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Abstract

Metasystems are geographically distributed networks
of heterogeneous computers on which a user can run
very large program sets and parallel programs.  We
explain the concept of transparency and how it is
presented to a metasystem client in five active
research metasystems.  We also judge the extent to
which this transparency will benefit the novice and
the expert user.  We consider transparency in terms
of five general areas: resource discovery, resource
management, security, user interface, and fault
tolerance.  In general, resource discovery has
sufficient transparency for both expert and novice
users; however, the research metasystems under
consideration differ widely in their implementations
of the other four areas. We discuss the differences in
those areas.  Based on our findings, we describe the
metasystems we would build to suit our user profile.

1.  Introduction

We take transparency to mean the extent to which
the users are aware their programs are running on a
metasystem as opposed to a single computer or
workstation.  Transparency can show or hide details
and nuances, which can be desirable or unnecessarily
complex depending upon the particular user.  We are
interested in seeing how the design of five different
research metasystems affects transparency to the
user.  We will also consider the effects of this
transparency on users and judge which forms of
transparency are more beneficial in certain situations.

Transparency is one of many factors that
should be considered when selecting a metasystem.
However, transparency should not be the deciding
factor.    Nevertheless, we feel that it is significant
because the level of transparency in a system’s
features will strongly affect how easily users will be
able to accomplish their computing goals.

We define transparency in terms of five
metrics: the means by which computing resources are
discovered, the means by which computing resources
are managed, the interface presented to the user, user

authentication and runtime process monitoring, and
the fault tolerance of the metasystem.  How each of
these five metrics is handled affects exactly what the
user sees and how the user will run their program on
the metasystem.

We take a metasystem to mean a
geographically distributed network of heterogeneous
computers on which a user wishes to run a
particularly large program set.  The motivation
behind using a metasystem instead of a single local
computing site is that the metasystem will most likely
provide higher cost effectiveness. That is, a
metasystem allows us to take advantage of existing
networks of machines, reducing the cost of adding
more computing power.  The low overhead of
modern networks makes the cost of using distributed
computing sites less of a performance factor.

A “more transparent” metasystem hides
more details of its implementation from the user and
limits user interaction with the underlying system
components.  Furthermore, the user should be less
aware of the effects of system details.  That is, a more
transparent metasystem should provide consistent
quality of service in a uniform interface.

We distinguish between novice and expert
users in this discussion.  The terms “novice” and
“expert” are used to represent the two opposite ends
of the user spectrum.  For the purposes of this paper,
we assume that the more transparent the metasystem,
the more desirable it is in general for novice users.
We assume further that expert users may wish to take
advantage of particular underlying features of the
metasystem.  Therefore, a less transparent
metasystem would be more desirable for expert users
in this case.  Although in our model we describe our
novice and expert users as disjoint entities, this is not
necessarily the case in practice.  Depending upon
their particular computing needs, they may share
some transparency requirements.  Also, typical users
are probably neither exclusively novices nor experts;
instead, based on their individual computing
requirements, they are likely to be somewhere in
between.
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The five metasystems we have chosen to
evaluate are: Condor, at the University of Wisconsin-
Madison; Globus, at the University of Southern
California and Argonne National Laboratory; Java
Market, at Johns Hopkins University; Legion, at the
University of Virginia; and WebOS, at the University
of California, Berkeley.  Although these systems vary
widely in terms of their maturity and purpose, they
all address valid concerns a typical user of a
metasystem might have.  Condor is interesting in that
its implementation addresses the issue of computing
on metasystems in a batch processing environment.
Globus and Legion are implemented in the context of
a highly distributed, heterogeneous environment.
WebOS and Java Market explore computing on a
metasystem in the context of the Internet.

Section 2 gives working summaries of the
metasystems we examined.  In Section 3 we show
how each of these research systems fits into our
transparency metric.  In Section 4, we present our
suggestions to both the novice and the expert
metasystems user.  Section 5 presents our
conclusions.  Our future work is outlined in Section
6.

2.  Summaries of Metasystems

2.1.  A Worldwide Flock of Condors

Condor is a system designed to distribute batch jobs
across a pool of workstations [8].   Its goal is to better
utilize the pool by transferring queued jobs to one or
more idle machines.  A Condor pool consists of
machines connected by a local area network.  A
Flock of Condors extends the system by
incorporating multiple Condor pools connected by
either a local or wide area network.

The Flock of Condors uses both centralized
and distributed server models, as seen in Figure 1.
Within each pool, a single Central Manager (CM) is
responsible for matchmaking between the idle
machines and the waiting jobs.  To form the Flock, a
dedicated gateway machine is installed within each
pool.  Each gateway maintains and represents a list of
all the idle machines outside of the pool to the CM.
The CM views the gateway machine as any other
member inside the pool, but with many free
resources. There is no central server in the Flock
since the free resource list is distributed on all
gateways.

Matchmaking between idle machines and
waiting jobs is done with a “classified

advertisement”, or Classad, system [14].  Both the
idle machine and waiting job will submit a Classad to
the CM.  The Classad contains constraints on what
each idle machine is able to provide and what each
waiting job needs.  With the information supplied by
both parties, the CM uses a predefined matchmaking
algorithm to pair the request Classad with an idle
Classad.

Once a match is found, the waiting job can
be transferred to the free machine.  This is done with
the migration and checkpointing mechanism [13].
The checkpointing mechanism allows Condor to save
important process states at regular time intervals.
These two mechanisms not only allow the relocation
of an unexecuted process but also the stopping and
migration of a running process when necessary.

Users submit batch jobs in the same way
they would to a regular batch job interface.  The
programs can be executed on the local machine or be
distributed to other idle machines in the Flock
without additional modification.  Once the machine
owner decides to participate in the pool, the owner
should not see any degradation in performance.  This
is achieved because guest processes are relocated to a
host machine only when it is idle.  When the owner
returns and becomes active, the guest processes are
stopped and moved using the checkpoint and
migration mechanisms described above.

Figure 1.  A Flock of Condors.
Source: D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers,

and J. Pruyne.  A Worldwide Flock of Condors: Load
Sharing among Workstation Clusters.  Journal on
Future Generations of Computer Systems Volume 12,
1996.
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Since a single Condor pool is not a true
metasystem as given by our definition, we will only
consider a Flock of Condors in this paper.  For the
sake of simplicity, we will simply refer to a Flock of
Condors as “Condor”.

