
Process Communication on Clusters

Sultan Al-Muhammadi, Peter Petrov, Ju Wang, Bogdan Warinschi

November 21, 1998

Abstract

Clusters of computers promise to be the super-

computers of the future. Traditional mechanisms

(in particular communication support) are not

suitable anymore. Recent research was directed

towards developing thin communication layers

that exploit the new features of the hardware and

that provides to the upper level up to 90% from

the underlying hardware capability. Common

mechanisms to di�erent approaches include ker-

nel bypassing and \0 copies" memory transfers.

Several projects dealing with associated problems

exists. We survey four of them.

Keywords: Cluster, communication, network-

ing

1 Introduction

A "Cluster" is a set of high speed PCs or work-
stations, interconnected with high-speed net-
work. With the advance of low-cost computing
technology, clusters of PCs and workstations be-
come an attractive alternative to massively par-
allel processor (MPPs) architectures. Since the
computing power of clusters is comparable to
MPPs, while the cost of the system is much in-
expensive, clusters are today's preferred imple-
mentation of distributed-memory MPPs. Such
clusters can be expanded and upgraded incre-
mentally as new technology becomes available.

However, a cluster is more than a collection of
high performance computing nodes. The impor-
tant issue here is the way its component parts are
integrated. A challenge in building scalable sys-
tems using networks of commodity components
is to achieve communication performance com-

petitive with or better than custom-designed sys-
tems.

The network hardware itself is not the bot-
tleneck anymore. The new high-speed Local
Area Networks (LANs) available today (ATM,
FDDI, Fibrechannel and Myrinet) o�er compa-
rable hardware latency and bandwidth to the
proprietary interconnect found on MPPs. But
these new hardware technologies are only part of
the whole picture. Providing performance to ap-
plications requires communication software and
operating system support capable of delivering
the network performance. Fast network hard-
ware alone is not su�cient to speed up com-
munication. The software overhead becomes the
dominant factor in communication, and simulta-
neously, an important factor of the overall per-
formance of clusters.

Several current research projects are aimed at
reducing the software overhead in communica-
tion, in order to deliver the high performance
the hardware provides to user applications. In
this paper, we will survey four leading projects in
this area. They are Active Messages (AM) in UC
Berkeley, Fast Messages in UIUC/UCSD, U-Net
in Cornell University and VMMC in Princeton
University.

The common approach is to move the commu-
nication layer into user-space in order to mini-
mize the software overhead. However, di�erent
schemes to further reduce the communication
overhead are used and dei�erent approaches in
resource management are employed. Comparing
these approacehs could prove useful.

The structure of the paper is as follows. In
Section 2 we present the key issues in process
communication; the projects are introduced in

1



Section 3; in Section 4 we will attempt a discus-
sion of the four approaches. The paper ends with
a Conclusion(Section 5).

2 Issues in Communication

In the sequel we will give a short overview of
what we consider to be some of the most impor-
tant issues in process communication.

Communication protocol In \traditional"
systems, the hardware does not provide reliable
message delivery. This enforces the use of so-
phisticated protocols in order to ensure reliable
communication.

Modern network hardware, such as the
Myrinet1, provide reliable data delivery compa-
rable to the memory bus. Such network hard-
ware also has very high bandwidth and ex-
tremely low transfer latency. Therefore it is un-
necessary and wasteful to employ complicated
transfer protocols such as TCP in the commu-
nication layer.

Recent research is interested in building a thin
communication layer with a simple protocol to
fully exploit the reliability and the high perfor-
mance the hardware provides.

Kernel involvement in communication

In traditional systems, process communication
must go through the kernel. The kernel main-
tains the resources and provides full protection
in communication. The communication protocol
stack is also implemented in the kernel.

Even if going through the kernel provides a
convenient way of process communication, using
it is not e�cient anymore. If in the past the
overhead associated with the context switch was
not signi�cant when compared to the speed of
the hardware and of the protocol, in our days a
context-switch is a real bottleneck. This is true

1Myrinet is a high speed LAN interconnect which uses

byte-wide parallel copper links to achieve physical link

bandwidth of 76.3 MB/s. Myrinet uses a network co-

processor (LANai) which controls the physical link and

contains three DMA engines (incoming channel, outgoing

channel and host) to move data e�ciently

because if modern hardware can lower the com-
munication overhead down to a few microsec-
onds, a context switch will sometimes take more
than 100 microseconds.

