
Multiprocessor Scheduling: A Survey

Brad Hu�aker Sean Peisert Otto Sievert Eric Tune

November 21, 1998

Department of Computer Science and Engineering

University of California
San Diego, CA

Abstract

We analyze the problems inherent in scheduling

tasks to run on multiprocessor architectures. We

present three levels into which scheduling deci-

sions can be decomposed: short-term, long-term

and loop. To schedule e�ciently, one must con-

sider maximizing processor utilization, minimizing

communication and memory-access costs, and ef-

fectively synchronizing dependent tasks. We exam-

ine a variety of techniques to address these goals,

and consider what architectures each technique is

appropriate for. Finally, we predict what architec-

tures will be most prevalent and which techniques

will be the most valuable in the future.

1 Introduction

In this paper we investigate how to schedule tasks to

run on multiple processors. To this end we present a

framework for organizing ideas about scheduling and

multiprocessors. Then we present current implementa-

tions of those scheduling techniques. In this introduc-

tion, we will introduce the need for e�ective scheduling

by examining a number of performance problems that

may occur on multiprocessor systems, and which may

be avoided though careful implementation of scheduling

policies. We will look at how scheduling can be de-

composed into three di�erent levels and de�ne several

di�erent types of multiprocessor architectures.

We decompose scheduling into three levels: short-

term, long-term, and loop. In the third, fourth, and �fth

sections, respectively, we probe deeper into the problems

each level must address and descibe speci�c solutions.

The sixth section describes how task migration can be

used to shift currently executing tasks between proces-

sors. In the seventh section, we predict which scheduling

techniques will be most important in the future.

To avoid misconceptions, we reject overloaded terms,

such as process and thread. We use the term task to

mean the smallest unit of execution. That is, for every

task, running or not, there is a corresponding program

counter. We use the term program to mean a body of

code comprised of one or more tasks, to perform some

logically coherent operation. We use the phrase task

group to mean a set of tasks which interact frequently

with each other. Note that while these task groups

might typically be comprised of tasks from the same

program, this need not be the case.

1.1 The Three Scheduling Problems

Let us consider various reasons why a program might

not be running as fast as it possibly could. One reason

that a program might not be running as fast as it could

is that some processors might not have work assigned to

them. For example, If we have assigned a �xed portion

of a task to each processor but some tasks �nish sooner

than others, the �nish time of the program is limited by

the �nish time of the last processor. This is an example

of poor processor utilization.

Another reason that a programmight not be running

e�ciently is that a task might be waiting on communi-

cation and/or non-local memory access.

By waiting on communication, we could mean wait-

ing to receive a message, or accessing non-local (slower)

memory. Communication may be delayed because of

contention for the communication medium. It may be

possible to arrange tasks on processors so that there is

less communication contention. If this were the case,

we would call this decreasing communication/memory-

access costs.

A task may also be waiting on communication be-

cause the task it communicates with is not running. For

1This work supported by a generous grant from no one at all[5].

1



example, in a producer-consumer relationship, the con-

sumer may be idle if the producer has not sent any data

for the consumer to do work on. No more data will

arrive during the consumer's time quantum if the pro-

ducer is not running simultaneously. We call this poor

synchronization e�ectiveness.

The three scheduling goals further de�ned:

� Good Processor Utilization:

All processors have work in their queues at all

times. All processors which have tasks assigned

to them from the same program �nish execution

at the same time, thus the user gets the expected

speedup. Processors spend most of their time do-

ing useful work rather than coordinating the divi-

sion of work.

� Good Synchronization E�ectiveness:

Task are scheduled in such a way that interacting

tasks across processors can cooperate e�ectively.

This means that tasks with �ne grained interac-

tion should be running at the same time.

� Low Communication/Memory-Access Cost:

Tasks are scheduled in such a way that commu-

nication time, either message passing or shared-

memory latency is accounted for, and minimized.

Scheduling data structures should be arranged so

that they are not a source of contention. Tasks are

scheduled so that the cache state built up by one

process is not unneccesarily ruined by another.