2.2.  Globus

Globus is a metasystem that provides a toolkit or
“bag of services” to its users [9].  This toolkit
provides a “translucent” interface to users by
providing services that layer upon existing services.
The idea behind this is to provide high level services
which can still exploit a resource’s low level services.
Each service provided by Globus is meant to be
distinct so that users can incrementally build up their
programs by adding more services.  Likewise, this
gives users a choice of which services they want to
use (i.e. users are not required to use all of the toolkit
in order to run under Globus).  The following are
services provided by the Globus Metacomputing
Toolkit: resource management, information, security,
communication, health and status, remote data
access, and executable management.  These services
are described below.

In terms of resource management, Globus
provides the Globus Resource Allocation Manager
(GRAM) [7] which layers on top of existing local
resource management systems, as shown in Figure 2.
One component of GRAM is the gatekeeper, which
provides authentication of the Globus user to the
local resource and starts up a job manager.  The job
manager creates and manages the user request.
GRAM also provides a client library, which gives
users the ability to submit job requests to remote sites

and authenticate with the remote site.  In addition, a
reporter communicates descriptive information about
the host and its current status to the information
service.

Globus’ information service is called the
Metacomputing Directory Service (MDS), which
utilizes the Lightweight Directory Access Protocol
(LDAP) [10].  The MDS organizes the Globus name
space into a tree that allows the user to query for
available resources.  One type of query is a “white
pages” lookup in which, given a host name, contact
information about the gatekeeper would be returned
(i.e. IP address and port number).  A “yellow pages”
query would submit attributes about the type of hosts
it was looking for and receives in return a set of
machines that matched those attributes.  Therefore,
users can find resources to execute their program
provided they have the necessary authentication to do
so.

The Globus Security Infrastucture (GSI) [9]
layers on top of a resource’s underlying security
system  such as plaintext passwords or Kerberos.
The GSI performs authentication using the Secure
Socket Library (SSL) protocol.  Once authentication
is performed, the gatekeeper of the machine checks to
see if the user has permission to use the machine.  In
order to execute on a remote machine, a Globus user
must have a local user account on that machine and
be permitted to execute as a Globus user on the local
machine.

Health and status in Globus are provided by
the Heartbeat Monitor (HBM) [9], which is described
further in Section 3.5.  Briefly, Globus provides a
unicast and multicast communication service called
Nexus that has been used to implement a version of
the Message Passing Interface (MPI). Remote data
access is provided by Global Access to Secondary
Storage (GASS), and Globus Executable
Management (GEM) provides executable
management.  These last three services will not be
discussed in the context of this paper.

2.3.  Java Market

Java Market is a metasystem that allows user jobs to
be run on any machine that wants to participate
without any installation or platform-dependency
issues [4].  Java Market jobs must be written in Java,
and the job’s source code must be submitted to the
Market for inspection.  In theory, the Market would
act as a “broker”, matching user jobs (consumers)
with machines willing to sell CPU cycles to the
Market (producers or “hosts”).  Figure 3 shows a

Figure 2.  Globus resource management architecture.
Source: I. Foster and C. Kesselman. The Globus Project: A

Status Report.   Proc. IPPS/SPDP ’98 Heterogeneous
Computing Workshop, pp. 4-18, 1998.
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block diagram of the Java Market architecture.  The
consumer jobs are written in Java so that they can be
executed on any Java-enabled host.  The Market is
centralized; one Market accepts user jobs and host
machines, and matches jobs with hosts. To register a
job, a user would point their Java-enabled browser to
a Java Market web page, and follow the instructions;
likewise for a host system.

The Java Market takes a capitalistic
approach to its scheduling policies. Unlike other
metasystems in which hosts offer wasted CPU cycles
for free, in Java Market, hosts are “rewarded” for
participation. Users register their jobs and pay a
“fee”; hosts register their services with a price tag
attached.  A host with a higher price tag would have
desirable characteristics such as a fast CPU, high
reliability, and high availability.  Java Market
matches user jobs with hosts and collects the
difference between the host price and the user fee,
with the goal of maximizing its profit.  To prevent the
Market from being an unscrupulous matchmaker (i.e.
matching a high-paying user with a cheap host  and
pocketing the profits), the user states a job deadline
that the Market must meet  in order to receive the
user's fee. The “fee” and “reward” need not be
monetary; a Market operating within a corporate
intranet might use an arbitrary token system to
impose different cycle utilization limits on different
divisions.

A unique feature of the Java Market is its
user job placement strategy, also known as the
“Winner Picking” strategy [5].   Given a user job and
a set of compatible hosts, Java Market determines

with a high degree of probability which host will stay
alive for the duration of the job, and then places the
job on that host.  Specifically, suppose a user job
takes d steps (where a “step” is an arbitrary uniform
time unit) to complete, and at least one of the n hosts
will be available for at least D ≥ (3 d log n) steps.
Then, a host which will be alive for at least d steps
can be selected with probability of at least 1 – O ((d
log n) / D) [5].   This strategy can be employed even
when D is not known, although in that case
performance bound would be maintained over a
larger set of jobs, and the number of jobs that may
have to be killed and restarted increases to order (log
n).

2.4.  Legion

Legion is an object-oriented metasystem that presents
to the user a single virtual machine with the
following objectives:

site autonomy; an extensible core; scalability;
easy-to-use seamless, computational,
environment; high performance via
parallelism; a single persistent object space;
security for users and resource providers;
resource management and exploitation of
heterogeneity; multi-language support and
interoperability; and fault tolerance [11].

Legion is designed to accommodate workstations,
vector supercomputers, and parallel supercomputers
connected by either local or wide area networks.  It is
built on a uniform programming model based on a
core set of objects or mechanisms which users and
resource providers can customize to meet their needs.

The Legion environment is viewed as a
system comprised of objects that communicate with
one another using function calls [11].  All objects
belong to a class that is also considered to be an
object.  Furthermore, each class is responsible for
implementing its own security and object placement
policies using Legion-provided mechanisms.  In
addition, objects must create instances of their
objects and maintain the location of these instances in
case others would like to contact them.  So, given
that users have access to a set of objects within what
is called a context domain, they can possibly add
more objects provided they have the necessary
authentication.  However, in order for users to add a
new object into their context domain, they would
need to be able to locate it within the global name
space.

