

stems.
 share
 clients
ystems
r as a
eed and
se are
ing at
and dis-
nd scal-

w,
d usu-
 roles

ndary
ondary
 certain

files to
 look up
system
phys-

le
ise that

tributed

ions

am-
ystem
sensus
A Look at Modern File Systems

Mark Abbott, Yunfeng Fei, and Nadya Williams
CSE 221

November 30, 1999

Introduction
In recent years, a great deal of work has been done on distributed and parallel file sy

Although the motivations behind these two types of file systems are quite different, they
many underlying characteristics and techniques. Distributed file systems need to provide
with efficient, usable, and scalable high-bandwidth access to stored data. Parallel file s
have a somewhat more straightforward goal: to allow multiple processes working togethe
single task force to access a shared file or files in parallel. In these specialized systems, sp
scalability are the most important considerations, while issues like portability and ease of u
secondary. This paper will examine eight modern distributed and parallel file systems, look
the design principles and goals behind each, their actual implementations, the advantages
advantages each entails, the innovations each system introduces, and the performance a
ability each offers. The paper concludes with a brief comparison of these systems.

1. xFS

Design principles and goals. The overriding goal behind xFS is scalability. In the authors’ vie
the way to achieve this is to do away with the central server, distributing all the tasks it woul
ally do. In xFS, each node of the distributed system can fill one or more of the various
required in a distributed file system, including storage server, client, or manager, a role which is
xFS’ principal means of distributing file system administration. xFS was designed with seco
goals as well. Reliability was one factor, as evinced by its use of RAIDs. Some other sec
goals, such as graceful crash recovery and dynamic load rebalancing, are addressed by
unimplemented aspects of their design.

Architecture and Implementation. Each file’s metadata is maintained by metadata managers
that are distributed throughout the system. xFS uses a policy called First Writer to assign
managers. Each manager maintains an imap; once the manager has been located, it can
the file’s metadata in this imap, including the disk log address. xFS uses a log-based file
(LFS) which is stored on a RAID. The final map used to translate from file index number to
ical disk location is the stripe group map. The stripe group map performs the mapping of fi
index numbers onto stripe groups, giving the client access to a list of the disks that compr
stripe group. The stripe group map is small and static, and is distributed globally.

The task of cleaning the LFS to consolidate data and create empty segments is also dis
in the xFS design, though not yet implemented.

Advantages. The principal advantage of xFS is its scalability. All other design considerat
were subordinated to this.

Problems and Disadvantages. Some problems result from the lack of a central server. For ex
ple, there is more overhead and complexity in locating files than one would expect in a file s
with a central server. Also, xFS requires cumbersome mechanisms for reaching con
between multiple clients, such as the selection of a stripe group leader.
1

s must
. How-
s in the
 can serve

sist
ly used
pt of a

 NFS,
0 and

 vastly
id not
.

small
S per-

hmark

ors
o recon-
odular,
very,

gu-
Multi-
n time.
s in the

ver; (2)
m that

ces, the
server

e global
process.
ecovery
system
equenc-
even dur-

 autho-
ho are
 limits
Another group of problems relates to security. Since there is no central authority, xFS client
all be trusted and physically secure. In a sense, this imposes inherent limits on scalability
ever, it is also possible for a self-contained xFS to be used by remote, untrusted machine
same manner that remote machines can access an NFS. So as long as a centralized xFS
all the needs of the broader, untrusted community, security is not such an important issue.

Innovations. Aside from the notion of doing without the central server, xFS’ innovations con
mostly of refinements of existing ideas. For example, log-based file systems were previous
in Sprite, and combined with RAIDs in the Zebra file system, but xFS introduces the conce
manager map to distribute the administration of the LFS/RAID.

Performance. Each measurement of scalability-related performance was replicated on xFS,
and AFS (an implementation of the Andrew file system), on 32 machines (SPARCStation 1
20’s). In nearly every case, xFS performed poorly for small numbers of clients, but showed
superior performance for higher numbers of clients. The performance of NFS and AFS d
increase substantially with the number of clients, while xFS increased linearly in most tests

 Scalability. The initial set of performance tests involved large writes, large reads, and
writes. In each case, xFS’ aggregate bandwidth increased roughly linearly; at 32 clients, xF
formed an order of magnitude better than NFS or AFS. The results from the Andrew benc
show xFS finished 47% and 79% faster than NFS and AFS, respectively.