1.2 The Three Scheduling Levels

As mentioned before, we divide the problem of schedul-

ing into three levels, which we now discuss.

1.2.1 Short-term Scheduling

In time-sliced systems, it is necessary at each scheduling

quantum to quickly choose a new task to run. Addi-

tionally, when a task blocks, one must decide whether or

not to immediately context-switch. Normally, there is

a �xed time quantum during which a task may execute

for the whole quantum or the task may yield to another

process during this quantum. The short term scheduler

itself is typically a very small piece of code which is part

of the operating system kernel. Thus, the purpose of

short-term scheduling is to select when to do a context-

switch between the current task and the next highest

priority task.

1.2.2 Long-term Scheduling

In all systems, there must be some order in which tasks

are executed. In a batch or hardware-partitioned ma-

chines, where there is no time-sharing of processors, the

long-term scheduler may simply be a queue of jobs to

run one after the other. The most interesting problems

arise inmultiprogrammedmachines, where the long-term

scheduler determines what jobs are ready to run and

orders them, possibly in a fashion guaranteeing fair-

ness. Since this may be a time-consuming calculation,

we normally only evaluate long-term schedules at inter-

vals much longer than the time quantum length. This

is normally considered to be part of the operating sys-

tem, but the code size and time required for long-term

scheduling may be much greater than that required for

short-term scheduling. Thus, long-term scheduling as-

signs tasks to processors and assigns their priority in a

given time period.

1.2.3 Loop Scheduling

In some types of programs, there is a pool of work

which can be allocated to any number of independently-

working tasks. It is desirable for the work to be di-

vided in such a way that all the tasks �nish at the same

time. This minimizes the overall execution time of the

program. Frequently, this work is the iterations of a

loop, hence the name loop scheduling. On a time-sliced

machine, the throughput may be una�ected by load-

balancing decisions. However, on a batch-oriented or

hardware-partitioned machines, an increase in run-time

directly corresponds to a decrease in throughput. This

scheduling functionality would typically be implemented

in the compiler-runtime library or a user library. Not

all programs with multiple tasks can bene�t from loop

scheduling.

2 System Architectures

The architectural details of the machine a task is run-

ning on will a�ect what techniques a scheduler should

implement. The most important distinction is the speed

and nature of communication between processors and

memory. Shared-memory machines are those in which

all processors access the same memory. In a uniform-

memory access (UMA) architecture, all processors can

access all memory at the same latency. An example of

a machine containing this type of architecture is a two-

processor Pentium PC.

In a distributed memory machine, individual proces-

sors must communicate over a network to access non-

local memory. Non-local memory access is thus much

slower than local memory access. An example of this is

a network-of-workstations (NOW), such as a network of

DEC Alphas.

A non-uniform memory access (NUMA) machine

might be thought of as a hybrid between a NOW and

UMA architecture. Non-local memory access costs are

generally lower than with a NOW but higher than with

2



an UMA machine. This is usually achieved through

complex cache-coherency protocols. A NUMA is a hier-

archical collection of nodes, connected via a high-speed

interconnect, and processors within nodes. There is

shared memory between the processors in the node and

message-passing between the nodes themselves. Mem-

ory access time varies depending on whether the access

is to local or to slower, non-local memory. Examples of

this type of machine are the IBM SP2, Sun Star�re, and

SGI Origin 2000[1].

In an UMA machine, all the processors and all the

memory access costs are the same. This is an exam-

ple of a homogeneous system. In contrast, a NOW may

have varying communication costs and processor speeds.

An example of a homogeneous system would be a group

of Macs and DEC Alphas connected by both Appletalk

and switched Ethernet.

Another consideration, which is really a scheduling

policy decision, is how multiple programs will be run

on the multiprocessor. For our purposes, we will say

that a scheduler which runs each program sequentially

is a batch scheduler and one that can run more than one

program at the same time is multiprogrammed. There

are two techniques for implementing multiprogramming:

hardware partitioning and time-slicing. In hardware

partitioning, one program runs exclusively on a subset

of all processing elements. Note that since hardware-

partitioning and batch scheduling both have no context

switching, many of the same arguments about schedul-

ing apply to both. In time-slicing, a task runs for a

small quantum of time, and then the processor context

switches to run another task.