In Legion, objects are identified by unique
Legion Object Identifiers (LOIDs) [11].  A LOID can

Figure 3.  The Java Market architecture.
Source: Y. Amir, B. Awerbuch, and R. S. Borgstrom. The Java

Market: Transforming the Internet into a Metacomputer.
Department of Computer Science, The Johns Hopkins
University, Technical Report CNDS-98-1.

Resource Manager

Market Manager (negotiations)

Launch Applet Launch Applet Launch Applet
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contain up to 216 – 1 bytes of information such as its
public key, class identifier, and an instance number
of the class.  In order to communicate with another
object, an object binds the LOID to a low level object
address that gives the location of the object (i.e. an IP
address and port number).  In order to get a binding,
an object either contacts the object’s class itself or
contacts a Binding Agent who knows exactly where
certain instances of objects are located.  Each object
is given a standard set of bindings when it is created
so it can seek out all objects from there.
Additionally, since a machine has limited resources,
it is not possible to keep all instances of objects as
active processes at all times.  Therefore, Legion
provides a mechanism to deactivate (i.e. put in
secondary storage) and then reactivate an object.

By using a given set of core objects, users
can build up their own environments and develop
applications.  One example of a core object is the
host object, which basically guards access to a host
machine and performs resource management.
Another example is the vault object, which is a
storage area for objects to go when they are
deactivated.  The user’s context space is also a core
object.  Figure 4 shows an example of the
relationship between core objects.

2.5.  WebOS

WebOS seeks to exploit the large number of
computers connected to the Internet as its distributed
network of heterogeneous machines [15].  Client-side
Java applets enable any authorized client with
Internet access and a Java-capable browser to make
use of the services provided by a variety of remote
servers.

WebOS is designed to support a variety of
different services over the Internet, such as chat
services, news and weather updates, remote
computing engines, and distributed web servers.

These services range from the highly application
specific, such as the chat services and the news and
weather updates, to the more general, such as the
remote computing engines and the distributed web
servers.  The types of services we consider here are
similar to the WebOS services “Remote Compute
Engine” and “Rent-A-Server” [15].  The “Remote
Compute Engine” allows computing centers to permit
access to their machines via the Internet.  “Rent-A-
Server” allows overloaded web servers to offload
some of their web page and script requests
temporarily onto other machines.

It is significant to note that in all the other
metasystems considered here, there is a single set of
developers writing the metasystem operating code.
These developers are separate from the end users,
which create their own programs on the metasystem.
However, WebOS has separate developers writing
the server system and the service code.  Therefore
there is a difference between the WebOS developers,
who write the general architecture; the developers of
the services that run on WebOS; and the end users,
who run their own programs using these provided
services.  Because the service developer does not
exist as a separate entity in the other projects, we will
consider “users” to be the end users who run their
own programs in the metasystem environment.

With this in mind, we summarize the user’s
view of the WebOS environment regardless of the
application being run.  Users first identify via a web
browser a service they wish to use.  The user then
downloads a Smart Client from the location pointed
to by the service hypertext.

Figure 5 depicts the Smart Client model.
The Smart Client, when downloaded to the local
machine, copies a client interface applet, a director
applet, and a preliminary listing of servers that can
possibly provide the requested service.  The applets
run entirely on the client’s machine, though not

Figure 4.  Legion object creation.
Source: Legion 1.4 System Administrator Manual, p. 31,

November 9, 1998.

Figure 5.  WebOS Smart Client service access model.
Source: C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T.

Anderson, and D. Culler.  Using Smart Clients to
Build Scalable Services.  Proceedings of USENIX
’97, January 1997.
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necessarily in a web browser.  The client interface
applet provides the user interface via the web
browser; the user issues commands and requests via
this interface.  The client interface applet provides a
means of interaction specific to the particular service
being provided.  The client interface applet also
makes requests to the server similar to remote
procedure calls.  The director applet handles all other
communication to provide authentication,
dynamically update its resources list, and process
responses from the server.  The primary listing of
servers allows the director applet to “bootstrap” by
identifying a potentially free server and beginning
execution [16].  Because servers are accessed via the
Internet, servers are simply named using their URLs
and IP addresses.

The client-requested process runs in its own
virtual machine on a remote server.  The resource
manager on the server is responsible for managing its
own resources and turning away or warning new
clients of possibly poor response time.

File accesses on remote servers are done
using WebFS [15].  This is essentially a file system
that uses the URL name space to identify files on
remote servers.  Ultimately the designers hope to
provide IP multicast support in WebFS to allow for
easier file updates and cache invalidations.

Authentication is done via the CRISIS
security protocol.  This is described in more detail in
Section 3.3.1.

3.  Analysis of Transparency

3.1.  Resource Discovery

All the systems under consideration are in a state of
flux.  New machines come into the pool of known
resources all the time; likewise, existing machines
crash or become otherwise unusable.  Because the
machines attached to the network are in this state of
flux, it is important to be able to discover whether
resources have been added to or deleted from the
known pool.  The process of updating the status of
the resource pool we call resource discovery.

The metasystem is responsible for knowing
about all available resources as they are added to and
deleted from the known pool.  Whether or not the
user is aware of resource pool updates is entirely
system-dependent.  For the most part, resource
discovery mechanisms vary in user transparency via
its side effects; that is, the user is aware that resource

discovery is going on only by noticing changes in
metasystem performance.

WebOS is unique from the other projects in
that it can potentially affect processes on the local
machine.  All resource discovery is handled via
interaction between the client-side director applet and
the servers providing the requested service [15, 16].
If updating the local known resources list is
unusually CPU-intensive, the client will be adversely
affected by the resource discovery mechanism
because the director thread will use a large fraction of
the CPU time.  However, the discovery of new
resources allows migration of computation to less
heavily loaded servers between calls to the server.

Java Market, like all of the other projects,
benefits most from resource discovery when more
machines can handle more work.  Since processes in
general cannot be migrated during execution, users
will likely benefit the most if they frequently run
processes on the Java Market.  If more machines are
available on subsequent runs, the user will probably
see a performance increase as well as a decrease in
cost for services.  The computational cost of adding
new resources has no bearing on the user as this is
handled via the resource manager.