2. Calypso

Design Principles and Goals. Calypso is a distributed file system for UNIX clusters. The auth
describe the Calypso recovery scheme which uses states distributed among the clients t
struct the dynamic server state. The main goal is to achieve a non-disruptive, scalable, m
and very efficient file recovery system, while providing file server services. During the reco
data consistency is guaranteed, and congestion control is provided.

Architecture and Implementation. The Calypso file system was implemented using a confi
ration of model 370 RISC System/6000 processors connected by a non-blocking switch.
ported disks were attached to at least two nodes, but only one port was active at any give
Each file system includes several clients and one server. There are three distinct subsystem
Calypso file system: (1) the token manager that consists of the token clients and token ser
the virtual file system, including of data clients and servers; (3) the communication subsyste
provides remote services.

The Calypso recovery system consists of four separate subsystems - the group servi
recovery controller, the congestion controller, and the client state transfer functions and
state reconstruction functions. The group services include the node status service and th
mount. The node status service detects failed nodes and instantiates a recovery controller
This process uses the global mount service to determine which node has failed and what r
is needed. The global mount service maintains the required and actual status of file
mounts, client lists, and server and backup nodes. The recovery controller does its job by s
ing through three recovery phases. The separation of phases ensures cache consistency
ing recovery.

Advantages. Calypso uses six token types to denote access to various parts of a file, and to
rize certain operations. A client requesting a token has to communicate with other clients w
holding this token to have the token released. This unconventional client-centric approach
2

r disk.
ent and

ndancy

rom
to flush
ults in

es or
ent of a
ver the

ark the
ecovery
ion times
and the

Con-
 mea-
icating

ica-
 a dif-
n in a

re
.

. It
e I/O

he data
O nodes
e, which

is also
hat the
 data by

le to
er node
l data.
out file
the number of messages at the server, and reduces server complexity.
Calypso offers a mount-time option that forces client cache flushes directly to the serve

The separation of the subsystems in the recovery system enhances software developm
maintenance providing the maximum modularity. Calypso uses inexpensive hardware redu
for data availability.

Problems and Disadvantages. Writing modified data to the server cache after being flushed f
the client cache can cause data loss during a server failure. Calypso offers an option
caches directly to the server disk, which increases disk utilization of the server and res
decreased performance.

Innovations. Only Calypso uses multi-ported disks to handle permanent processor failur
scheduled shutdown, resulting in a huge advantage in shortening recovery time. In the ev
server failure, the backup server that attaches to the multi-ported disks is able to take o
disks quickly and start functioning as the file server.

Performance. The authors stated that the goal of their measurements was not to benchm
recovery time, but to understand the performance characteristics and bottlenecks of the r
system. The result of the measurements shows that the JFS log-redo and state reconstruct
make up most of the total recovery time. Other results show that using a backup server
dual-ported external disks dramatically reduces the reboot time.

Scalability. The Calypso clients maintain the majority of the state information themselves.
ceptually, the state reconstruction time will increase linearly with the number of clients. The
surements show no exponential behavior for the tested configuration of up to 32 clients, ind
fairly good scalability.

3. Vesta

Design Principles and Goals. The Vesta Parallel File System is intended for parallel appl
tions. Typically, such file systems achieve parallelism by placing each sequential block on
ferent disk. Vesta’s approach is different: it enables the user to specify how the informatio
file will be distributed by dividing a file into subfiles. The user can control how the subfiles a
laid out on the available disks through certain parameters supplied when the file is created

Architecture and implementation. Vesta was implemented on an IBM SP1 multicomputer
consists of two parts. Applications running on compute nodes use a client library, while th
nodes run a server. All metadata for a given file is stored on a single master I/O node. T
reside on multiple I/O nodes. The compute nodes sends messages to the appropriate I/
requesting the data, and the I/O nodes pack all requested data into a single reply messag
also serves as an acknowledgment.