3 Short Term Scheduling

Ousterhout describes pauses as a technique to increase

synchronization e�ectiveness[14, 4]. His experiences

were based on working on the Medusa operating sys-

tem running on the cm� multiprocessor[15]. The basic

concepts presented by this older work are very impor-

tant, while its techniques have been challenged by more

recent work[18]. Pauses are where a task remains idle

while waiting for a system call rather than yielding to

another task.

Ousterhout considers systems that implement mul-

tiprogramming through time-slicing. In this scheme, a

task runs for a certain quantum of time before being

preempted by the short-term scheduler so that another

task can run (not at all necessarily a task from the same

program). If the task has to wait for some system call,

then it may end its time quantum early.

Consider the ways in which tasks may communicate.

A number of UNIX commands may communicate by

means of bu�ers (called pipes) between them. So, when

one producer adds one chunk of processed information

to the bu�er, it need not wait for the consumer to take

it. Assuming the bu�er is not full, it can continue to

run.

However, if one task is slower, then the bu�er will

eventually �ll up or become empty, and the faster task

will have to wait. Either it waits trying to read an empty

bu�er, or it waits trying to write a full bu�er.

Further, for certain types of programs (for example

Successive Over-Relaxation [2], a numerical boundary

value problem solver) a task which sends a message can-

not continue until it gets a response. This is called bar-

rier synchronization. In this case it is necessary to block

on communication.

Now consider two processes communicating using

blocking communication methods. The sender has to

execute some operation to send its data, and the re-

ceiver must execute some operation to receive the data1.

Since the two programs are not likely to do this at ex-

actly the same time, whichever executes their part of

the communication operation �rst will have to wait for

the other.

In a nâ�ve operating system implementation, the ex-

ecution of the communication primitive will cause the

waiting task to yield its processor. A context switch

will occur and another, unrelated task will run. The

�rst task is switched out, and then the second task may

complete its part of the communication shortly there-

after. But the �rst task is no longer running. In this

fashion, the rate of communication may be limited to

one communication operation per time quantum. For

tasks with �ne-grained interaction, this may be a huge

waste of time. More speci�cally, we call this poor syn-

chronization e�ectiveness.

The solution is to have the processor sit idle, rather

than context switch, while the task waits for the commu-

nication to complete. It may pause for a certain amount

of time, or for as long as possible. In either case, it is still

preempted when its time-quantum is up. This is called

a pause time. Sobalvarro, et al refer to these two op-

tions as spin-only, and spin-block. Spin-only means that

a task stays idle until either its time quantum expires or

communication completes. Spin-block means that the

task idles for a �xed amount of time typically two times

the context switching delay, and then, if communication

is still not completed, it yields the remainder of its time

quantum. So pause times are a short-term scheduling

technique to improve synchronization e�ectiveness.

1Please note that while the vocabulary may be suggestive of a message passing system, it could just as well be a shared-memory

system.

3



4 Long Term Scheduling

Ousterhout also considered coscheduling. If two inter-

acting tasks are not scheduled at the same time, then

pause times alone may not be su�cient to insure good

performance. Consider the worst case scenario for two

interacting tasks: the tasks are never scheduled at the

same time. In this case, each task is limited to one

communication per quantum. For �nely interacting pro-

cesses, this can be a real slowdown. This has been called

process thrashing, since it is similar to the thrashing that

occurs in virtual-memory systems[14]. In general, one

may not just need to schedule two tasks at the same

time, but any number of tasks which communicate in-

terdependently. We call that set of tasks a task group2.

It is desirable to have some long term scheduling pol-

icy that tries to schedule task groups during the same

time quantum across various processors. Such a policy

is called coscheduling [14].

Markatos and LeBlanc[13] conclude that coschedul-

ing is better than uncoordinated scheduling, and that

hardware partitions are better than coscheduling. This

is hardly surprising since hardware partitioning insures

that there is no time wasted in context switching and

that a whole task group is always coscheduled.