The Java Market resource manager itself has
little overhead in discovering new resources, as
resources are handled by a central database.
Administrators wishing to add their machines to the
market simply enter the necessary naming and
resource information on a web page.  The central
database is updated automatically.  The user does not
see extra overhead incurred by having the resource
manager handle the computational cost of adding a
database entry.

Condor is similar to the Java Market in that
currently running processes will not be able to take
advantage of newly added resources until they are
migrated.  That is, currently running computations
will not be shifted to the new machines unless local
activity pushes the computations off the current
machines.  Users will therefore see the most
improvement in performance if they run many
processes or their processes migrate frequently.

Legion and Globus use a metasystem-side
mechanism for handling resource discovery [11, 9].
Therefore the computation cost of maintaining the
free resources is not imposed on the local machines.
Unlike the rest of the projects, Legion and Globus
can benefit directly from the addition of new
resources; that is, both systems allow programs to
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redistribute their workload dynamically when better
resources are available.

3.2.  Resource Management

We refer to the placement of user jobs on specific
machines as resource management.  The resource
manager’s action will directly affect the quality of
service to the users.  In general, a smart resource
manager will schedule processes in such a way as to
maximize use of all the resources at all times.  In
doing so, a good resource manager will both improve
turnaround time of processes and increase the total
number of possible users.  A metasystem is most
cost-effective when it can handle as many users and
processes as possible as quickly as possible.

All the projects under consideration offer
different levels of resource management transparency
to the user.  These levels range from total
transparency, where the user has no involvement, to
almost no transparency, where the user is allowed
significant control of resource management.   The
involvement can include more than the initial
matchmaking process, but also maintenance of
running processes.

In WebOS, resource management does not
come from a centralized resource manager.  Instead,
resource management arises from the interaction
between the director applet and the servers providing
the desired services [15, 16].  Therefore, in a good
resource manager for WebOS, the director applet will
use dynamic information to determine the least
loaded server and pass this name up to the client
interface applet.  The servers will provide enough
information about their current loads and capabilities
for the director applets to make a good choice.
Furthermore, the servers will be able to determine
when their resources are fully loaded and be careful
not to take on any more processes.  Transparency in
resource management comes from the idea that the
director applet and the server working synchronously
will always provide the client interface applet with
the highest quality of service.  In the case of WebOS,
the client interface applet never knows what is being
done to find the best machine; it only knows that the
director applet somehow passes it the best machine
name.  Nevertheless, the client cannot otherwise
choose which servers on which to run the remote
program.  It should also be noted that if the director
applet is wasteful of CPU cycles, the resource
manager is not transparent at all to the client.

Like WebOS, Java Market clients cannot
explicitly choose the machine on which to run their

processes.   The resource manager selects the
machine on which to run the process using the
Winner algorithm [5], which gives a reasonably high
probability that the selected machine will be
sufficient to finish the process within the given time
and without crashing.  The design of the Java Market
assumes the typical user will not care which machine
is used as long as the job finishes in the specified
running time.

The Java Market user can only affect which
machine to use by changing the running time
parameter and the amount of money paid to the
market.  If the client had some prior knowledge as to
what machines may be in the market and running at
the time of process submission, it would be possible
to skew the input parameters to target a specific
machine.  However, the Java Market does not give
clients information about the exact machines in the
market and does not divulge the machine on which
the process actually ran.  There is no guarantee that
skewing the input parameters will cause a client to
receive a particular machine; the client can only
guess as to the outcome.

Thus the Java Market is not completely
transparent to the client.  The client has a degree of
control over how resources are allocated to their
process.  Nevertheless, the exact management
mechanism remains invisible to the client.

In Condor, users have more flexibility in
controlling how their jobs are matched to resources.
When the user submits a job to the queue, a Classad
will be generated for the user using parameters from
the job submit script.  The Classad includes important
information such as memory, disk requirements, and
architecture type [14].  The idle machines also send
Classads detailing what each machine is capable of
doing.  The Central Manager uses a simple
matchmaking algorithm in which the first fitting pair
is considered.  Both the requester and provider are
notified after the initial match and negotiation is done
between them without CM intervention [8].  If the
negotiation fails due to circumstances such as the
resources no longer being available, the request is
resent to the CM and another match is attempted.

Condor not only shields the user from the
matchmaking algorithm, it also prevents the user
from participating in the maintenance of the process.
When the process is required to move because the
owner needs the resource, migration is done without
intervention from the user and the owner.  The guest
process simply sends out another request Classad to
the CM and another match is executed.  The users



8

can, however, kill their jobs from the queue and
query their jobs’ status.

Both Legion and Globus are aware that a
single algorithm can not effectively do matchmaking.
Therefore both provide the means for the user to have
control over how resources are managed.  In Globus,
resource management is done by the “broker” [7]; in
Legion, this is done by the “mapper” [12].

Instead of a general permanent
matchmaking algorithm, Globus and Legion have the
ability to replace the broker or mapper, respectively.
In Legion, the user is allowed to design and use a
completely new algorithm in place of the default
mapper.  The user also defines an algorithm in
Globus; however, Globus does not provide a default
broker.  This replaceable design is based on the
assumption that an all-inclusive algorithm is not
necessarily the most efficient way of doing resource
allocation.  The user writing the mapper or broker
will probably have a clearer understanding of the
details of the resources needed and thus be able to
make smarter decisions.

Globus uses the Resource Specification
Language (RSL) [7] to communicate the needs of the
program to the broker.  RSL is a simple language
which combines parameters and conditions using
operators such as & (conjunction) or | (disjunction).
Legion also has a query language that communicates
resource requests to the resource manager.  Globus
and Legion are more flexible than Condor because
they are actively involved in the refinement of
resource queries, whereas in Condor the user only
interacts with the query once.  By refinement, we
mean taking a general query and breaking it into
more specific requests to the information server.

Legion’s and Globus’ replaceable matchmaking
algorithm, in conjunction with a flexible request
language, gives the user control of basic resource
management if it is desired.  However, a consequence
of this flexibility is the user loses some transparency.
The user will need to know the interface to the
resource database in order to write a mapper or
broker.  Even if the user decides to use the pre-made
mapper or broker, the user still needs to learn a
request language such as RSL; this is more complex
than how requests are submitted to the other
metasystems.

3.3. Security

There are several security issues in metasystems that
affect the transparency of the system to the user.

