson95]Anderson, D. (Seagate Technology), Personal com-
munication, 1995.

[ANSI86]ANSI, “Small Computer System Interface (SCSI) Speci-
fication”, ANSI X3.131-1986, 1986.

12

[ANSI95]ANSI, “SCSI-3 Fast-20 Parallel Interface”,
X3T10/1047D Working Group, Revision 6.

[Arnould89]Arnould, E.A. et al., “The Design of Nectar: A Net-
work Backplane for Heterogeneous Multicomputers”,
3rd ASPLOS, April 1989, pp. 205-216.

[Baker91]Baker, M.G. et al., “Measurements of a Distributed File
System”, 13th SOSP, Oct. 1991, pp. 198-212.

[Benner96]Benner, A.F., “Fibre Channel: Gigabit Communica-
tions and I/O for Computer Networks”, McGraw Hill,
New York, 1996.

[Berdahl95]Berdahl, L., Draft of “Parallel Transport Protocol Pro-
posal”, Lawrence Livermore National Labs, January 3, 1995.

[Birrell80]Birrell, A.D. and Needham, R.M., “A Universal File
Server”, IEEE Transactions on Software Engineering SE-6,5,
Sept. 1980.

[Boden95]Boden, N.J. et al, “Myrinet: A Gigabit-per-Second
Local Area Network”, IEEE Micro, Feb. 1995.

[Brustoloni96] Brustoloni, G. and Steenkiste, P., “Effects of Buff-
ering Semantics on I/O Performance,” 2nd OSDI, Oct. 1996.

[Cao95]Cao, P. et al., “A Study of Integrated Prefetching and
Caching Strategies,” SIGMETICS 95, May 1995.

[Chen90]Chen, P.M. et al., “An evaluation of Redundant Arrays of
Disks using an Amdahl 5890,” SIGMETRICS 90, 1990.

[Chen93]Chen, J.B. and Bershad, B., “The Impact of Operating
System Structure on Memory System Performance,”
14th SOSP, Dec. 1993, pp. 120-133.

[Clark89]Clark, D.D. et al., “An Analysis of TCP Processing
Overhead,” IEEE Communications 27,6 (June 89), pp. 23-36.

[Cooper90]Cooper, E., et al., “Host Interface Design for ATM
LANs”, 16th Conference on Local Computer Networks,
Oct. 1991, pp. 247-258.

[Dahlin94]Dahlin, M. et al., “Cooperative Caching: Using Remote
Client Memory to Improve File System Performance,” First
OSDI, pp. 267-280, Nov. 1994.

[Dahlin95]Dahlin, M.D. et al., “A Quantitative Analysis of Cache
Policies for Scalable Network File Systems”, 15th SOSP,
Dec. 1995.

[deJong93]deJonge, W., Kaashoek, M.F. and Hsieh, W.C., “The
Logical Disk: A New Approach to Improving File Systems,”
14th SOSP, Dec. 1993.

[Drapeau94]Drapeau, A.L. et al., “RAID-II: A High-Bandwidth
Network File Server”, 21st ISCA, 1994, pp. 234-244.

[Druschel93]Druschel, P. and Peterson, L.L., “Fbufs: A High-
Bandwidth Cross-Domain Transfer Facility”, 14th SOSP,
Dec. 1993, pp. 189-202.

[Feeley95]Feeley, M. J. et al., “Implementing global memory man-
agement in a workstation cluster,” 15th SOSP, Dec. 1995.

[Gibson92]Gibson, G., “Redundant Disk Arrays: Reliable, Parallel
Secondary Storage,” MIT Press, 1992.

[Gobioff96]Gobioff, H. et al., “Security for Network-Attached
Storage Devices,” CMU-CS-96-179, 1996.

[Golding95]Golding, R., et al., “Attribute-managed storage,”
Workshop on Modeling and Specification of I/O, San Anto-
nio, TX, Oct. 1995.

[Grochowski96]Grochowski, E.G., Hoyt, R.F., “Future Trends in
Hard Disk Drives,” IEEE Transactions on Magnetics 32, 3
(May 1996), pp. 1850-1854.