All the approaches we will discuss are trying
to eliminate the kernel involvement in the crit-
ical path of communication. They are trying
to build a user-level communication interface,
which makes the applications to achieve com-
munication latency and bandwidth very close to
those of the available in hardware.

Usually, protection was ensured by the kernel.
Trying to bypass the kernel raises new protection
issues. We will discuss how some of the projects
surveyed here manage this problem.

Bu�er management Network bu�er man-
agement is also an important issue in commu-
nication system.

When sending data through the network, usu-
ally the sender will try to take advantage of the
DMA-engine (commonly found on modern net-
work cards). However, the data transfered by the
DMA-engine has to be memory resident before
the DMA-engine is started.

There are two ways of doing it: One is to al-
locate a system bu�er at system boot time and
make that bu�er always memory resident. Dur-
ing transmission, user data are copied into that
memory resident system bu�er. This will intro-
duce an additional copy but is easy to imple-
ment.

The alternative is to pin-down some user
bu�ers to prevent them from being swapped out
of the main memory. Then the data could be
transferred directly from the user space. This
will provide "zero-copy" on the sender side to re-
move the overhead of additional copy, but mech-
anisms that protect the pinned-down bu�er and
cooperate with the existing virtual memory sub-
system have to be provided. A similar problem
arises on the receiver's side.

Interesting solution are given in Princeton's
Shrimp project and Cornell's U-Net/MM.

Design of network interface Previous-
generation commodity network interfaces were

2



simple DMA engines on the I/O bus. With the
increasing complexity of high-speed networks,
network interfaces are becoming more sophis-
ticated and routinely include an on-board co-
processor, although such co-processors usually
lag behind the host CPU in performance. This
raises the question of how much functionality
should be implemented in the network interface
itself and how much should be relegated to the
foster host.

In the projects we discuss, intermediate mod-
els are proposed which transfer just enough \in-
teligence" into the network interface in order to
handle message bu�ers. This includes message
multiplexing/demultiplexing and virtual address
translation.

Small vs. large messages handling Some
research on communication suggests that ex-
change of small messages is the dominant part
in process communication. Therefore, most re-
search focus on optimizing their communication
system to get good performance for small mes-
sages.

3 Projects

In this section we will give overviews of some
project which deal with on cluster process com-
munication. For each project we will emphasize
the most interesting feature.

3.1 Active Messages I

Overview The Active Message project has as
main goal to provide low overhead communica-
tion.

It does so by employing the following mech-
anism: each message that is sent, contains in
its header the address of a handler. This han-
dler has as only purpose taking the message o�
the net and integrate it in the ongoing compu-
tation. The sender launches the message and
then continues the computation. When the mes-
sage is received, the receiver interupts the ongo-
ing computation, runs the handler and resumes

computation. Communication overlaps compu-
tation, since no blocking send/receive is exe-
cuted. Asynchronous send/receive use a similar
mechanism but complicated bu�er management
is used in order to keep the communication reli-
able.

The existance of handlers eliminate this draw-
back. The only requirement is that the receiver
user program allocate the necessary space for the
incomming data.

Architecture The architecture of Active Mes-
sage I [12] is very simple. It assumes an environ-
ment of trusted processes and a SPMD2 model
of computation. Moreover, there is at most a
process running on each processor. The key opti-
mizaion is the elimination of bu�ers. Eliminating
bu�ering on the receiving end is possible because
either storage for arriving data is pre-allocated
in the user program or the message holds a sim-
ple request to which the handler can imediately
reply. If messages are small in size, then bu�er-
ing in the network is su�cient for the sender's
side.

Another optimization that was used concerned
the polling mechanism. In the case that a process
would not engage in a long computation then it
would poll for incomming messages only when a
send was executed.

A request-reply mechanism is used.

A primitive scheduling scheme is used. The
handlers interupt the computation immediately
after a messsage's arrival and execute to comple-
tion.

The AM were initially design to �t the avail-
able message passing architectures 3 As fast net-
working emerged, the paradigm has been ex-
tended as to encompass a broader range of sup-
ported applications.

