
Task Management Issues in Distributed Systems

Ahilan Anantha, Maki Sugimoto, Andreas Suryawan, Peter Tran

University of California, San Diego

November 21, 1998

Abstract

One of the main goals of distributed systems is

allowing idle processing resources to be utilized.

To accomplish this, there must be mechanisms

to distribute tasks across machines. We exam-

ine the task management mechanisms provided

by several distributed operating systems, and

analyze their e�ectiveness.

1 Introduction

A major motivation for constructing a dis-

tributed operating system is to perform coor-

dination of decentralized resources in order to

raise the utilization of the system as a whole.

It is through the management of tasks that a

system is able to optimize the parallelism being

o�ered, thereby increasing utilization.

There are quite a few interesting attributes

of distributed operating systems, and notable

techniques used in handling these. We examine

the following attributes and techniques of task

management:

1. Ownership of CPU resources

2. Homogeneous vs heterogeneous environ-

ment

3. Remote execution/process migration

4. Namespace transparency

5. Load information and control manager

Design choices made in the systems surveyed

re
ect a set of tradeo�s considered by the sys-

tem architect: complexity, residual dependen-

cies, performance, and transparency. [7] We

analyze how each operating system copes with

these con
icting factors to provide e�ciency

and maintainability. And �nally, we consider

improvements to these systems.

2 Techniques and Attributes

of Task Management

2.1 Ownership of CPU Resources

The operating systems we discuss in this paper

fall into two basic classes of environments: 1)

those where machines are "owned" by particu-

lar users, such that a machine's processing may

be used only when the owner is not using it,

and 2) where there is notion of ownership of ma-

chines, all processors are available for use by all

users. Operating systems of the �rst class are

typically designed for environments of graphical

workstations.

The Sprite and Condor operating systems are

designed for the lab graphical workstation en-

vironment. There is no separate CPU server

cluster, the workstations themselves make up

the distributed system. A user is expected to

interact with the operating system by way of

a windowing system, which is a highly CPU

and memory intensive interactive process. In-

teractive processes have randomly 
uctuating

loads because they act in response to user

activity, which itself is randomly 
uctuating.

At the same time, interactive processes have

minimum delay requirements because users re-

quire real-time response. Windowing systems

1



pose an even greater problem because they re-

quire a large percentage of processing power,

while traditional text mode interaction is fairly

lightweight. In order to satisfy these delay re-

quirements, it becomes necessary to reserve the

maximum amount of CPU resources that a win-

dowing system would require.

In non-distributed systems, the user of a

graphical workstation is expected to actively

control which processes may run on the system

to satisfy his delay requirements. If the user

of a graphical workstation has ownership of all

the user processes that can hog the system re-

sources, he can suspend or terminate the pro-

cesses that prevent the useability of the console.

However, if other users were permitted to eas-

ily run processes on remote systems, the console

user will lose the ability to control the interac-

tive response time.

For this reason, these operating systems give

a second class status to remote processes. Re-

mote processes are only allowed to utilize the

resources of a workstation if the workstation is

not already busy serving its console user. The

CPU resources can be taken back from remote

processes if the console user desires them. As

such, the console user can be considered the

owner of a workstation's CPU resources.

Sprite and Condor will only permit remote

processes to run on a system when the system

is idle and will evict remote processes once a

user starts using the console.

The other class of distributed systems con-

sists of environments of dedicated CPU servers,

data servers, and graphical terminals. The bulk

of the processing power in these environments

is contained in the CPU server. The computers

with graphical displays are essentially graphical

terminals, they have su�cient processing abil-

ity to run the windowing system processes but

require no more. All other CPU intensive pro-

cesses are executed remotely on a CPU server.

No user "owns" the CPU server, every user

gets a guaranteed share of its resources. Con-

versely, no remote processes would be allowed

on a graphical terminal. The work of trying

to determine whether a graphical workstation

is idle is unnecessary, since the graphical termi-

nals would have minimal processing resources

to o�er. All the resources of a graphical ter-

minal can thus be reserved for the windowing

system.