There are a number of algorithms to determine a

good long term schedule that coschedules task groups.

For most systems, it may be desirable for such an algo-

rithm to be fair to all tasks, and to coschedule each task

group, if at all possible, and have good processor utiliza-

tion. Ousterhout believed that a static scheduler would

be the best method. In static coscheduling, there must

be some a priori de�nition of task group. Given that

task groups are prede�ned, there are a number of algo-

rithms that develop long term schedules that are both

fair and coschedule task groups. Ousterhout describes

the Matrix method, the Continuous method, and the

Undivided algorithm[14].

4.1 Dynamic Coscheduling

4.1.1 Shared Memory Multiprocessors

Scheduling techniques for all levels of scheduling may

be broadly classi�ed as static and dynamic[3]. Static

means determined before runtime and dynamic means

determined during runtime. The more frequently two

processes interact, the more important it is that they

are coscheduled. If two processes typically communicate

much less often than once per quantum, then coschedul-

ing is not necessary. But how should one determine what

processes interact frequently? That is to say, which tasks

comprise a task group? While Ousterhout suggests that

the task groups should be statically identi�ed (presum-

ably by the programmer), Feitelson and Rudolph [7] sug-

gest that the way to identify task groups is to identify

them at runtime. One bene�t of this is that the pro-

grammer is relieved of the burden of determining the

best task groups. They implemented their technique on

a BBN Buttery, a shared-memory multiprocessor.

The idea is that tasks communicate though some pre-

de�ned channels, and that by observing how frequently

each channel was used one can infer which tasks form

task groups. To better visualize this technique, imagine

that all the tasks on the machine are the vertices of a

graph, and the most frequently used channels are edges

of that graph. Hopefully, that graph will be discon-

nected, consisting of a number of connected subgraphs.

The set of tasks which are part of a connected subgraph

are exactly the set of tasks which form a task group. In

practice, this is implemented at runtime by a table that

is constantly updated as communication occurs. The ta-

ble has counts of the usage of each channel, and the long

term scheduler consults this table to re-evaluate what

tasks form task groups[7]. Another possible advantage

of this scheme is that dynamic coscheduling can adjust

as communication patterns change between tasks.

4.1.2 Distributed Multiprocessors

One disadvantage of this implementation is that a cen-

tralized data structure is needed to keep track of the

communication patterns. While this may be practical

on a shared-memory machine, it may be impractical on

a distributed memory machine. Sobalvarro, et al [18]

considered these architectures and presented a di�erent

implementation. They had a network of workstations

connected by a very fast network. By very fast, we

mean that message latency is two to twenty times less

than the scheduling quantum. The signi�cance of this is

that two tasks may have many interactions during the

course of one quantum, and therefore coscheduling (and

pause times) are important.

They considered a system with a typical multiple-

priority round-robin scheduler running independently on

each processor. There is no provision in their system for

explicitly scheduling two tasks at the same time on dif-

ferent machines. Instead they used a coprocessor on

the network interface controller to observe the message

tra�c, and increase the priority of tasks which received

messages. While increasing the priority of a task does

not immediately cause the task to start, it makes it more

likely that the process will be the next to be selected to

run by the short term scheduler. Over the course of a

number of messages and scheduling quanta, tasks that

interact frequently will gradually be brought into syn-

chronization across multiple processors. There are two

2Others have called this an activity working set or task force. We follow the time honored tradition of making up a new name for

something that already has too many names.

4



advantages to this scheme. First, the scheduling infor-

mation is not centralized in a single data structure. If

this were so, it could be a source of communication con-

tention. Second, it uses a coprocessor to collect pro�les

of task interaction, so that the processor is not burdened

with that work.