3.2 Active Messages II

Overview The purpose of Active Message
II [1] is to generalize the active message

2Single-Program Multiple-Data
3the implementation has been done on nCUBE and

CM-5

3



techonolgy in order to be able to cope with a
broader range of appliction and still preserve as
much as possible from the underlaying hardware
capabilities. In order to achieve this, the Active
Message layer will present to the upper layer an
uniform abstraction consisting of a set of end-
points. A set of basic communication primitives
are also provided, such that e�cient implemen-
tation is possible. A protection model based on
names and tags is used.

Architecture A process can create and man-
age several end-points. Each communication
end-point has the following components: a send
pool, a receive pool, a handler table (which
is used to translate indices into functions), a
virtual memory segment for memory transfers,
a translation table that associates indices with
global-endpoint names and tags, and �nally, a
tag for authenticating messages arriving at the
endpoint. An active message is sent from an end-
point send pool to an endpoint receive pool. It
carries an index into a handler table that selects
the handler function for the message. Upon re-
ceiving, a request-handler is invoked. Similarly,
when a reply message is sent, a reply-handler
is run. The bulk data transfer functions copy
memory from a sender's virtual address space
to receiving endpoint's receive pool or a virtual
memory segment and deliver an associated active
message when the transfer is complete.

The request-reply scheme is inherited from
AM I.

Protection End-points have globally unique
name within the system. Since these names need
not be easily manipulated or convinient repre-
sented, end-point translation tables are used in
order to indirect these names. This way, the in-
terface speci�cation remains independent of ex-
ternal name servers, although implementations
should make sure that an external agent(s) exists
in order to manage mappings of global-endpoint
names.

Tags are the second element that participate
in the protection model. As with the end-point
names, tags are associated with end-points. Im-

plicitlly, tags can identify sets of communicat-
ing end-points. One bene�t that comes with the
use of tags is that applications can identify ag-
gregates of end-points unambiguosly. Secondly,
tags provide a simple means of authenti�cation.

At any point the process that created an end-
point can change its tag. This is equivalent with
revoking capability, since messages can be sent
to a process only if the right (processes' current)
tag is attached to the message.

Managing end-points and tags is left to the im-
plementer's convenience. In particular, passing
tags can be done by any of the standard pro-
cedures for randevousz (like using a shared �le
system, or previously agreed-on �le).

3.3 U-Net

Overview The U-Net [11] architecture pro-
vides low-latency and high-bandwidth commu-
nication over commodity networks of worksta-
tions and PCs. It achieves this by virtualizing
the network interface such that every application
can send and receive messages without operating
system intervention. With U-Net, the operating
system is removed from the critical path of com-
munication. This allows communication proto-
cols to be implemented at user-level where they
can be integrated tightly with the application. In
particular, the large bu�ering and copying costs
found in typical in-kernel networking stacks can
be avoided. Multiple applications can use U-Net
at the same time without interfering.

Incorporating memory management into the
user-level network interfaces to enable direct de-
livery of messages to and from user-space by the
network interface while observing the traditional
protection boundaries between processes is the
main feature of U-Net [2].

Architecture The U-Net user-level network
interface architecture virtualizes the interface in
such a way that a combination of operating sys-
tem and hardware mechanisms can provide ev-
ery process the illusion of owning the network
interface. Depending on the sophistication of
the actual hardware, the U-Net components ma-

4



nipulated by a process may correspond to real
hardware in the NI (network interface), to mem-
ory locations that are interpreted by the OS, or
to a combination of the two. The role of U-Net
is limited to multiplexing the actual NI among
all processes accessing the network and enforc-
ing protection boundaries as well as resource
consumption limits. The main building blocks
of U-Net architecture are endpoints. Endpoints
serve as an application's handle into the network
and contain three message queues, which hold
descriptors for message bu�ers. Each endpoint
is associated with a bu�er area that might be
pinned to contiguous physical memory and holds
all bu�ers used with that endpoint.

Memory Management Mechanisms The
pinned-down bu�er in endpoints enables direct
message transfer to or from user-space. The
problem is that since the size of phisycal memory
is limited the number of bu�ers pinned-down at
the same time is also limited. In order to over-
come this limitation, U-Net incorporates some
memory management mechanisms into the net-
work interface to page-in/out network bu�ers.
This approach also increases the scalability in
the number of concurrent network applications
by allowing bu�ers belonging to inactive appli-
cations to be paged out.