Clouds, Alpha, MOSIX, Plan 9, and Solaris

MC fall under this category. Solaris MC pro-

vides a process migration mechanism for server

machines, allowing processes to be migrated

across server machines in cases where one server

must be brought down for maintenance. In

these cases, migrated processes can be permit-

ted to be ine�cient and to tax the resources

of the hosting system. But the necessity of

maintaining services across server disconnec-

tions outweighs these factors. Therefore So-

laris MC suggests the need for a distinction

between servers (which are prepared to o�er

the resources to accept migrated processes) and

user workstations (which are not willing to ac-

cept the burden of migrated processes). Clouds,

Alpha, and Plan 9 are alike in that they con-

sist of separate highend CPU and data servers.

A MOSIX system consists of a large number of

commodity workstations, all of which may play

an equal part in serving data and processing.

2.2 Remote Execution

Remote execution and process migration are

the techniques used in distributed systems to

share CPU resources. Remote execution is the

ability to create processes on remote machines.

Process migration is the ability to relocate pro-

cesses between nodes in mid-execution.

Plan 9 supports remote execution on CPU

servers explicitly speci�ed by the user. Pro-

cesses cannot be migrated, therefore remotely

executed processes spend their entire lifespan

on the remote CPU server, from creation to ter-

mination. Condor also supports remote execu-

tion only.

Sprite supports remote execution through the

mechanism of process migration. A request for

remote execution of a new process on Sprite

would need to be reduced to creating the pro-

cess locally, and attempting to migrate the pro-

cess soon after. In the case of an immediate

remote execution, local memory need not be al-

2



located for the code and data if an idle com-

puter is available to start with. Sprite, however,

doesn't provide this optimization. All execution

begins locally.

Process migration is only a request that an

application can make. Processes are only per-

mitted to execute on remote workstations that

are idle. If there are no idle machines then

the request may be denied and the process

would continue to execute on the local machine.

Therefore, a process cannot also be expected to

be able to begin execution on a remote system

either.

When the computer ceases to be idle, all re-

mote processes must be evicted. Therefore, ev-

ery process must have the notion of a home ma-

chine, which is the machine from which the user

invoked the process.

Solaris MC provides remote execution and

process migration mechanisms. User must ex-

plicitly call the rexec system call to carry out

remote execution. Unlike Plan 9, the destina-

tion node need not be speci�ed. Process mi-

gration is assumed to be used mainly for o�-

loading processes from a node being shutdown

for mainteanance.

MOSIX is the only oprating system that

makes use of process migration for the purpose

of load-balancing. Any user process can be mi-

grated any time to any available node transpar-

ently.

2.2.1 Thread Migration in Object Based

Systems

Object-based distributed systems have a di�er-

ent way of organizing resources by representing

them with passive objects. Objects encapsu-

late code and data. An object's code is exe-

cuted using a procedural interface called invo-

cation. Objects are large-grained in that they

have their own virtual-address space, and there

is relatively large overhead with the invocation

and storage of an object. For these reasons, ob-

jects generally implement storage and execution

of large-grained data and programs.

Clouds is an example of an object-based dis-

tribute operating system. A thread in Clouds

is a path of execution made up of a series of

calls to object methods. Each call is referred

to as an invocation that the object responds

to. An object by itself is passive. When a

thread invokes an object's method, the thread

enters that object's virtual-address space and

begins execution. Each invocation of a method

is called a segment of the thread that invokes

it. This segmentation of threads is how Clouds

provides distributed execution.

Note how this is di�erent from the tradi-

tional model of processes and process migration.

There, a process executes within one virtual-

address space unless it is migrated to another

node. Migration is expensive, and it is expected

not to occur more than once or twice.

In Clouds, migration takes place with ob-

ject granularity. That is, as a thread pro-

ceeds, it may invoke objects on di�erent nodes.

A thread's path of execution ncessarily crosses

through all of these nodes. It is strategic place-

ment of objects that would be used as a mech-

anism for load balancing.

Since there are no address space associated

with each of the threads, objects on remote or

local node can be invoked with the same seman-

tics. Threads can cross node boundaries with

the minimum penalty of network overheads.

2.3 Namespace Transparency

A required feature of distributing systems is

hiding from a process the fact that it is exe-

cuting remotely or locally. This transparency

should also be maintained with regard to the

user. The user should be able to interact with

the process in the same way (as the local case)

regardless of where the code is executing.