[Hartman93]Hartman, J.H. and Ousterhout, J.K., “The Zebra
Striped Network File System”, 14th SOSP, Dec. 1993.

[Hitz90]Hitz, D. et al., “Using UNIX as One Component of a
Lightweight Distributed Kernel for Multiprocessor File Serv-
ers”, Winter 1990 USENIX, pp. 285-295.

[Hitz94]Hitz, D., Lau, J. and Malcolm, M. “File Systems Design
for an NFS File Server Appliance”, Winter 1994 USENIX,
Jan. 1994.

[Horst95]Horst, R.W., “TNet: A Reliable System Area Network”,
IEEE Micro, Feb. 1995.

[Howard88]Howard, J.H. et al., “Scale and Performance in a Dis-
tributed File System”, ACM TOCS 6, 1, Feb. 1988, pp. 51-81.

[IEEE92]IEEE, “Scalable Coherent Interconnect”, Standard 1596-
1992, 1992.

[IEEE94]IEEE P1244. “Reference Model for Open Storage Sys-
tems Interconnection-Mass Storage System Reference Model
Version 5”, Sept. 1995.

[Katz92]Katz, R.H., “High-Performance Network- and Channel-
Attached Storage”, Proceedings of the IEEE 80,8, Aug. 1992.

[Kim86]Kim, M.Y., “Synchronized disk interleaving”, IEEE
Transactions on Computers C-35, 11, Nov. 1986.

[Kronenberg86]Kronenberg, N.P. et al., “VAXClusters: A closely-
coupled distributed system”, ACM TOCS 4,2, May 1986,
pp. 130-146.

[Lee95]Lee, E.K., “Highly-Available, Scalable Network Storage”,
Spring 1995 COMPCON, Mar. 1995.

[Livny87]Livny, M., “Multi-disk management algorithms”, SIG-
METRICS 87, May 1987.

[Long94]Long, D.D.E., Montague, B.R., and Cabrera, L.,
“Swift/RAID: A Distributed RAID System,” Computing
Systems 7,3, Summer 1994.

[Ma96]Ma, Q., Steenkiste, P., and Zhang, H., “Routing High-
Bandwidth Traffic in Max-Min Fair Share Networks,” SIG-
COMM 96, Aug. 1996.

[Maeda93]Maeda, C., and Bershad, B., “Protocol Service Decom-
position for High-Performance Networking”, 14th SOSP,
Dec. 1993, pp. 244-255.

[Massiglia94]Massiglia, P., ed., “The RAIDbook”, RAID Advi-
sory Board, 1994.

[Menascé96]Menascé, D.A., et al., “An Analytic Model of Hierar-
chical Mass Storage Systems with Network-Attached Storage
Devices,” SIGMETRICS 96, May 1996.

[Miller88]Miller, S.W., “A Reference Model for Mass Storage
Systems”, Advances in Computers 27, 1988, pp. 157-210.

[Minshall94]Minshall, G., Major, D., and Powell, K., “An Over-
view of the NetWare Operating System”, Winter 1994
USENIX, 1994.

[National96]National Semiconductor. “The PersonaCard 100 Data
Security Card,” http://www.ipsecure.com/htm/persona.html.

[Nelson88]Nelson, M.N., Welch, B.B. and Ousterhout, J.K.,
“Caching in the Sprite Network File System”, ACM
TOCS 6,1, Feb. 1988, pp. 134-154.

[NIST94]National Institute of Standards and Technology, “Digital
Signature Standard.” NIST FIPS Pub 186.

[NIST94a]National Institute of Standards and Technology, ”Secu-
rity Requirements for Cryptographic Modules”, NIST
FIPS 140-1.

[Ousterhout85]Ousterhout, J.K. et al., “A Trace-Driven Analysis
of the UNIX 4.2 BSD File System”, 10th SOSP, Dec. 1985.

[Ousterhout91]Ousterhout, J.K., “Why Aren’t Operating Systems
Getting Faster As Fast As Hardware?”, Summer 1991
USENIX, June 1991, pp. 247-256.

[Patterson88]Patterson, D.A., Gibson, G. and Katz, R.H., “A Case
for Redundant Arrays of Inexpensive Disks (RAID)”, SIG-
MOD 88, June 1988, pp. 109-116.