In order to handle arbitrary user-space vir-
tual addresses, the U-Net design incorporates
a Translation Look-aside Bu�er (TLB, which is
not directly visible from user-space). The TLB
is maintained by the network interface itself and
maps (process ID, virtual address) pairs to phys-
ical page frames and read/write access rights.
The network and the operating system cooper-
ate in handling TLB misses and TLB coherency
issues to ensure that the valid entries in the TLB
correspond to the pages pinned-down in the net-
work bu�er.

The technical details about TLB management
can be found in [2].

3.4 Fast Messages

Overview The Fast Messages (FM) is a com-
munication library (layer). It has as primary
goal delivery of the hardware performance to the
application level. Another goal is to develop a
library suitable for tightly coupled workstation
clusters [9].

Two versions of the FM have been designed
and implemented. FM 1.0 [10] has been based on
the studies of essential communication guaran-
tees (reliable, in-order communication with ow
control). It was also optimized for realistic mes-
sage size distribution(especially short messages).

The main drawback of this version was de-
graded performance when building high-level li-
braries (such as MPI4) on top of FM. The perfor-
mance losses caused by the interface have been
remarkable(network performance was limited to
less than 10% from hardware's capability). The
overhead originated from a number of memory-
to-memory copies of the data, taking place at the
interface between the libraries.

The second version of FM [8] eliminates this
problem. It enables over 90% of hardware's per-
formance to be delivered to the higer level.

Several new features were added.

Architecture FM di�ers from a pure message
paradigm by not having explicit receiver. In-
stead, each message includes the name of a han-
dler, which is a user-de�ned function that is in-
voked upon message arrival. FM provides bu�er-
ing allowing senders to make progress while their
corresponding receivers are computing and not
servicing the network.

The FM interface is similar to the Active Mes-
sages(see Section 3.1) model from which it bor-
rows the notion of message handlers. However
a number of key di�erences exist: the FM API
o�ers stronger guarantees (in particular in-order
delivery), uniform handling of messages with re-
spect to size, and it does not follow a rigid
request-reply scheme. The FM's send calls do
not normally process incoming messages (in con-

4Message Passing Interface is an industrial standard

for writing \portable" message passing parallel programs

5



trast to Active Messages), enabling a program to
control when the received data is processed.

Using Myrinet, FM provides MPP-like com-
munication performance on workstation cluster.
The addition of ow control and bu�er manage-
ment has been enough to provide reliable and
in-order delivery.

Di�erent investigations [7] showed that imple-
menting strong guarantees built on top of a mes-
sage library can increase communication over-
head by over 200%.

To reduce these costs, the designers of FM
have given full consideration of how to exploit
the hardware features. The basic features are
gather/scatter, layer interleaving, and receiver

ow control.

Stream abstraction

This is the basic mechanism that is provided
by the FM library. Messages are viewed as
byte streams. Appropriate primitives to send
and receive data, such as FM send piece(.) and
FM receive piece(.) are provided.

Note that messages are interpreted as a byte
stream, instead of a single contiguous region of
memory.

Gather/Scatter

It is implemented using the stream abstrac-
tion by succesively calling FM send piece(.).
The receiver has to use a sequence of
FM receive piece(.).

These two features can be very e�ciently im-
plemented using programmable I/O5.

Layer Interleaving

The second bene�t from stream abstraction
is the ability for controlled interleaving between
FM's and application's threads. This makes it
possible to eliminate staging bu�ers for exchang-
ing the message data between communication
layers, i.e. after getting the header of the mes-
sage, the upper level can determine the destina-
tion message queue. Therefore it can provide the
destination bu�er (part of the message queue) to
the FM which can directly transfer the data.

Receiver Flow Control

5An input/output interface that can be programmed

to do network transfer, using host CPU

This allows the receiver to control the rate at
which data is processed from the network. In
many applications, the ability to intentionally
delay the extraction of the message until a bu�er
becomes available simpli�es the bu�er manage-
ment.