Cooperating processes share data by using different subfiles within a file; however, it
possible to share a subfile by using a shared pointer. Since this is done without verifying t
read was successful, or that EOF was not reached, this method is not as reliable as sharing
using separate subfiles.

Advantages. Vesta provides control over the layout of subfiles. A compute node is ab
request file data in a single step, without directly accessing the file’s metadata. The mast
contains the file metadata and is responsible for tracking down and replying with the actua
The policy of not caching data on compute nodes means Vesta does not need to worry ab
3

k, it
unt of
Vesta’s
ult to
ove or

itional

he user

rements
peedup
uld cer-

ll. For

rce
e other

e of the
 to I/O

ul-
iverse

asis of
ies to

on-
ata and
s are
ple-

tate. The

ilding
n, and
 blocks
 using a
ning

ro-
consistency, or false sharing at the block level.

Problems and Disadvantages. Because of the unusual way in which it interlaces data on dis
is very difficult to interface Vesta with other file systems. The user must provide a fair amo
Vesta-specific information in order to take advantage of its parallel access. Because of
minimalist approach to metadata, there is no inode and thus no block list, making it diffic
determine where a file ends. The flat, non-hierarchical name space makes it difficult to rem
rename Xrefs (the equivalent of directories). The network traffic is increased through add
requests to I/O nodes.

Innovations. Vesta’s central innovation lies in what the authors refer to as its two-dimensional file
structure. Vesta presents the user with a grid of blocks, where the columns, called cells, corre-
spond to individual disks. A related idea is partitioning each file into subfiles. By providing
parameters which allow the user to change the layout of subfiles on the grid, Vesta allows t
to optimize performance by taking expected access patterns into account.

Performance. Performance measurements were based on the FastMeshSort. These measu
showed that speedup was proportional to the number of I/O nodes: using 8 I/O nodes, s
ranged from 4 to 7 times faster than a single node. The authors point out that speedup wo
tainly be best on I/O-intensive processes, of which FastMeshSort is an example.

Scalability. Vesta’s creators took a number of steps to ensure their system would scale we
example, they allow for a collective attach operation whereby a single process within a task fo
of parallel processes would attach to the files to be used and share their metadata with th
processes. The authors found that the bandwidth of the system scaled linearly with the siz
system, as long as the network itself was not overloaded and the ratio of compute nodes
nodes was held constant.

4. Hurricane File System (HFS)

Design Principles and Goals. The Hurricane File System was designed for shared-memory m
tiprocessors. The main goal was to optimize the performance of parallel applications with d
requirements. Files in HFS are implemented as building-block compositions. This is the b
the flexibility of the HFS, which allows the applications to customize file structure and polic
meet its requirements.

Architecture and Implementation. The work was done on a Hector multiprocessor that is c
structed from processing modules. Each module has a Motorola 88100 processor, 16Kb d
16 Kb instruction caches, and a local portion of globally addressable memory. HFS file
implemented by combining a set of building blocks into compositions. Building blocks are im
mented as objects that contain a state, and a set of operations that can manipulate the s
import and export interfaces specify the operations invoked by the building blocks.

Simple building blocks exist to store data on the disk, distribute data to the other bu
blocks, prefetch data into memory, enforce security, provide compression/decompressio
interact with the memory manager to cache file data. Blocks can be exchanged, and new
can be created. Using many fine-grained building blocks rather then a few large ones, and
larger number of building block types with the identical interfaces give more flexibility in defi
numerous compositions. HFS is logically divided into 3 layers:
• the application layer is implemented as an Alloc Stream Facility (ASF) I/O library, and p

vides most of the functionality in order to minimize the servers’ communication.
4

cally
ties.

vices,

ppli-
ted by

pplica-
on.

ture
ystem.
lack of

took

tem
uilding
 build-
S pro-
tem.

y, in

ws for
ss pat-
atching

ort all
, Vesta,

 give
. Frangi-
ication
 incre-
le sys-
d via a

ual
ots for
ration
to the

and the
• the physical layer implements files, and controls the physical disks on the system. Logi
this layer is below the memory manager, allowing the mapped file I/O to exploit its facili

• a logical layer connects the previous two, and provides the file system authentication ser
naming (directories), and locking.