Some of the more important security issues are
authentication, monitoring the user's job on host
machines to prevent the job from operating outside
its prescribed bounds, and the privacy of user data on
foreign hosts.  In this paper, we focus on the
transparency level of our metasystems in two security
issues: authentication, and monitoring user jobs on
host systems.  We omit discussion of the other
security issues because they are not sufficiently
addressed in current publications to be of use here.

3.3.1.  Authentication

Authentication is described in [9] as “the process by
which one entity verifies the identity of another”. We
define authentication transparency as the level of
awareness a user has of a metasystem’s underlying
security mechanism.  Authentication transparency
varies from metasystem to metasystem.  In some
environments, a client may have to verify itself
explicitly with two or more entities: the metasystem
itself, and potentially one or more underlying host
machines being used by the metasystem.  In other
environments where all user jobs are trusted, or
where security breaches are almost impossible
(“everything-is-bolted-down” environments), the user
may not need to do any sort of explicit authentication
at all.  In this section, we highlight the features of
metasystems, which promote authentication
transparency, and those features that diminish it.

Java Market is designed to be used by
anyone with access to the web and a Java-enabled
web browser, so within Java Market there is no
concept of “user authentication”.  All users are
considered “trusted”, because all user jobs must be
written in Java, which is considered to be inherently
secure.  Also, because Java applets run only on Java
Virtual Machines (JVMs), there are no authentication
issues with the host machines.  Therefore, Java
Market’s reliance on implicit Java security instead of
some external mechanism promotes authentication-
transparency.  Note that the Java Market architects do
not mention any secure credit transaction scheme for
payment.  Future addition of an authentication
scheme for payment might affect transparency to the
user; we do not consider the possible effects here.

Condor has a similar policy to Java Market
in that there is no metasystem-wide “user
authentication” performed; it is based solely on a
user’s local login to a machine.  In other words, in
order to submit jobs to a pool, the user only needs to
be locally logged on to a machine that is a member of
a Condor pool [8].  The idea behind this is that it is
assumed the user will be the owner of that machine
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and thus will be a mutually benevolent contributor to
the Condor pool.  Since the user does not need to do
anything special to perform authentication with the
Condor pool, we can describe Condor’s interface as
one that promotes authentication transparency.

The authentication interface in Globus needs
the user to login just once per session with any one
node of the metasystem [9].   This login is done using
public key cryptography.  From that point on, the
metasystem handles authenticating the user on host
systems.  Once the user has logged on, the system
creates a proxy, which negotiates access to resources
on the users' behalf.  The proxies can be mapped onto
access credentials that the host machines use, e.g.
Kerberos.  If there are several security systems in
place on a host machine, Globus also includes a
negotiation algorithm, which lets the proxy interact
with the host machine to settle upon a mutually
agreeable security mechanism. Although not as
authentication-transparent as Condor or Java Market
(at least one metasystem login is required), Globus
does encapsulate all the authentication interactions
with underlying resources and host systems.

Authentication transparency in Legion is on
a level similar to that of Globus.  The Legion user is
only required to do a single login to the metasystem
[11].  Once the user’s password is matched with valid
user ID, a certificate is generated for the user by a
local authentication entity (an object).  This
certificate is implicitly passed in all interactions with
other objects in the system.

WebOS’ authentication is done via its own
CRISIS security architecture [6].  As in Legion, in
WebOS a user will type in a password at a login
domain.  The login domain will authenticate the user
through the user’s home domain.  The user’s home
domain will pass back the user’s identification
certificate and transfer certificates.  A transfer
certificate would give a user a subset of privileges
from another user or machine.  Users keep their
identity and transfer certificates in a “purse”.  This
similarity in login mechanism means that WebOS has
a level of authentication transparency similar to that
of Legion.

3.3.2.  Behavior Monitoring

Metasystems are composed of multiple machines,
usually operating in different administrative domains
and not under the metasystem's direct control.  An
ideal metasystem would take steps to ensure that the
user job respects the host, for example by preventing
the user job from accessing private host resources

without permission.  We call this form of runtime
checking behavior monitoring.  Generally speaking,
behavior monitoring and fault tolerance is similar
because both are concerned with managing errors that
might occur as a job executes on a metasystem.
However, they are different on a lower level of
abstraction because behavior monitoring policies try
to prevent bad things from happening, while fault
tolerance policies try to recover gracefully when bad
things happen.  This notion in hand, we describe
behavior-monitoring transparency as the degree to
which a user is aware of and/or affected by a
metasystem’s behavior monitoring policy.  In a
metasystem that encourages behavior-monitoring
transparency, the user has very little (if any)
awareness of the metasystem’s efforts to keep a job
within its bounds.

First, we consider Condor.  Once a job is
submitted and has been accepted by the idle machine,
it can execute in any matter it wants subject to the
restrictions of the Standard Universe, as described in
Section 3.4. [2]. However, by the protocol of non-
interference, a job would not be able to do anything
malicious to the host.  For example, if a program
contained an infinite loop, it would not be able to
consume CPU cycles indefinitely because the
program would eventually be migrated when the
owners came back to use their machines.  On the
other hand, the program would most likely be
migrated to another machine and do the same thing
there.  Thus, protection to the host machine is
actually a subset of the Condor’s policy of non-
interference, which is hidden from the user.  We say
that Condor’s behavior monitoring policies promote
behavior-monitoring transparency.

Java Market takes the more authoritarian
approach of editing the user's source code to prevent
the recompiled executable from violating its
boundaries [4].  It also edits out potentially dangerous
function calls, such as the ability of an applet to
resurrect itself after it is killed, and forces the
application to adhere to strict Java applet coding
standards.  This is done because the limitations of
Java applets preclude a user process from doing a
subset of security breaches: Java applets cannot write
to a host's disk, nor can they establish network
connections with other machines behind the host
system's firewall [4].  Java Market's behavior
monitoring policy requires no user intervention, so it
encourages behavior-monitoring transparency.
However, it is unclear whether the modifications to
the user's code always produce results that the user
originally expected. If these silent modifications to
the user’s job produce unintended results, then the
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policy discourages behavior-monitoring
transparency.