Transparent Handler Multithreading

The handler execution is not delayed until the
entire message has arrived, rather, it is started as
soon as the �rst packet is received. Since pack-
ets belonging to di�erent messages can be re-
ceived interleaved, the execution of several han-
dlers can be pending at a given time. As it ex-
tracts each packet from the network, FM sched-
ules the execution of the associated pending han-
dler. By having the interleaved packet recep-
tion transparently drive the handler execution, a
number of bene�ts are achieved. Combined with
the stream abstraction this allows arbitrary sized
data chunks to be composed/received, without
any concern for packet boundaries. Handler mul-
tithreading plus packetization not only simpli�es
resource management, it can also increase perfor-
mance by increasing e�ective pipelining.

3.5 VMMC

Overview Virtual memory-mapped communi-
cation (VMMC) is a communication model that
allows user-to-user data transfers with latency
and bandwidth close to the limits imposed by
the underlying hardware. VMMC [5, 6] has been
designed and implemented for the SHRIMP mul-
ticomputer with Myrinet. The basic idea is to al-
low data to be transmitted directly from a source
virtual memory to a destination virtual mem-
ory. This aproach eliminates kernel involvement
in data transfer.

It also provides full protection in multi-user
environment. Other included features are user-
level bu�er management and zero-copy proto-
cols. It minimizes host processor overhead when
sending and there is no processor overhead when
receiving. The model has been extended to
include three mechanisms: user-managed TLB
(UTLB) for address translation, transfer redirec-
tion, and reliable communication at the data link

6



layer.

Architecture On each host, there is a local
VMMC daemon. User programs submit export
and import requests to a local VMMC daemon.
Daemons communicate with each other over Eth-
ernet to match export and import requests and
establish export-import mapping.

Protection is o�ered since it such a mapping
can be established only when the receiver gives
the sender the permission to send data. Data is
sent to a designated area in the receiver's space.

The followings summarize the basic steps in
communication:

1. The receiver export a portion of its address
space as receive-bu�ers to accept incoming
data.

2. The sender import remote receive-bu�ers as
destination for transferred data.

3. Sender can transfer data from its virtual
memory space to the imported bu�er.

4. Security of the receiver's address space is
enforced by VMMC.

5. The receiver may restrict possible-importers
of a bu�er.

6. This restriction is enforced by VMMC when
an import is attempted.

There are two data transfer modes supported
by VMMC: deliberate update and automatic up-
date. Deliberate update is an explicit request
to transfer data blocks from anywhere in the
caller's space to an imported bu�er. While au-
tomatic update is implicitly done on each write
to local memory the automatic update is per-
formed as follows: the sender creates automatic-
update mapping(a region of the sender's vertual
machine is mapped to a remote receive-bu�er).
All sender's writes to its automatic-update re-
gion are automatically transferred to the remote
bu�er. The VMMC subsystem infers the desti-
nation address from the local address speci�ed
by the sender (in the write operation). Note

that the automatic-update destination associ-
ated with a given local address must be unique.

Received messages are transferred directly into
the memory of the receiving process without in-
terrupting the receiver's CPU; i.e. no explicit
receive operation in VMMC.

To establish an import-export mapping, the
receiving process exports a part of its address
space as receive-bu�ers. The sender import the
remote receive-bu�ers as destination for trans-
fer data. The receive-bu�er is mapped into the
sender's destination proxy space.

Once it is established, the import-export map-
ping can be destroyed by either the receiver or
the sender. A sender calls unimport if it no longer
wants to transfer data to a given receive-bu�er.
Then the range of the sender's destination proxy
space become free and available for another im-
ported bu�er. Alternatively, a receiver calls un-
export to close a given receive bu�er. This call
destroys all import mappings to this bu�er.

3.6 The VMMC-2 Model

The VMMC-2 [4] extends the basic VMMC
model with three more mechanisms: User-
managed TLB (UTLB) for address translation,
a transfer redirection mechanism which avoids
copying on the receiver's side and a reliable com-
munication protocol at the data link layer which
avoids copying on the sender's side.

The UTLB is used for address translation
which enables user libraries to dynamically man-
age the amount of pinned space and requires
only driver support from many operating sys-
tems. The UTLB consists of an array for every
process holding physical address of pages belong-
ing to this process virtual memory portions that
are pinned in the host physical memory.