Advantages. Flexibility is the main advantage of HFS. The building block approach gives a
cations the ability to customize both the file structure, and the file system policies implemen
all three layers of the HFS. The building blocks can be changed at run-time, allowing the a
tion to adapt to different access patterns dynamically during different phases of the executi

Problems and Disadvantages. Most of the basic operating system, and hardware infrastruc
had to be developed from scratch. Test experiments were limited by the small size of the s
Particular characteristics of the Hector multiprocessor, such as slow memory system and
cache coherence, decrease HFS’ performance.

Innovations. The building-block composition of the HFS structure is unique. The authors
what they called a holistic view of the file system, meaning that they considered all the sys
servers and parts that affect the I/O performance together, instead of one by one. The b
blocks are stored in a regular file, and the file is stored on disk. This allows HFS to colocate
ing blocks and their associated data, and store blocks redundantly for fault tolerance. HF
vides a single consistent technique for customized functionality at all three levels of the sys

Performance. Using building block compositions resulted in greatly reduced code complexit
easy porting, and in substantial performance improvements. For example, UNIX diff runs four
times faster using ASF than using the native stdio library on an AIX system. It takes only a few
seconds to do a crash recovery. The variety of possible building block compositions allo
prefetching, locking, and file cache management policies to match the applications’ acce
terns. HFS can deliver 100% of the disk bandwidth to the application address space by m
the application’s access pattern with the file structure, and policies.

Scalability. The current implementation of HFS supports or can be easily extended to supp
the currently existing policies used by other parallel file systems such as CFS, sfs, PIOFS
and xFS.

5. Frangipani

Design Principles and Goals. The designers wished to create a scalable system that would
its users a shared access to all files, and provide more storage and increased performance
pani is a two-layer system that runs on a cluster of trusted machines with secure commun
under common administration. The lower layer is a distributed storage service that provides
mentally scalable, automatically managed virtual disks. The upper layer is the Frangipani fi
tem, which is run by multiple machines on top of a Petal virtual disk. Coherence is ensure
distributed lock service.

Architecture and Implementation. Frangipani is a layer on top of Petal that provides a virt
disk to all clients. Petal can replicate data for high availability, and it gives system snapsh
efficient backups. Most of Frangipani’s scalability, fault tolerance, and ease of administ
comes from the underlying Petal layer, with careful design extending these properties in
upper layer. Frangipani was implemented under DIGITAL Unix 4.0.

The distributed components of Frangipani are the lock servers, the Frangipani servers,
5

n many
ace. All
rate logs
cess the

 access

ery,
 addi-
ile the

el buffer

rtual
rity has
wing a

ltiple
red scal-
i can
ystem

ecov-
d server
t com-
ncrease
 and

 File
recto-

 addi-
nd six

g an
ism for
le sys-
ed with-

th

x
Catcher

s-by-
Petal servers. They provide different functions that can be assigned to different machines i
ways. Users programs access Frangipani through a standard operating system call interf
the file servers read and write the same structures on the shared Petal disk but keep sepa
of pending changes in Petal. When the Frangipani server crashes, another server can ac
log and run recovery while the rest of the system is running. Frangipani provides coherent
to the same files across multiple machines.

Advantages. The simplicity of the internal structure allows the handling of system recov
reconfiguration, and load balancing with very little additional hardware. Server deletion and
tion provide for load balancing and scaling. Frangipani can create consistent backups wh
system is running, and the lock service coordinates virtual disk access, and keeps the kern
caches coherent across multiple servers.

Problems and Disadvantages. Since any Frangipani machine can read and write the Petal vi
disk, Frangipani must run only on machines that have trusted operating systems. Full secu
not been implemented yet. The minimal level of security that does exist is achieved by allo
remote untrusted Frangipani client machine to connect to a Frangipani server machine.