Maintaining this

transparency requires changes to the traditional

operating system model. Transparency refers

to the distributed operating system giving each

process a single, uniform view of resources, in-

cluding the �lesystem and I/O devices, regard-

less of which computer it is running on. The de-

sign and implementation of the space of accessi-

ble resources, or namespace, directly a�ects the

management of the distribution of processes.

3



Many operating systems achieve this trans-

parency by the enforcement of a uniform, global

namespace. The �lesystem will appear the

same to every process on every node. One so-

lution follows from mounted �lesystems in tra-

ditional UNIX. A namespace is constructed as

a union of mounted �le systems.

Object-based distributed systems provide a

di�erent solution. There is no notion of a tra-

ditional �lesystem, only objects. Resources are

encapsulated in objects. Naming takes place

with object granularity. This provides a 
at

namespace. At the system level, all objects are

identi�ed by a globally unique bit string. A

user-level name service is provided to translate

user-registered names to system-level names.

Sprite employs the uniform global name

space model. File servers provide domains, sim-

ilar to UNIX �lesystems, that are mounted as

subdomains of each other with one domain se-

lected as the topmost, root, domain. This view

of the domain hierarchy is the same for every

computer in the cluster. This can be contrasted

with Sun's NFS, where every client may choose

the local mount point of a remote �lesystem. In

Sprite, the remote �le server decides the mount

point all the clients must use. Among other

advantages, this guarantees that every �le in

the distributed �lesystem has a single globally

de�ned pathname. This makes it possible to

migrate programs that attempt to manipulate

�les. [7]

Solaris MC also employs the uniform global

namespace model. The Solaris MC �le system,

which is built on top of the existing Solaris �le

system, interposes all �le operations and for-

wards them to the server where the �le actually

resides. Any process can open a �le located

anywhere in the system using the same path-

name, thus allowing programs to be located on

arbitrary nodes. [4]

The object-oriented semantics of Clouds pro-

vides a 
at namespace along with global acces-

sibility (any thread can reference any object).

This is also essentially Clouds' mechanism for

distributed shared memory. Only through in-

vocation is access to an object's data allowed;

input and output parameters are pass-by-value

only. This protects the internal environment of

an object. Capabilities-based protection is pro-

vided for controlling global accesses to objects.

[1]

Plan 9 has an interesting policy for managing

name spaces. Every client process can have a lo-

cal namespace, which have the same semantics

of a localized �lesystem interface. User-level

servers in Plan 9 have the ability to "export"

�lesystem interfaces to their clients. In fact,

these exported �lesystem interfaces are the pri-

mary means for which Plan 9 servers export all

their resources. Some of the objects in these

name spaces may refer to globally distinct �les

in the distributed �lesystem, but some may re-

fer to a local copy of a global resource.

For example, the same global Plan 9 �lesys-

tem can be used by clients of di�erent pro-

cessor architectures. A user on di�erent sys-

tems may refer to a binary executable using

a common pathname, such as /bin/date, but

the actual binary �le that is utilized will de-

pend on the processor architecture. Devices

stored in /dev will refer to devices in the local

name space. Some of these devices may refer to

actual kernel recognized devices, or they may

refer to pseudo device interfaces which user-

level servers export. For example, a window

in the Plan 9 windowing system exports the de-

vices /dev/mouse, /dev/bitblt, and /dev/cons

(which refer to the mouse, bitmapped display

interface, and character mode console inter-

face). Each window will export the same de-

vices in their name spaces, but the actual de-

vice �les are local copies of the pseudo devices

exported by the Plan 9 windowing system. The

windowing system will multiplex accesses to the

actual physical devices.

To support the ability to run processes on

remote servers, and have them appear to be

running locally, Plan 9 provides the ability to

export the local name space to a remotely exe-

cuting process. The remotely executing process

will then have the same view of the �lesystem

as it would if it had been executing locally. And

it would have access to the same devices (real

or virtual) as on the local system, because these

would also be exported as part of the local name

4



space. [6]

2.4 Homogeneous vs Heterogeneous

Environments

Many distributed operating systems can be run

on heterogeneous environment. However, all of

these operating systems that allow process mi-

gration have instated the requirement that all

computers involved in process migration have

the same processor architecture.

The primary obstacle to heterogeneity is that

the execution state of a process is highly archi-

tecture dependent. When the source and des-

tination systems are of the same architecture,

the code and data segments, registers, stack,

and heap can simply be copied without any

changes. With di�ering processor architectures,

all of these might need to be signi�cantly modi-

�ed. Such modi�cation is likely to be expensive

and will add signi�cant complexity to the sys-

tem.