Transfer redirection mechanism is used to
avoid copying on the receiver's side. The idea
is to use a default redirectable receive-bu�er ad-
dresses. The sender always sends to this default
bu�er. Then the redirection mechanism checks
for a redirection address given by the receiver,
and puts the message into the user bu�er directly
from the network without any copying.

7



Reliable communication at the data link layer
is provided by VMMC-2 to deal with transient
network failures, such as: CRC errors, corrupted
packets, and all network fabric errors. If a tran-
sient network failure becomes permanent, the
remote node is declared unreachable, imported
bu�ers from that node are invalidated, the user
is noti�ed, and all packets that cannot be deliv-
ered are dropped. The user needs to reestablish
the mappings in order to resume the communi-
cation with the remote node.

The performance is achieved by doing com-
munication via the mapped receive-bu�er. After
mapping the receive bu�er, the sender can trans-
fer data without having to check the availability
of the receive bu�er space.

4 Discussion

We now discuss these di�erent projects in the
light of their design goals, decisions, and assump-
tions.

Small vs. large message It appears desir-
able for a communication layer to provide e�-
cient massage passing for both short and long
messages. This is not necessarily true. Some re-
search shows that small messages are predom-
inant in the network tra�c. Therefore some
project focus on optimizing the communication
performance for short messages. Active Mes-
sage I is a specialized library (it is targeted at
scienti�c parallel computing). This allows it to
achieve high e�ciency when transferring small
messages. It is not optimized for large messages.
On the other hand, Fast Messages approach is
tailored as to cope with small data. However,
the stream abstraction facilitates e�cient large
message handling.

Bu�ers and copy overhead In Active Mes-
sage I bu�ering is not provided. However, upon
the arrival of a message, it is either incorporated
in the ongoing computation or it is stored in pre-
allocated user space. Fast Messages do provide
bu�ering. The presence of e�cient ow control

allows reasonable small bu�er size while decreas-
ing the cost of bu�er management.

U-Net messaging layer provides bu�er man-
agement, demultiplexing in hardware but no
ow control, and thus data can be lost due to
overow. Therefore, retransmission mechanisms
should be employed thus increasing the complex-
ity of the protocol.

On the other hand VMMC provides direct
delivery of messages from and to user space
bu�ers. As a consequence, no network bu�ering
is needed.

Secondly, avoiding additional copy during
data transfer is an important way of reduc-
ing communication overhead. There are several
ways of doing it. Modern network interface, such
as Myrinet, has two ways of data transfer. One
is to use DMA engine. The DMA engine can
only access memory resident area, but it can
achieve high bandwidth and does not require in-
volvement of host CPU. The problem is that you
have to make sure the network bu�er is memory
resident when the transfer begins.

VMMC and U-Net use this approach. In
VMMC, the communication bu�ers are pinned-
down by user's explicit request. After the data
path is setup, data can be transferred directly
to/from user-space bu�ers without additional
copy. However, the total size of pinned-down
pages could not be very large, since the size of
physical memory is limited. This implies that
the scalability of this approach is not satisfying.

U-Net incorporates a TLB into the network
interface to track the pinned-down pages in the
virtual memory. That makes it possible to dy-
namically pinned-down user-space pages. Al-
though the TLB mechanism in this approach is
not sophisticated enough for achieving real dy-
namically pinned-down bu�ers, this scheme gives
an e�cient way of pinning-down pages and the
scalability of the system is greatly enhanced.

In fact, most recent version of VMMC [3]
also incorporate some more sophisticated TLB
(UTLB) into their system and further realized
"dynamically pinned-down pages".

The other choice is to use programmable I/O
operation. The host CPU can directly write

8



data into the network registers and transfer them
directly without additional copy. However, it
means that host CPU has to be involved in send-
ing data, and the bandwidth can not be as good
as using DMA engine. The advantage of using
programmable I/O is that it can achieve rela-
tively low latency for small messages(the cost of
starting the DMA engine is relatively high).

The FM layer uses this approach 3.4. This is
not bene�tial to the large size message transmis-
sion but it reduces short message communication
overhead.

FM uses some stream and layer-interleaving
mechanisms to enhance the performance of large
messages. This is a trade-o� between host CPU
usage and short-message latency.