Innovations. Frangipani is a new system in that it manages a collection of disks on mu
machines as a single shared pool of storage. The shared physical disk is replaced by a sha
able virtual disk provided by Petal. This logical disk layer provides redundancy. Frangipan
dynamically alter its configuration to include new nodes, or remove failed ones. Thus the s
remains available when some components fail.

Performance. Frangipani uses write-ahead redo logging of metadata that simplifies failure r
ery and improves performance. When the system detects a crashed server, it gives the faile
log to a recovery daemon. Lock service consists of a set of mutually cooperating locks tha
municate via asynchronous messages to minimize the amount of memory used and to i
flexibility and performance. The lock service is fully distributed to achieve fault tolerance
scalable performance.

The performance of a single Frangipani server was compared to DIGITAL’s Advance
System (AdvFS). AdvFS and Frangipani perform similarly when reading small files, and di
ries. For large files, Frangipani has a good read and write throughput

Scalability. Frangipani has excellent single-server performance and can be scaled well with
tion of new servers. Its scalability was tested with a configuration of seven Petal servers a
Frangipani servers.

6. Ufo

Design Principles and Goals. In this article, the authors present a new method for extendin
existing operating system at the user level. Their primary goal was to create a mechan
accessing files on multiple networked machines. The authors wished to implement their fi
tem at the user level, so it could be used only by users who needed it, and installed and us
out need for root access.

Architecture and Implementation. Ufo is implemented on a SUN Ultra 1 workstation wi
64Mb of RAM, under Solaris 2.5.1. It works using a Catcher tool. The Catcher extends a Uni
operating system at the user level, by catching and modifying selected system calls. The
works by monitoring the /proc virtual file system. The Catcher can be attached on a proces
6

cal or
 to see
ts. If no

 modi-
ber of

er pro-
e idea is
 several
tached

 Ufo’s
er pro-

efine an
).

-level
changes

er, for
applica-
cesses
rmance
sers of

e the

iety of

ld be

s to
o find
nt and
ased
hierar-
nd con-

m
mpse
allows
process basis, or it can be attached dynamically, to an already-running process.
Ufo captures all open system calls via the Catcher, and parses them to see if they are lo

remote. Local opens go through untouched. If a remote file is being opened, Ufo checks
whether there is a local cached copy, using a cache consistency protocol based on timeou
local copy exists, Ufo retrieves the entire file from the remote site. In either case, Ufo then
fies the system call to open the local copy. Ufo uses write-back caching to minimize the num
times a file being written must be transferred back to its source.

Advantages. The primary benefits are ease of use and flexibility. Because Ufo runs as a us
cess, it can be installed, and used without root access. This is an important issue, since th
to make user’s remote files transparent while using machines which may be spread over
institutions, machines over which the user has no authority. Furthermore, Ufo can be at
only to those processes which need it, when they need it.

Problems and Disadvantages. The Catcher is not able to control setuid programs. This is a
minor problem, since the few programs that are installed as setuid generally would not use
remote file access. The Catcher is vulnerable to a SIGKILL signal: because it runs as a us
cess, it can be killed. The timeout mechanism for cache consistency relies on the user to d
appropriate tradeoff between performance (long timeouts) and consistency (short timeouts

Innovations. The major innovations involve ease of installation and use: Ufo runs as a user
process, and it requires no changes to the underlying operating system, nor does it require
or additions to existing libraries.

Performance. When using the Catcher and Ufo, individual open, close, stat and getpid system
calls are very expensive. For IO-intensive applications, this is a crippling slowdown. Howev
most applications, the overhead becomes reasonable when amortized over the life of the
tion, within a range of 5-29%. In addition, because Ufo can be applied only to those pro
which need it, the overhead is not applied globally to all processes. Furthermore, the perfo
hit affects only the user who runs an application under Ufo, and is not incurred by other u
the system.

Scalability. It is unclear to what extent the notion of scalability applies to this system, sinc
model is a user at a single machine accessing any number of machines worldwide via a var
protocols. If the only criteria for scalability is that the number of machines accessed shou
able to grow without affecting performance, Ufo would seem to have achieved it.