The operating systems we've discussed that

support process migration (MOSIX, Sprite, So-

laris MC) have the requirement that all ma-

chines accepting migrated processes be of the

same processor type.

Clouds' distributed execution model also

does not explicitly support heterogeneity. Ob-

jects on the data servers are stored in a sin-

gle machine language, so heterogeneous CPU

servers would require the machine code be con-

verted from one language to another. This is a

complication that would break the symmetry of

the Clouds system, and would be expensive to

carry out.

Many of these operating systems will permit

a data server to be of a di�erent processor archi-

tecture, since migration would never take place

there.

Plan 9's CPU servers can be heterogeneous.

Each program is compiled beforehand for the

architecture it intends to be executed on. This

prohibits the implementation of process migra-

tion in Plan 9.

2.5 Load information and control

manager

Distributed operating systems, by their nature,

pool processing resources together. Access to

common processing resources must be mediated

by some entity or entities. The determination of

which process will execute on which processor

we term task distribution management, and the

entities that make this determination we term

task distribution managers. Task distribution

decision making may be centralized onto one

manager or decentralized onto many managers.

One disadvantage of centralized management

is its inherent inscalability. The overhead asso-

ciated with maintaining all the load information

and making choices among all the nodes grows

with the number of nodes. Another disadvan-

tage is that the failure of the central node brings

down the whole mechanism.

We can decentralize this decision making by

giving a number of nodes the ability to act

as task distribution managers. Each manager

would control a partition of the nodes in the

system. In this con�guration, each managing

node essentially becomes the central manager

for a smaller distributed system [9]. It can make

its own decisions to utilize processors in its par-

tition of participating machines.

A task distribution manager accumulates the

load information of the nodes in the parti-

tion they control, and uses this information to

choose the processor where a task should run.

In the Sprite system, every Sprite machine

runs a background process called the "load-

average daemon", which monitors the usage

of the machine. When the machine appears

idle, the daemon noti�es the "central migra-

tion server" that the machine is prepared to

accept migrated processes. User processes that

invoke migration call a standard library routine,

Mig RequestIdleHosts, to obtain a list of idle

hosts, and then reference the host identi�er in

the migrate process system call. The central mi-

gration server maintains the database in virtual

memory, to avoid the overhead of remote �lesys-

tem operations. The load-average daemons and

the library routine Mig RequestIdleHosts com-

5



municate with the server using a message pro-

tocol. Sprite decides that a machine is idle if

and only if (a) it had no keyboard or mouse in-

out for at least 30 seconds, and (b) there are, on

average, fewer runnable processes than proces-

sors. This decision was made purely heuristi-

cally; originally the input threshold was 5 min-

utes. The Sprite designers chose not to deter-

mine the most e�cient utilization of idle hosts,

because there were plenty of idle hosts available.

[7]

MOSIX is fully decentralized; every node acts

as task distribution manager. At regular in-

tervals, each node sends information about its

available resources to a randomly chosen par-

tition of nodes [9]. Each node therefore only

maintains load information for a random parti-

tion of nodes, and will choose nodes among this

set for the destination of the process migration.

The use of randomness supports scaling and dy-

namic con�guration [9].

3 Tradeo� Comparisons

The design of distributed operating systems

involve making tradeo�s among four factors:

transparency, residual dependencies, perfor-

mance, and complexity. Perfect transparency

would mean that both the user and the pro-

cess act the same way to a remotely executing

process as to a local one. Both the user and

the process need not be aware of the fact that

a process has been migrated. If remote execu-

tion leaves residual dependencies, that means

the source machine must continue to provide

services to the remotely executing process. By

performance, we mean that that the remote ex-

ecution mechanism should only induce minimal

overheads in processing and allocation. The de-

lay associated with initiating remote execution,

or migrating a process, should be low, and re-

motely executing processes should perform as

e�ciently as locally executing ones. The com-

plexity of the remote execution mechanism be-

comes important because it could potentially

a�ect every piece of the operating system ker-

nel. Depending on the relative importance of

the remote execution mechanism to the design-

ers of these operating systems, complexity may

be limited for maintainability. [7]

These factors con
ict with each other. High

transparency are likely to be require more com-

plexity and residual dependencies. Residual de-

pendencies a�ect performance, because of the

high delays associated with forwarding. A fast

migration process may involve the use of resid-

ual dependencies to avoid the transfer of state,

this can reduce the performance of the execu-

tion of the remote process. [7]

3.1 Sprite

The Sprite operating system guarantees trans-

parency to remotely executing processes. The

user can interact with a migrated process in the

same manner as before migration took place.