Globus monitors user jobs executing on host
systems [9].  Specifically, when queried, the GRAM
job manager will return the current state of a user job.
However, Globus does not use these status reports to
verify that the user job is executing within its
prescribed bounds.  Although it is possible for users
to take the GRAM status reports and implement their
own behavior monitoring policy, Globus by itself has
no policy that encourages behavior-monitoring
transparency.

WebOS also employs a runtime security
checking scheme [6].  Whenever a request is made to
a host, the request is either granted or denied based
on the user’s access level.  Whenever users make
requests to a remote site, their “purses” are implicitly
transferred there.  First the user and remote site
mutually authenticate themselves via a trusted
certificate authority (CA) and then the remote site
checks the user’s transfer certificates to ensure that
the user has the appropriate permission to invoke the
request.  Basically, anyone who is considered to be
trusted by the remote machine via his or her
certificate may execute on that remote machine (i.e.
no local login required).  This “purse” scheme
promotes behavior-monitoring transparency, because
user processes are kept in check, and the user is
unaware of the underlying mechanism that does so.
Further, the user's job runs within a virtual machine
that provides protection to the remote machine and is
also transparent to the user.

Legion is similar to WebOS in that a job’s
access to the rest of the metasystem is controlled.
Unlike WebOS, security in Legion is provided on an
object basis [3].  Each object is guarded by a
MayI() function which basically provided access
control.  The MayI() function is implicitly invoked
whenever a user invokes a procedure of an object.
The MayI() function can be implemented for each
object and/or for each procedure within that object.
The default implementation of MayI() is to only
allow procedure calls from itself and other objects
within its class.  However, it can be further refined by
using deny and allow access control lists.  Because
the MayI() call is implicit, we can say that Legion
promotes behavior-monitoring transparency. An
alternative security schema would be to use
certificates, in which case the object would verify the
signature of the certificate and attempt to match the
name of the procedure being invoked with that
contained within the certificate.

3.4.  User Interface

In the context of metasystems, the term “user
interface” is more inclusive than its common
interpretation.  An “interface” in this context can
include a set of libraries, a coding convention, a
programming language, a script, or the standard
“GUI” and command-line interface. We define UI-
transparency as the relative amount of modifications
that a job must undergo in order to run on a particular
metasystem.  We posit that the less work a user must
do to prepare a job for a metasystem, the less
awareness the user has of the metasystem’s
underlying interface complexity, hence the greater
UI-transparency of the system.

Java Market has a relatively simple user
interface: users point their web browser to a Java
Market web site, submit a job's Java source code to
the Market “broker”, then await the results via email.
There are no explicit provisions for parallel
execution.  At best, a user can submit several jobs to
the Market at the same time, and depending on
resource availability, the jobs will execute in parallel.
Java Market promotes UI-transparency because no
effort is required from the user to prepare a job to run
in the system. However,  if the user’s goal is parallel
execution, Java Market’s lack of an explicit parallel
execution policy diminishes transparency.

In WebOS, the interface presented to the
user is simply the client interface applet.  This
interface should abstract away the details of service
invocation from the user.

For Condor, little interaction is needed to
submit a job to the pool other than choosing the
environment to execute in and writing a script to
submit the job [2].  There are three types of execution
environments in Condor.  The first is the Standard
Universe in which case Condor will provide
automatic checkpointing and migrating of the user’s
job (discussed further in Section 3.5).  This only
requires that programs be relinked with Condor
libraries.  However, there are restrictions imposed on
the type of jobs submitted such as disallowing multi-
process jobs and IPC calls.  The second environment,
Vanilla, requires no modification of the executable,
however neither automatic checkpointing nor
migration is performed (i.e. the job’s current state
will be lost).  Finally, the third type of environment
allows execution of programs written in PVM.
Therefore, all of these execution environments
promote UI-transparency.
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Condor uses a submit-description script to
submit a job to the queue, therefore it is similar to
using any other batch processing system [2].  The
script specifies the job name to execute and its
requirements and preferences.  This information is
then used to generate the job’s Classad.  Once
submitted to the queue, a user can monitor or remove
the job.  Optionally, users can specify whether or not
they want to be notified when their processed get
migrated.  When the job is completed, Condor will
notify the user and give it statistics on how much
CPU and wall clock time it took.

The Globus user interface is essentially the
Globus Metacomputing Toolkit, a set of components,
which provide security, resource
location/management, communication, and other
services necessary to make a job Globus-aware [9].
Developers can select services from the Toolkit in
whichever combination that fulfills their needs.
Globus claims that because its Toolkit consists of a
modularly disjoint set of services, Globus customers
need not rewrite their entire application to make it
Globus-aware; incremental augmentation is possible
[7].  While the toolkit “bag of services” interface aids
in incrementally building Globus applications, the
interface diminishes UI transparency by exposing
underlying system components to the user.  When
building a Globus application, a user must explicitly
include GRAM, MDS, HBM, GASS, and other
packages.

Legion’s user interface provides a similar
level of transparency as Globus.  In terms of creating
an application, a Legion user can write a program in a
high level language which is then compiled with a
Legion-targeted compiler and linked with the Legion
Runtime Library (LRTL) [11].  One high level
language that Legion provides is the Mentat
Programming Language (MPL) which is described as
a parallel C++ language.  The idea behind MPL is to
simplify the construction of parallel programs by
having the programmer specify the parallelism and
letting the compiler take care of the details of
implementing the parallelism.  Additionally, the
parallel computing tools Message Passing Interface
(MPI) Parallel Virtual Machine (PVM) are available
in C, C++, and Fortran.  Also, Basic Fortran Support
and Java are supported by Legion.  It is also possible
to execute existing “legacy” codes written in C,
Fortran, and Ada with minimal changes.  Users
wishing to learn little about Legion may choose to
use Legion’s MPI or PVM to create their applications
and thus not need to learn the details of the Legion
environment.  This promotes UI-transparency.  On
the other hand, more advanced users may want to

learn MPL and become familiar with Legion’s
object-oriented framework.  In this case, UI-
transparency is diminished.

Legion’s environment is different from
those of the other systems in that once users have
logged on, they are allowed to interact only within
their context spaces [1].  This is organized as a Unix
directory hierarchy.  Contained within this hierarchy
are all user-related host objects, files, executables,
other context spaces, etc.  The user can traverse their
context space using Unix-like commands (e.g.
legion_ls, legion_mv).  Optionally, the user
may navigate through their context space using a
Java GUI called the Context Manager.  In order to
start up a job on a remote machine, the executable
must first be registered.  This will create an object to
manage the program (i.e. if there are different
executables for each environment on which the
program will run).  Even though this interface bears
similarity to existing environments the user will still
need to spend time learning how to use it, which
diminishes UI-transparency.