Kernel involvement and protection As de-
scribed above, these projects have similar goals -
they all try to build a thin communication layer
on top of the network hardware, in order to fully
exploit the performance the hardware provides.
Since the cost of crossing the kernel/user bound-
ary is relatively high, all of them are moving the
communication layer into the user-space in or-
der to avoid the OS kernel involvement on the
critical path of communication. However, the
protection boundary that used to be maintained
by the operating system should now be well pre-
served. Therefore, in each approach, there is
some scheme of doing it. In Active Messsage
I, a trusted environment is assumed(associated
with single process per processor), therefore no
protection scheme is used. AM II and U-Net vi-
sualize the network resource as endpoints, which
maintain the protection boundaries among user
processes. In Active Message II the protection is
also ensured by using an external mechanism to
manage naming schemes and tags. In VMMC,
the protection is ensured by the OS and the
network interface. Checks of bu�er boundary
and access rights provide the basic protection
scheme.

While in FM, there is no full protection among
multiple processes. In the recent version of FM-
II, the network resources are divided into two
parts and make the two running processes in-

visible of each other's resource. Therefore, only
two communication processes are allowed on the
same host at the same time.

5 Conclusion

In this paper we presented several approaches
for achieving e�cient interprocess communica-
tion inside clusters. The four projects we sur-
veyed: Active Messages, Fast Messages, U-Net
and VMMC take di�erent approaches to deliver
the performance the hardware provides to the
user applications. We considered that bu�ers
and copy overhead, size of the messages and ker-
nel involvement are the most inuential factors
in building an e�cient user space communica-
tion layer. In the discussion part we tried to
list pros and cons for using each of these. Each
of these projects have advantages and disadvan-
tages. The optimal approach might incorporate
hybrid techniques.

References

[1] A.M.Mainwaring and D.E.Culler. Active
message applications programming inter-
face and communication subsystem orga-
nization. Technical report, U.C. Berkeley,
1996.

[2] Anindya Basu, Matt Welsh, and Thorsten
von Eicken. Incorporating memory manage-
ment into user-level network interfaces. In
Hot Interconnects V, 1997.

[3] Yuqun Chen, Angelos Bilas, Stefanos Dami-
nakis, Cezary Dubnicki, and Kai Li. Utlb:
A mechanism for address translation on net-
work interfaces. Technical Report 580-98,
Princeton University, 1998.

[4] Cezary Dubnicki, Angelos Bilas, Yuqun
Chen, Stefano Damianakis, and Kai Li.
Vmmc-2: E�cient support for reliable,
connection-oriented communication. In Hot

Interconnects V, August 1997, 1997.

9



[5] Cezary Dubnicki, Angelos Bilas, Kai Li, and
James Philibin. Design and implementation
of virtual memory mapped communication
on myrinet. In Proceedings of 11th Interna-

tional Parallel Processing Symposium, 1997.

[6] Cezary Dubnicki, Liviu Iftode, Edward W.
Felten, and Kai Li. Software support for
virtual memory-mapped communication. In
10th International Parallel Processing Sym-

posium, 1996.

[7] V. Karamcheti and A. Chien. Software over-
head in messagin layers: Where does the
time go? In Proceedings of the Sixth Sym-

posium on Architectural Support for Pro-

gramming Languages and Opperating Sys-

tems, 1994.

[8] Mario Lauria, Scott Pakin, and Andrew
Chien. E�cient layering for high speed com-
munication: Fast messages 2.x. InHigh Per-
formance Distributed Computation, 1998.

[9] Scott Pakin and Andrew Chien. Fast mes-
sages (fm): E�cient, portable communica-
tion for workstation clusters and massively-
parallel processors. IEEE Concurency, 5(1),
1997.

[10] Scott Pakin, Mario Lauria, and Andrew
Chien. High performance messaging on
workstations: Ilinois fast messages (fm) for
myrinet. In Supercomputing'95, 1995.

[11] Thorsten von Eicken, Anindya Basu, Vineet
Buch, and Werner Vogels. U-net: A user-
level network interface for parallel and dis-
tributed computing. In Proceedings of the

15th ACM Symposium on Operating Sys-

tems Principles, 1995.

[12] Thorsten von Eicken, David Culler, Seth
Goldstein, and Erik Schauser. Active mes-
sages: a mechanism for integrated commu-
nication and computation. In Proceedings of
the 19th International Symposium on Com-

puter Architecture, 1992.

10