The user can continue to provide input to a pro-

cess and receive output from it in an identical

way. The user can also control the execution of

the process using the same job control mecha-

nisms provided for controlling local processes.

No distinction is made between locally execut-

ing and migrated processes when using these job

control mechanisms. However, Sprite requires

the user-level application to initiate process mi-

gration. So for an application to take advantage

of process migration, it not only must be aware

of migration but it must determine when to re-

quest migration of subprocesses. Sprite does

not automatically migrate processes except for

eviction.

Sprite transfers most of the state associated

with a process, but still retains some residual

dependencies. Sprite transfers virtual memory,

open �le handles, and execution state. Access

to �le and memory are the most intensive oper-

ations, so elimination of residual dependencies

in these areas tremendously improves perfor-

mance. By restricting migration to the case of

homogeneous processor architectures, the exe-

cution state transfer becomes simple. Forward-

ing is required for access to local I/O devices.

For message channels between processes, the

source machine must arrange to route messages

for the migrated process. All signals are for-

6



warded from the source machine. The state

transfer and state forwarding mechanisms are

implemented transparently. The only visible af-

fect would be a reduction of performance when

state forwarding is used instead of state trans-

fer. In one case Sprite is not able to provide

transparency, and that is for access to mem-

ory mapped I/O devices. Sprite simply for-

bids the migration of processes that use memory

mapped I/O. [7]

3.2 MOSIX

MOSIX's progress migration mechanism is very

similar to Sprite's. Both rely on a common �le

system to avoid the need to forward �le opera-

tions. Virtual address space and execution state

is transferred. However, unlike Sprite, only ac-

tive pages are o�oaded from the source ma-

chine. MOSIX doesn't store the backing store

on the distributed �le system, so the source sys-

tem must be consulted when bringing in pages

from the backing store. This is di�erent from

what occurs in Sprite. Sprite 
ushes all dirty

pages back to the �le server. The migrated

process will page fault on every page it ac-

cesses, and load all pages from the �le server.

MOSIX's mechanism involves a residual depen-

dency that Sprite does not, since the source ma-

chine must serve requests for virtual memory

pages throughout the execution of the migrated

process. However, in Sprite those pages would

need to be demand loaded from the �le server

anyway. And MOSIX reduces the number of

page faults during the initial stages of the mi-

grated program's execution, because the active

pages are transferred before execution begins.

[9]

Unlike Sprite, the MOSIX kernel actively mi-

grates processes using a load balancing algo-

rithm rather than forcing the user-level appli-

cation to make the request to migrate. This

adds more transparency to the process migra-

tion mechanism. Not only are processes un-

aware of being migrated, the user also does

not need to be aware of the need to migrate.

This should also result in greater performance.

Since the kernel gathers load information, it will

automatically know when a processor becomes

idle. In Sprite, user level programs can only ask

which processors are idle at a given time; they

cannot arrange to be noti�ed when processors

become idle.

3.3 Plan 9

Plan 9 supports transparency for remotely exe-

cuting processes with the ability to export the

local name space to the remote process. Since

Plan 9 doesn't support process migration, state

transfer is not required. Virtual memory is

only allocated on the remote system. However,

all references to �les and devices are forwarded

back to the local system using a network RPC

protocol called 9P. The local system runs a pro-

gram called exportfs, which translates 9P calls

into system calls on the local machine. A for-

warding mechanism is unavoidable for access to

local devices. But other distributed systems do

not forward accesses to �les on distributed �le

systems to the source system, the dataserver

can be referenced directly. Plan 9's mecha-

nism sacri�ces performance for the simplicity

of residual dependencies. [6]

3.4 Clouds

The object-based paradigm of Clouds has many

advantages over traditional systems. The view

of the system to the user as a uniform, 
at

namespace of objects is conceptually simple.

Object method invocation also provides the

simplicity of procedural semantics.