5 Loop Scheduling

Atif and Hamidzadeh[9, 8] consider how to schedule

tasks e�ectively on heterogeneous systems. They are

primarily interested in increasing processor utilization

by distributing work in such a way that all tasks of a

program complete at nearly the same time. For exam-

ple, assume that there is a pool of work consisting of W

work units that can be grouped into work chunks and

assigned to various processors. There might be 1000

pairs of integers. A work unit is one pair, since both

are needed to do an addition. The total number of work

units is 1000. As mentioned before, a work unit fre-

quently corresponds to an iteration of a loop.

5.1 Static Scheduling

So, a nâ�ve approach to obtaining maximum processor

utilization would be to assign W=P work to each task,

where there areW units of work, and a total of P tasks:

one on each of P processors. But if not all the com-

puters on the network can add as fast, or if some are

connected by slower communication links, then not all

processors will �nish at the same time. Conversely, even

if the system were completely homogeneous, but the

work units were uneven (for example, separately sort 100

lists of greatly varying length) then there would again

be poor processor utilization. This nâ�ve approach is

called single-chunk static scheduling [9]. This algorithm

has poor processor utilization.

5.2 Dynamic Scheduling

The processor utilization problem might be solved as fol-

lows. The approach, called pure self-scheduling [16] is to

give each task one unit of work, and then having the task

take another unit of work after it completes the �rst.

While this algorithm assures good processor utilization,

it has very poor communications e�ciency. This is be-

cause there must be some shared variable or structure

which keeps track of what work units have been com-

pleted so far. This is a characteristic of techniques that

determine scheduling during run-time. Such a class of

techniques can be called dynamic , and techniques which

schedule before run-time can be called, static. [3]

Now, if each chunk is composed of k work units,

rather than just one, then the synchronization cost is

reduced by a factor of k. This is called chunk self-

scheduling [16]. Ideally one would like to make k very

large; however, as k grows in size, so does the possibility

of load imbalance (poor processor utilization).

It has been noted that load imbalance is critical only

near the end of program completion. Thus, one might

take larger chunks at the beginning of a program exe-

cution, and take smaller chunks at the end. This tech-

nique, guided self-scheduling [16, 10], gives low synchro-

nization costs at the beginning of execution, and also

preserves load balance at the end of execution. This is a

compromise between large chunking and self-scheduling.

Since synchronization costs can be high, even relative

to loss of throughput due to load imbalance (processor

utilization), there is another algorithm which attempts

to further reduce synchronization costs at the expense

of some load imbalance. Like guided self-scheduling,

trapezoid self-scheduling [20] distributes more iterations

at the beginning of execution than at the end. Unlike

guided self-scheduling, however, the size of successive

chunks in trapezoid self-scheduling is a constant. This

reduces synchronization cost near the end of execution.

Another algorithm is distributed self scheduling.

First, all the work is statically allocated just as in single-

chunk static scheduling. Then, the �rst processor to �n-

ish takes work back from the slower processors and gives

it to the idle ones[9, 11].

5.3 Heterogeneity

If all the task units are the same size, and all the pro-

cessors are homogeneous in their speed and communi-

cation, then single-chunk static scheduling is the way to

go. Only in this case, each work chunk will take the

same amount of time, so there will be good processor

utilization. Since there is no run-time assignment of

work, then there is a minimal communication cost.

But if not all the computers on the network can add

as fast, or if some are connected by slower communi-

cation links, then not all processors will �nish at the

same time. Conversely, even if the system were com-

pletely homogeneous, but the work units were uneven,

(for example, separately sort 100 lists of greatly vary-

ing length), then we would again have poor processor

utilization. One technique that tries to directly account

for both these problems is the Self-Adjusting Scheduler

for Heterogeneous systems (SASH)[9] .

First, all but one of the tasks are assigned a chunk of

work, but only a fraction of the total work is distributed

at this point. The remaining processor attempts to then

calculate an optimal schedule for the remainder of the

work. Based on estimates of the computation speed and

communication speed of each of the processors and the

complexity of each unit of work, it tries to compute a

schedule for the remaining, unassigned work that will

5



have maximum processor utilization (i.e. same �nish

time for all tasks). When one of the other processors

�nishes before the optimal schedule is calculated, the

processor doing the scheduling distributes some of the

remaining work based on a partial schedule calculated

so far. If the algorithm is e�ective in its estimation of

optimal schedules, then there should be good processor

utilization. If good sized chunks of work are initially

distributed, and the schedule-estimation algorithm is

quick, then there should be relatively little time spent

communicating new task assignments.