3.5.  Fault Tolerance

Metasystems are most useful to people who need to
execute jobs that are too large to run on one machine,
or jobs for which parallel execution is a natural
choice. In general, executing a large, long-lived job
brings up fault tolerance and recovery issues, even
more so if the machine executing the job has multiple
points of failure.  If the completed sub-tasks of a
large job cannot be saved, the sub-tasks can be lost in
the event that their host system crashes.  If this were
to happen,  the time saved by parallel execution
would be lost by having to re-execute sub-tasks.  In
this section we focus on our metasystems’ policies on
managing failure among one or more host machines,
and their features which promote or diminish fault-
tolerance transparency, which we define as the
degree to which the user is made aware of failures
relating to their job.

Condor’s fault tolerance policies promote
fault tolerance transparency because errors are
handled solely by the system (given that the user
executes under the Standard Universe).  The CM
detects failures when it no longer receives updated
status messages from the host machine.  As is the
case of security, fault detection and recovery are
handled by the mechanisms provided for the non-
interference policy with the owner, namely
checkpointing and migration.  Checkpointing a
process involves periodic saves of the process state
by writing to a file the process’s data and stack
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segments, file information, pending signals, and CPU
state [13].  For Condors, the checkpoint file is sent
back to the host that submitted it where it once again
may be rescheduled.  To resume a process on another
machine, a new process is created and manipulated
such that it attempts to restart at the same place as
where it left off.

Similarly, in WebOS, error recovery would
be provided by the service (i.e. via the director
applet).  The director applet could be implemented to
send keep alive messages or use timeouts to
determine failure of servers [15].  Additionally, the
director applet could restart the job on another
machine without the user being aware of it.
Maintaining the statefulness or statelessness of a
process would be dependent upon the director applet
(i.e. it would depend upon the type of service being
offered).

There are no provisions within Java Market
to alert the user of host system failures. The Market
stays in constant contact with all host systems, and if
a host system disappears/crashes while executing a
user’s job, the job is restarted on a new machine.  If
no such machine is available, after some time the
Java Market will return the job to the user and
indicate that the job request failed.

Unlike its metasystem peers, Java Market
claims that its job scheduling policy is clever enough
to place jobs on hosts that will remain functional for
the lifetime of the user’s job, with a high degree of
statistical probability [5]. Specifically, if at least k of
n host systems will be available for D units of time,
then Java Market claims that with probability at least
1 - O(1/n), they can schedule (k log n) jobs with
lower bound of Ω (D / log n), and those (k log n) jobs
will complete.  While this is a good statistical bound
for performance, it is unclear how performance scales
in the “real world”.

Java Market attempts to reduce the number
of faults which occur on active hosts by maximizing
the probability that a job is assigned to host that will
remain available long enough to complete the job.
This scheduling policy promotes fault-tolerance
transparency by minimizing the number of times Java
Market would need to restart the user’s job, an action
which would not be performance-wise transparent to
the user.

The Globus system monitors the status of its
components using the Heartbeat Monitor (HBM)
service.  The HBM is designed to monitor the “health
and status of a set of distributed processes” [9].  It

consists of a client interface, and a data collection
“status” set of services.  The HBM client uses the
interface to register with the object it wants to
monitor, and the object in turn sends the client a
regular “heartbeat”.  If too many heartbeats are
missed, the HBM service attempts to determine the
cause.  The cause of error is returned to the process
that established the HBM.  Recovery is completely
user-dependent: once the user is notified, it is up to
the user to dictate what happens next.  If the user
chooses to implement a checkpoint policy, the
process can be resumed from the last checkpoint;
otherwise the user can restart the job. While Globus
detect errors on host systems without user
participation, it diminishes fault tolerance
transparency by expecting the user to implement their
own fault recovery policy.

Like Globus, Legion provides a less
transparent fault tolerance interface to the user.  It has
a fault detection method, but not a fault recovery
mechanism.  In Legion, host faults would be detected
through the regular checking for stale objects.  An
object is considered to be stale after a number of
repeated failed communications [11].  Thus if a
program attempts to access a host object and fails, the
programmer would receive an error and would need
to appropriately recover from it.

4.  Recommendations

We have so far seen how the features in our
considered systems promote or diminish transparency
to the user.  We now consider these features in the
context of the novice and the expert user.

Our novice user in general requires a greater
level of transparency.  That is, the novice user would
like simply to drop a program into the metasystem
and collect the results in the end with as little
modification of the existing code and as little
understanding of the underlying system as possible.

On the other hand, the expert user will
probably want less transparency than the novice user
in order to manipulate the metasystem with finer
granularity.  The expert user is more likely to have a
better understanding of the underlying system and
has probably optimized their program to take
advantage of various low-level features offered by
components of the metasystem.  Thus the expert user
might want to be able to control program behavior in
the system beneath the higher level abstractions
presented to the novice user.
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4.1.  Resource Discovery

Resource discovery in the metasystems under
consideration tends to happen in the background.  As
mentioned in Section 3.1, the user generally only sees
side effects of the resource discovery algorithm.  The
resource discovery algorithm is likely to have two
major side effects: first, program execution time will
improve or degrade as resources are added or deleted
from the known pool; second, program execution
time will degrade if the resource discovery algorithm
takes away substantial computing time from user
programs.  We have seen that all of the considered
metasystems run resource discovery in the
background.  WebOS is the only metasystem that
does not conceptually isolate the resource discovery
mechanism from the computing resources used to
execute the user programs.  Thus we feel that for all
of the metasystems being considered, the level of
transparency in resource discovery should
accommodate most novice and expert users.

4.2.  Resource Management

As opposed to the case of resource discovery, expert
users may wish to make resource management
decisions.  Expert users will want less transparency in
order to run processes targeting certain machine
properties.  They would probably prefer to use either
Globus or Legion, as these systems allow users to
write their own matchmaking algorithm to decide
where processes will run.  On the hand, novice users
might not necessarily want to target a specific
environment and would therefore want more
transparency. Novice users would prefer Condor,
WebOS, or Java Market as these systems do not
allow user-defined matchmaking.  Condor simply
matches a job request to the first resource that
satisfies the job’s constraints.  WebOS selects
machines based on which will give the fastest or
highest-quality response.  Java Market bases its
decision based on profitability and approximate
runtime.