The overhead associated with invocation,

however, can incur a substantial performance

penalty. There is no shared memory between

objects. Input and output parameters are pass-

by-value. In a thread which produces many in-

vocations, the execution time can become dom-

inated by the copying of parameters necessary

for each invocation.

The nature in which a thread invokes a

method, enters a object's virtual address space,

and then continues execution in the invoked ob-

ject has the bene�t of not creating residual de-

pendencies. The only information needed by

7



the invokee is the set of input parameters from

the originating object. [1]

3.5 Condor

Condor is a software system that runs on top

of a UNIX kernel. This provides ease of porta-

bility and simpli�es the task of operating sys-

tem design. Complicated features of the op-

erating system not directly related to the dis-

tributed aspect, such as device driver support,

can be borrowed from the underlying operat-

ing system. This reduction in implementation

complexity comes at the expense of system per-

formance. Placing the distributed mechanisms

outside the kernel incurs execution overhead

and delay in passing load statistics and in load

sharing decisions [11] .

When a job is submitted to a remote ma-

chine, a user is not required to have an account

on the remote machine. The participating ma-

chines agree to allow other users to gain access

and use the machines whenever the machines

are idle. Since the users have no accounts on

the remote machines, they cannot gain access

to the remote machines' �lesystem. However,

when executing a process, it is possible that

the process needs to read and write to a local

�le. Therefore, Condor needs to provide access

to the local �lesystem. Condor, then, needs to

remotely execute system calls to the home ma-

chine when the running process needs access to

the �lesystem. This residual dependency on the

home machine induces communication overhead

for �le operations.

3.6 Solaris MC

One of the primary goals of Solaris MC is to

integrate distributed features into existing op-

erating systems, namely Solaris, with maximum

compatibility. The distributed structure of the

system is transparant to the users and the appli-

cations. Byte level compatibilty is guaranteed

for existing applications. Facilities to utilize

remote CPU resources is provided. To mini-

mize the increase of system complexity, mod-

i�cations to the Solaris kernel is kept mini-

mum. In exchange for achieving transparancy

and minimum complexity, performance is sac-

ri�ced. For example, all �le operation and sys-

tem calls are interposed by the Solaris MC layer,

performance of local �le operation and local sys-

tem calls will be lower. [4]

4 Further Improvements

4.1 Load Balancing Algorithms

An important goal of a distributed system goes

beyond the ability to simply share resources.

System designers are faced with doing this shar-

ing e�ciently and in a way that maximally

utilizes resources. Response time and total

throughput are the driving forces behind this

work. The question then is how to balance the

work load across all nodes in the system. Load

balancing is also referred to as global schedul-

ing.

Utilizing idle CPU resources via process mi-

gration has been discussed in an earlier section.

With exception of MOSIX, the operating sys-

tems surveyed generally only provide the mi-

gration mechanism, and leave the policy im-

plementation up to the application layer. The

operating systems that provide this policy use

algorithms that process load information gath-

ered from each node to determine the destina-

tion when migrating a process. A standard load

metric is the average number of tasks in the

ready queue of a processor.

Gathering accurate load information from

each node is the primary problem in load bal-

ancing. There are two basic models for storing

this information: centralized and decentralized.

In the centralized model, a central server is

used as storage of the load information, and

therefore is given the responsibility for schedul-

ing decisions. A fully decentralized system dis-

tributes this responsibility among the individ-

ual nodes.

Another issue in load balancing is the method

of transmission of the load information. One

method is to have nodes broadcast this informa-

tion from time to time. Another method uses

polling of the nodes for this information.

8



Polling to gather load information leads to

a great number of messages being transmit-

ted as requests and responses. The problem

of high message tra�c also occurs when having

nodes broadcast their load information. This

approach is not scalable. [2]

Lau et al, proposed a solution to the prob-

lem of messaging overhead for load informa-

tion transmission in the decentralized scheduler

model. This solution involves the use of anti-

tasks and load state vectors. An anti-task is a

special type of message that is passed among

the computational nodes. The path of an anti-

task is determined by the load state vector. An

anti-task contains a table in which the entries

are the load state values of the nodes that the

anti-task has visited. Each of these entries is

time-stamped and contains a visited 
ag. Each

node has a table with the same structure, minus

the visited 
ag. The table that the node main-

tains is called the load state vector, and the

table on the anti-task side is called the anti-

task's trajectory. When an anti-task visits a

node, the information in each table is shared

make sure that each table contains the most up

to date information.