7. Hierarchy and Content (HAC)

Design Principles and Goals. HAC is a new file system intended to provide convenient acces
vast amounts of information. The benefit of this file system is that it allows the user both t
the right information, and to transfer the needed data quickly. The main goal is convenie
intuitive integration of information. The HAC file system combines the traditional name-b
hierarchical file system and a content-based semantic file system. While the full power of
chical systems is preserved, additional control-based access (CBA) can be maintained a
trolled by the user.

Architecture and Implementation. The authors implemented HAC on top of a UNIX file syste
(SunOS) using Glimpse as the default CBA mechanism. HAC interacts with UNIX and Gli
using APIs. Both syntactic and semantic directories coexist in the same file system. This
7

cess the
s pro-

the set
atisfy
ed using
ic links
lem by
rs to

ically
 prob-

f the

using a
s of a
es the

gular
 shows
s, and
er than
se. The
 search
er num-
onsider-
ccess to
number

nd is

is a
egular
ralizing
r.

er,
P 735/
nager
le Reli-
ntees
users to define their own personal name spaces, and intercept all file system calls that ac
directory or its contents, providing a transparent interface to all applications. The command
vided by HAC to manipulate queries and semantic directories are very intuitive.

In HAC, every query and its corresponding semantic directory have a scope, which is
of files over which the query is evaluated. HAC creates symbolic links to all the files that s
the query. HAC allows users to edit the results of queries, and tune these results as need
semantic directories. A data-inconsistency problem arises when the set of transient symbol
does not match the current result of evaluating the associated query. HAC handles this prob
invoking the CBA mechanism to re-index the file system periodically. HAC also allows use
initiate re-indexing at any time, and for any part of the file system.

Advantages. HAC does not require a kernel modification. It was implemented as a dynam
linked library, which makes it easier to use and port. The handling of the data-inconsistency
lem described above is a major contribution of this file system.

Problems and Disadvantages. There is a performance penalty due to the large overhead o
HAC file system’s library calls.

Innovations. HAC file systems accomplish both name-based and content-based access by
radically different approach: it starts with a hierarchical naming system, adding the feature
content-based access (CBA) later. This gives users a lot of flexibility and power, and it mak
system easy and intuitive to use.

Performance. Two experiments were run to compare the performance of HAC to that of re
file systems. In the first experiment, the HAC was used the same way as UNIX. The result
that HAC incurs a great deal of overhead when creating new directories and coping file
somewhat less overhead when scanning and reading. Overall, HAC is about 46% slow
UNIX. The second experiment measured the speed of indexing and searching a databa
result of indexing shows HAC has a 27% time overhead, and 15% space overhead. The
result shows the overhead of creating a semantic directory in HAC decreases when a great
ber of files match the search query. The authors believe that the overhead is reasonable, c
ing that HAC creates and maintains additional data structures that provide content-based a
the files. The extra disk space required is N/8 bytes per semantic directory, where N is the
of indexed files.

Scalability. The implementation described in this article is suited for personal file systems, a
not scalable to very large file systems.

8. JetFile System

Design Principles and Goals. JetFile targets the demands of personal computing. JetFile
multicast-based distributed file system designed to efficiently handle the daily tasks of a r
user and to become an alternative to the local file system. The goal is realized by decent
most of the traditional file server responsibilities, turning every client into a file access serve

Architecture and Implementation. JetFile contains four distinct components - File Manag
Versioning Server, Storage Server, and Key Server. The prototype was implemented for H
99 model running HP-UX 9.05, connected to 10Mb/s Ethernet, and includes only the file ma
and versioning server. The communication among these components relies on the Scalab
able Multicast (SRM) paradigm. The SRM is logically layered above IP multicast, and guara
8

ving
etected

 imple-
ds and
 track
 JetFile
s in a

s. The
ntents.

van-
re is no
ffloads

rs. It is
elay/

ache
e aware
lticast
age a

 Reli-
mmu-
rnet or

arison
ches,
 in cer-
he tests
 a local

alizes
he scal-

radeoffs.
lity and
ing an
r end of
ialized
the eventual delivery of all data to all receivers. This minimal reliability is achieved by ha
each receiver responsible for detecting lost data and initiating repairs. The lost data is d
through the comparison of version numbers.