[Patterson95]Patterson, R.H. et al., “Informed Prefetching and
Caching”, 15th SOSP, 1995.

[Rambus92]Rambus Inc., “Rambus Architectural Overview”,
1992. http://www.rambus.com.

[Riedel96]Riedel, E. and Gibson, G. “Understanding Customer
Dissatisfaction With Underutilized Distributed File Servers”,
5th Goddard Conference on Mass Storage Systems and Tech-
nologies, College Park, MD, Sept. 1996.

13

[Ruemmler91]Ruemmler, C. and Wilkes, J., “Disk Shuffling”,
Hewlett-Packard Laboratories Concurrent Systems Project
Tech Report HPL-CSP-91-30.

[Sachs94]Sachs, M.W., Leff, A., and Sevigny, D., “LAN and I/O
Convergence: A Survey of the Issues”, IEEE Computer, Dec.
1994. pp. 24-32.

[Sandberg85]Sandberg, R. et al., “Design and Implementation of
the Sun Network Filesystem”, Summer 1985 USENIX, June
1985, pp. 119-130.

[Seagate96]Seagate Corporation, “Barracuda Family Product Brief
(ST19171)”, 1996.

[Siu95]Siu, K.-Y. and Jain, R. “A brief overview of ATM: Protocol
layers, LAN emulation and traffic management”, ACM SIG-
COMM, Vol 25,2, Dec. 1994, pp. 69-79.

[Srivastava94]Srivastava, A., and Eustace, A., “ATOM: A system
for building customized program analysis tools”, WRL Tech-
nical Report TN-41, 1994.

[StorageTek94]Storage Technology Corporation, “Iceberg 9200
Storage System: Introduction”, STK Part Number
307406101, Storage Technology Corporation, 1994.

[Steenkiste94]Steenkiste, P., “A Systematic Approach to Host
Interface Design for High-Speed Networks”, IEEE Computer,
Mar. 1994.

[Traw95]Traw, C.B.S. and Smith, J.M., “Striping Within the Net-
work Subsystem”, IEEE Network, Jul./Aug. 1995.

[Tygar95]Tygar, J.D., and Yee, B.S., “Secure Coprocessors in
Electronic Commerce Applications,” 1995 USENIX Elec-
tronic Commerce Workshop, 1995, New York.

[VanMeter96]Van Meter, R., “A Brief Survey Of Current Work on
Network Attached Peripherals (Extended Abstract)”, Operat-
ing Systems Review 30,1, Jan. 1996.

[VanMeter96a]Van Meter, R., Holtz, S., and Finn G., “Derived
Virtual Devices: A Secure Distributed File System Mecha-
nism”, 5th Goddard Conference on Mass Storage Systems
and Technologies”, College Park, MD, Sept. 1996.

[Varma95]Varma, A. and Jacobson, Q., “Destage Algorithms for
Disk Arrays with Non-volatile Caches”, 22nd ISCA, 1995.

[vonEicken92]von Eicken, T. et al., “Active Messages: A Mecha-
nism for Integrated Communication and Computation”,
19th ISCA, May 1992, pp. 256-266.

[Watson95]Watson, R.W., and Coyne, R.A., “The Parallel I/O
Architecture of the High-Performance Storage System
(HPSS),” 14th IEEE Symposium on Mass Storage Systems,
Sept. 1995, pp. 27-44.

[Weingart87]Weingart, S.H., “Physical Security of theµABYSS
System”, IEEE Computer Society Conference on Security
and Privacy, 1987, pp. 52-58.

[White87]White, S.R. and Comerford, L., “ABYSS: A Trusted
Architecture for Software Protection”, IEEE Computer Soci-
ety Conference on Security and Privacy, 1987, pp. 38-51.

[Wilkes95]Wilkes, J. et al., “The HP AutoRAID Hierarchical Stor-
age System”, 15th SOSP, Dec. 1995.

[Wiltzius95]Wiltzius, D. et al., “Network-attached peripherals for
HPSS/SIOF”, http://www.llnl.gov/liv_comp/siof/siof_nap.