Using minimum and maximum threshold

load values, a node is categorized as being in a

light, normal, or heavy workload state. Lau et

al, devised an algorithm that takes into account

the information in the trajectory (load state

information plus the visited 
ag) which cause

anti-tasks to travel spontaneously towards the

most heavily loaded nodes. The total infor-

mation presented by arriving anti-tasks to the

heavily loaded node give it a highly accurate

view of the global state, increasing the chance

that the node makes a good load balancing de-

cision. [3]

4.2 Heterogeneous Process Migra-

tion

Marvin M. Theimer and Barry Hayes discuss an

approach to migrating processes across hetero-

geneous processor architectures in their paper

"Heterogeneous Process Migration By Recom-

pilation". Since it is not possible to migrate the

actual execution state of a process, which is ma-

chine dependant, the authors propose a method

of constructing an equivalent machine indepen-

dant state, which can be migrated. However,

the approach can only work if the program is

itself machine independant.

The technique requires that the compiler gen-

erate machine independant intermediate code

along with the machine language code. The

machine independant code will describe the op-

erations on an abstract machine, while the ma-

chine language code describes operations for a

physical machine. Compilers can be expected

to optimize the machine code for a particular

processor type, such that the internal states of

the machine independant code and the machine

language code will correspond only at a subset

of execution points of a program. Such points

are called migration points. When a migration

is requested, the program will continue to ex-

ecute until the next migration point. To keep

delays in migration small, we'd like to have as

many migration points as possible. If we allow

migration delay in the range of seconds, there is

room for millions of machine instructions to ex-

ecute before we would need a migration point.

It is necessary for all procedures in the call stack

to have reached a state corresponding to an ab-

stract state for the execution point to be con-

sidered a migration point.

Once we have reached such a migration point,

we must generate an abstract program state.

Compilers must generate source-level symbol

tables describing the locations of every global

and procedure-local variable, this is essentially

what debugging features describe. We would

use the same technique that a source-level de-

bugger uses to gather the state of all global

and procedure-local variables. Now that global

and call stack data have been accounted for, we

must �nd the state of the heap. The heap needs

to be traced, following each pointer variable in

the global and call stack to �nd the transitive

closure of the objects they are pointing to. We

must also be able to interpret every �eld of a

heap object, because data representation con-

versions may be necessary across platforms (the

size and representations of integers and 
oating

9



point numbers often di�er).

After accumulating this abstract state, we

construct a "migration program" which initial-

izes itself with the machine independant state

and proceeds executes the rest of the code. This

program is recompiled for the target system,

and then migrated.

This approach can only be guaranteed to

work, in the general case, for languages that

themselves do not allow machine dependant

code to be written. The authors believe their

approach will work for Modula-2, type-safe

Cedar, and Lisp. [8]

This paper preceded the development of Java.

Java is designed such that source code is con-

verted into a machine independant byte code.

This byte code runs on top of a Java virtual ma-

chine process. Remote execution of Java byte-

code will of course require no recompilation, but

migrating a Java process requires transferring

the state of the virtual machine. The Java vir-

tual machine satis�es exactly the requirements

of the abstract machine described by the au-

thors. It is no longer necessary to determine mi-

gration points, every execution point in a Java

bytecode is a migration point. The same mech-

anism for locating and recording the values of

all global, procedure-local, and heap data can

be applied to the Java Virtual Machine.

5 Conclusion

In this paper, we've analyzed distributed op-

erating systems that o�ered widely varied ap-

proaches. On one end of the spectrum, we

have Clouds: an operating system designed

from the ground up to be distributed. Its pro-

gramming model is drastically di�erent from

standard methodologies used today, because

the programming model has been reinvented

to support the idea of disjoint distributed re-

sources. Clouds requires a total rethinking of

program design, but at the same time provides

the most simple and e�cient distributed com-

puting model. Clouds avoids the complexi-

ties and overhead associated with transferring

of state, Clouds only transfers procedure argu-

ments across distributed objects. If distributed

computing is the primary feature a programmer

is seeking, then the opportunity cost of adapt-

ing the programs from the traditional and fa-

miliar model could be justi�ed. However, a

general purpose programmer who doesn't de-

pend on distributed computing abilities would

see Cloud's peculiarities as a nuisance.