The file manager consists of a kernel module, and a user module. The kernel module
ments a new file system called YFS (Yet another File System). The YFS redirects rea
writes to this local file with almost no overhead. The user module is responsible for keeping
of the current version and state of locally created and cached files. The file name space in
is divided into volumes. The versioning server keeps track of the current version of all file
volume, and replies to requests for new version numbers.

The storage server is responsible for the long-term storage of files and backup function
key server stores and distributes cryptographic keys used for signing and encrypting file co
Neither of these two components is implemented in the prototype.

Advantages. Using multicast communication instead of unicast communication has the ad
tage of decentralizing server responsibilities. Since clients also serve as file servers, the
need to write the file data through the file cache, and over the network to the server. It o
both servers and network when a file is not actively shared.

The optimistic approach to file updates hides the effects of transmission delays and erro
a key factor in JetFile’s ability to work well over both long high-speed networks and high d
high loss wireless networks.

Problems and Disadvantages. Because JetFile takes a best-effort approach to maintain c
coherency, there is no guarantee that a call-back reaches all destinations. Clients may not b
of the cache invalidity for up to 30 seconds. JetFile requires file managers to join a mu
group for each file they actively use or server. This implies that routers will be forced to man
large multicast routing state.

Innovations. JetFile brings networking concepts such as IP multicast routing and Scalable
able Multicast (SRM) into the realm of the distributed file system. This technique keeps co
nication to a minimum and contributes to a scalable distributed file system across the Inte
large intranets.

Performance. Performance tests were conducted using the Andrew Benchmark. The comp
between the local HP-UX Unix File System (UFS) and the JetFile, running with hot ca
shows their performances are very similar in most phases. JetFile performs slightly better
tain phases because of the benefit of its asynchronous inode allocation. In summary, t
prove that the performance of JetFile with a warm cache is comparable to a performance of
file system.

Scalability. The use of scalable reliable multicast minimizes communication and decentr
server operations; by decreasing reliance on a single server, this dramatically increases t
ability of the JetFile system.

Summary
The papers considered here show a broad range of approaches and adopt a variety of t

One such tradeoff is between specialization and optimization on the one hand, and portabi
flexibility on the other. For example, Ufo implements transparent access to remote files us
easily-portable user-level layer, at the cost of a major decrease in performance; at the othe
the extreme, Vesta is optimized to perform high-speed parallel computing, but requires spec
9

 while
over-

 do not
 sum-
king a

 clients

 admin-
s to the
many
compo-

e sys-
he sys-

atever
tions to

t, only
y is the
asure-
riteria is
rs it is
server

, when
igners.
od basis

programs and writes to disk in a manner completely incompatible with other file systems,
HFS optimizes the file system for I/O-intensive parallel applications with little processing
head.

Since the presented file systems have different intended uses, and their design goals
match exactly, the file systems exhibit different properties. The overlap in the properties is
marized in Table 1. Most of the file systems employ layering as a valuable technique for ma
design modular, and thus easier to implement. Most systems scale well with a number of
or servers, making scalability their primary focus.

The papers present a variety of methods to ensure ease of recovery, configuration and
istration. Ease of administration comes mainly from systems that use user-level extension
existing OS. In terms of hardware, distributed server facilities provide data replication on
file systems, and on some guarantee that the whole system can run even after individual
nents fail.

Overall, less attention was paid to the issues of portability and security. For parallel fil
tems, security is not a major concern due to the specialized nature of these machines. T
tems that use a preexisting underlying kernel or file system generally just employ wh
security is already in place; this is possible because these designs did not opt for modifica
the kernel or system libraries.

Scalability and performance are the main driving forces behind all these designs. In fac
Ufo and HAC are not scalable in the usual sense of the term. In many systems, scalabilit
most important aspect of performance. Unfortunately, there is no single performance me
ment that can be used for comparisons across all of these systems. In some, the relevant c
how fast the system can recover from failure while providing access to the servers; in othe
disk access bandwidth; and in yet others it is an ability of a client to take over for a failed
while the server recovers from crash.