4.3.  Security

Both types of users would like to see a high level of
transparency as far as user authentication is
concerned.  Authentication overhead generally comes
during setup time and is not incurred continuously
throughout program execution.  The expert user
probably would not optimize this stage considerably.
The novice user sees this overhead as part of the
setup time, which only slightly increases the total
execution time.  Thus neither user would benefit from
seeing a multi-stage authentication process.  We

conclude that both users would not favor any one
system in particular.

Because expert users would like fast
recovery from program error, they would most likely
appreciate a lower level of transparency in behavior
monitoring.  Therefore we feel that expert users
might like Legion best because all behavior
monitoring is done via a user-defined MayI()
function; this scenario would give users the greatest
control over how their program is being monitored.
On the other hand, novice users might want a high
level of transparency because they would not wish to
be aware of the underlying security mechanisms of
the host machines.  Novice users might prefer Java
Market or WebOS.  The former guarantees a user
program will not violate security on the host machine
insofar as the Java Virtual Machine makes the host
machine secure.  The latter pushes any behavior
monitoring duties to the director applet, away from
the users’ sight.

4.4.  User Interface

The user interface has the potential to abstract away
from or emphasize the underlying complexity of the
metasystem.  The more the user sees of the
underlying system, the more variables that must be
managed.  We assume the expert user would like a
more configurable and therefore less transparent user
interface as it will provide a finer grain of control
over program execution.  We conclude that the expert
user would prefer either Globus or Legion.  Legion
provides a lower-level interface if desired, whereas
Globus provides the option of using a detailed toolkit
or a higher level API around which to build a
program.

We assume the novice user would prefer a
less complex and therefore more transparent user
interface to hide many of the details of program
execution.  Fewer details to manage mean less room
for error and a flatter learning curve. In terms of user
interface, the novice user would prefer Java Market,
Globus MPI, Legion PVM or MPI, WebOS, or
Condor.  Java Market, Globus MPI, and Legion PVM
or MPI allow the user to develop in a non-system
specific high-level language, which eases the learning
curve and allows the use of existing code and
programming skills with few or no modifications.
The client interface applet on WebOS, if written
properly, will greatly simplify the user’s point of
view by hiding many of the underlying details of the
metasystem.  Likewise, once users have submitted
their jobs to the Condor queue, execution is
completely independent of user input.
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4.5.  Fault Tolerance

Transparency in fault tolerance determines the extent
to which the user is aware that the system is
attempting to detect and recover from error.  An
expert user would prefer a “medium” level of
transparency.  That is, if users feel that checkpointing
is a worthwhile feature to include in their programs,
then it should be provided in a highly transparent
manner.  Ideally, all code checkpointing should be
done automatically by the metasystem if so desired;
that is, the expert user would not have to think about
exactly where to checkpoint code and think about
how to resume programs precisely at the checkpoints.
On the other hand, as far as process migration
between machines is concerned, experts most likely
would like to dictate where a stalled process moves.
It is possible that resuming stalled processes on a
fewer number of fast machines is more beneficial
than separating these processes onto many slower
machines.  Thus we conclude that a system like
Condor would be ideal for the expert user as regards
to checkpointing, whereas Globus and Legion would
be ideal as regards allowing user interaction in
migrating processes.

On the other hand, novice users would like to see
a high level of transparency overall.  The novice is
more likely concerned about program completion and
correctness instead of the exact semantics of
optimizing program execution. Condor would be best
for the novice user as it can handle all checkpointing
and migration independently of user input.

5.  Conclusions

We have evaluated five research metasystems for
user transparency.  We have attempted to identify the
concepts that are perhaps most significant to
transparency as seen by the user, and evaluated how
features of these metasystems fit these concepts.
Furthermore, we have considered the effects of user
transparency on both the expert and the novice
metasystem user.

After evaluating the aforementioned
metasystems, if we were to build a metasystem, we
would adjust some of the features to match the
profiles of our hypothetical users.  The system we
would build for the expert user would extend Globus
or Legion to include an automatic checkpointing
mechanism like the one in Condor.  In Globus, this
would mean adding a new service to the toolkit.  In
Legion, this would mean adding a new core object.

The metasystem we would build for the
novice user would incorporate high-level, easy-to-use
features, such as the features found in the
metasystems which promote transparency.  Java
Market and WebOS provide the simplest interface
without embellishment, while Globus and Legion
would be appealing to the novice only if they are
used together with their high-level tools, namely MPI
and PVM.  Additionally, we would give users the
option of using Condor’s automatic checkpointing
and automatic migration features.

Creating a single system to accommodate
both types of users would require extra work to
provide both the higher-level and the lower-level
abstractions for each user type.  The idea is we would
want to keep the model simple for the novice user
without compromising functionality, yet allow a way
for the expert user to access lower-level abstractions
easily.  We feel that Legion and Globus move in the
right direction with regard to this goal; however,
creating and executing a job is ultimately not as
simple as we would like for either user profile.

6. Future Work

This paper is only intended as an introductory look at
transparency in five research metasystem
environments.  The next step would be to conduct a
more comprehensive analysis of the metasystems.
Ultimately, the evaluations would be presented in
such a way as to create a more complete comparison
guide for all metasystems users in real-world
environments.

A more comprehensive analysis would look
at varying degrees of transparency as opposed to the
extremes presented here.  The systems under
consideration in fact have windows of transparency,
as depicted in Figure 6.  That is, the systems
accommodate varying subsets of the user population.
Systems like Globus and Legion have wide windows
of transparency as they can conform to fit the
requirements of many types of users.  Systems like
Java Market have narrow windows of transparency

No
Transparency

Total
Transparency

Figure 6.  Windows of Transparency.

System A
System B

System C
System D
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because they offer limited ways to take advantage of
the underlying resources.

A more comprehensive analysis would also
compare the degree of transparency with the
performance extracted from the system.  As
previously discussed, transparency is not the only
metric for determining the usability of a metasystem.
A more comprehensive comparison would evaluate
the tradeoffs involved in using a less or more
transparent system.
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