On the other end of the spectrum, we have

distributed systems like Solaris MC and Con-

dor. Both of these provide distributed comput-

ing through a user-level layer that sits above a

UNIX operating system. Very minimal, if any,

changes to the kernel need be made. The layer

provides transparent distributed task manage-

ment by using existing features of the oper-

ating system. The result is a large amount

of overhead and signi�cant reduction in per-

formance. However, the cost of maintaining

the distributed operating system is simpli�ed.

These layered systems can rely on the vender of

the general purpose operating system to main-

tain the most volatile components of operating

systems, such as supporting new hardware de-

vices. Since the underlying operating system

caters to a more general user base, the issue

of providing operating system support for the

small community of distributed computer sys-

tem users is greatly alleviated.

However, these layer based distributed sys-

tems do have severe performance issues. It

would be convenient if there could be a way

to implement these distributed system features

within a popular kernel and still be able to man-

age this code separately from the rest of the

kernel. Sprite attempted to provide an e�cient

process migration mechanism in their kernel,

but chose not to automate it. The main reason

for this was that there were many di�erent goals

of the Sprite project, only one of which was dis-

tributed task management. The Sprite design-

ers wanted to minimize the e�ect process mi-

gration would have on other developing parts of

the operating system kernel. So they prevented

the kernel from actively migrating processes, so

that they could allow developers to test parts

of the operating system independantly of the

e�ects of process migration.

10



MOSIX attempts to provide distributing sys-

tem features by designing kernel extensions to

popular operating systems, such as BSD/OS

and Linux. The MOSIX developers produce

source code patches for particular versions of

the Linux kernel, and thereby allowing MOSIX

to be built as a kernel module. The e�ciency of

kernel mode distributed task management sup-

port is coupled with the advantage of integra-

tion with a widely used and maintained main-

stream operating system.

In conclusion, we predict that the approach

that MOSIX takes is most likely to be success-

ful in integrating distributed task management

features into mainstream operating systems.

References

[1] Partha Dasgupta, Richard J.

LeBlanc, Mustaque Ahamad, Umakishore

Ramachandran, "The Clouds Distributed

Operating System," IEEE Computer, Vol-

ume 24, 1991.

[2] Marvin M. Theimer, Keith A. Lantz,

"Finding Idle Machines in a Workstation-

based Distributed System," IEEE Trans. on

Parallel and Distributed Systems, 1988.

[3] Sau-Ming Lau, Qin Lu, Kwong-Sak Le-

ung, "Dynamic Load Distribution Using

Anti-Tasks and Load State Vectors," IEEE

Trans. on Parallel and Distributed Sys-

tems, 1988.

[4] Yousef A. Khalidi, Jose Bernabeu, Vlada

Matena, Ken Shirri�, and Moti Thadani,

"Solaris MC: A multicomputer OS," Pro-

ceedings of 1996 USENIX Conference, Jan-

uary 1996.

[5] Ken Shirri�, "Building Distributed Pro-

cess Management on an Object-Oriented

Framework USENIX 1997

[6] Rob Pike, Dave Presotto, Sean Dorward,

Bob Flandrena, Ken Thompson, Howard

Trickey, and Phil Winterbottom, "Plan 9

from Bell Labs",1995

[7] John K. Ousterhout, Frederick Douglis,

"Transparent Process Migration: Design

Alternatives and the Sprite Implementa-

tion" Software|Practice & Experience,

August 1991.

[8] Marvin M. Theimer, Barry Hayes, "Het-

erogeneous Process Migration by Recompi-

lation", IEEE 11th Int'l Conference on Dis-

tributed Computing Systems, 1991

[9] Amnon Barak, Oren La'adan, "The

MOSIX Multicomputer Operating System

for High Performance Cluster Comput-

ing," 1997.

[10] K.G. Shin and C.-J. Hou, "Design and

evaluation of e�ective load sharing in dis-

tributed real-time systems," IEEE Trans.

on Parallel and Distributed Systems, vol.

5, no.,7, July 1994.

[11] Chao-Ju Hou, Kang G. Shin, "Implemen-

tation of Decentralized Load Sharing in

Networked Workstations Using the Condor

Package," 1994

11