All systems either use a completely new approach to a particular part of the design or
built on top of existing systems, use them in a novel way, not intended by the original des
We believe that these papers present an interesting view of the current research, and a go
for further file system development.

Paper 1 2 3 4 5 6 7 8

Target PD,E C PA PA PD,E PD,E PC PC

Layering √ √ √ √ √
Security √ √ √ √

Scalability √ √ √ √ √ √
Data replication √ √ √ √ √
Easy recovery √ √ √ √ √

Easy reconfiguration √ √ √ √ √ √ √
Easy administration some √ √ √ √ √ √

Portability some √ √ some

Table 1: File systems properties. Notations: PA - parallel applications, PD - program development,

E - engineering, C - commercial use, PC - personal computing.
10

ew S.

r

tem.

sed on

le dis-

iples

 per-

rchical

emen-

distrib-

mple-

References

1. Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson, Dr
Roselli, and Randolph Y. Wang. Serverless network file systems. ACM Transactions on Compute
Systems, 14(1):41-79, February 1996.

2. Murthy Devarakonda, Bill Kish, and Ajay Mohindra. Recovery in the Calypso file sys
ACM Transactions on Computer Systems, 14(3):287-310, August 1996.

3. Peter F. Corbett, and Dror G. Feitelson. The Vesta parallel file system. ACM Transactions on
Computer Systems, 14(3):225-264, August 1996.

4. Orran Krieger, and Michael Stumm. HFS: a performance-oriented flexible file system ba
building-block compositions. ACM Transactions on Computer Systems, 15(3):286-321, August
1997.

5. Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani: a scalab
tributed file system. In Proceedings of the Sixteenth Symposium on Operating System Princ,
October 1997, 224-237.

6. Albert D. Alexandrov, Maximilian Ibel, Klaus E. Schauser, and Chris J. Scheiman. Ufo: a
sonal global file system based on user-level extensions to the operating system. ACM Transactions
on Computer Systems, 16(3):207-233, August 1998.

7. Burra Gopal, and Udi Manber. Integrating content-based access mechanisms with hiera
file systems. In Proceedings of the Third symposium on Operating Systems Design and Impl
tation, February 1999, New Orleans, LA USA, 265-278.

8. Björn Grönvall, Assar Westerlund, and Stephen Pink. The design of a multicast-based
uted file system. In Proceedings of the Third Symposium on Operating Systems Design and I
mentation, February 1999, New Orleans, LA USA, 251-264.
11

	A Look at Modern File Systems
	Introduction
	1. xFS
	Design principles and goals
	Architecture and Implementation
	Advantages
	Problems and Disadvantages
	Innovations
	Performance
	Scalability
	2. Calypso
	Design Principles and Goals
	Architecture and Implementation
	Advantages
	Problems and Disadvantages
	Innovations
	Performance
	Scalability
	3. Vesta
	Design Principles and Goals
	Architecture and implementation
	Advantages
	Problems and Disadvantages
	Innovations
	Performance
	Scalability
	4. Hurricane File System (HFS)
	Design Principles and Goals
	Architecture and Implementation
	Advantages
	Problems and Disadvantages
	Innovations
	Performance
	Scalability
	5. Frangipani
	Design Principles and Goals
	Architecture and Implementation
	Advantages
	Problems and Disadvantages
	Innovations
	Performance
	Scalability
	6. Ufo
	Design Principles and Goals
	Architecture and Implementation
	Advantages
	Problems and Disadvantages
	Innovations
	Performance
	Scalability
	7. Hierarchy and Content (HAC)
	Design Principles and Goals
	Architecture and Implementation
	Advantages
	Problems and Disadvantages
	Innovations
	Performance
	Scalability
	8. JetFile System
	Design Principles and Goals
	Architecture and Implementation
	Advantages
	Problems and Disadvantages
	Innovations
	Performance
	Scalability
	Summary
	Table 1: File systems properties. Notations: PA - parallel applications, PD - program development...

	References