5.4 A�nity Scheduling

The techniques discussed so far assume that the data

that is associated with a work chunk is local to the task

assigned that work chunk, or that the time to distribute

the data is small enough to make the use of multiple

processors worthwhile.

A�nity scheduling [12], like guided self-scheduling,

attempts to repeatedly match certain work chunks with

certain processors. In a program with a loop, each iter-

ation of the loop might be a separate work unit. If that

loop gets executed more than once (e.g. it is the inner

loop of a nested loop) then it is advantageous to assign

a processor the same chunk (in this case, a range of iter-

ations of the inner loop) for each iteration of the outer

loop. It is advantageous because it is likely the data

needed by this iteration may still be cached from the

previous one. While a number of authors suggest that

this is the one of the best loop scheduling techniques,

it is only useful when work chunks are repeatedly pro-

cessed.

A chunk is only reassigned to a di�erent processor

when load imbalance becomes signi�cant. This occurs

by means of having a central processor whose sole func-

tion it is to partition the data, schedule it, synchronize,

maintain memory locality and balance the load through

a dynamic scheduling algorithm. The claim is that this

is e�ective despite potential performance loss by a ded-

icating one processor exclusively to the central schedul-

ing task.

6 Task Migration

We now present an approach to load balancing that is

complementary to the long-term scheduling techniques

discussed, yet provides unparalleled processor utiliza-

tion at the expense of communication costs. All of the

techniques discussed this far schedule by assigning work

to tasks, and tasks to speci�c processors. Each task

is sent to and executed entirely on its assigned proces-

sor. For batch-mode system architectures, time-sliced

architectures where throughput is more important than

processor utilization, or systems with few users, this ap-

proach is optimal. Once a task has begun execution, it

stays with that processor until completion.

For systems like these, there is no advantage in mov-

ing a task from one processor to another, because pro-

cessor utilization is adequately addressed by the other

techniques described in previous sections, and because

the cost to perform task migration is quite high.

There are systems which bene�t from task migra-

tion. One example is a multiprogrammed system with

dynamically changing processor loads including those

that would occur when programs are added and removed

from the system. In this case, techniques that assume

homogeneous execution time would result in poor pro-

cessor utilization. A widely varying workload can even

foil techniques such as guided self-scheduling, which ac-

tively attempt to balance the workload among proces-

sors. Another example of a system that would bene�t

from task migration is a network of workstations. In typ-

ical commercial installations, a single user has primary

control over his or her personal networked workstation.

However, in this situation there are almost always work-

stations which are not currently in use. A user with

a parallel program could bene�t from distributing the

program to execute on workstations other than his/her

own.

In both of these situations, a processor load imbal-

ance is the issue. Task migration complements �ne-

grained long-term scheduling techniques in that it pro-

vides an alternative method of achieving good load bal-

ance. However, task migration is a complex process

which requires the following actions:

� the migrating task must be halted;

� any processor state associated with that task, such

as processor registers, instruction reorder bu�ers,

or state vectors must be transferred to the new

processor;

� all virtual memory pages must be transferred to

the new processor;

� operating system speci�c information including

�le lock information must be transferred to the

new processor;

� the task itself must be moved to the new processor

and resumed.

In addition to the penalties associated with the

above migration activities, one must also consider the

cost associated with the loss of cached information,

whether that is instruction cache, data cache, or �le

cache. All of these costs are signi�cant; task migration

is not performed without undue need.

The simplest method of implementing the task mi-

gration activities is to simply halt the task, move the

6



task and associated baggage, and restart the task. This

is the process used in the LOCUS operating system[17].

This procedure may be improved upon, however. For

example, the V kernel implements pre-copying, where

data is migrated while the task continues to execute[19].

This may require that some data be copied twice (if it

changes after being pre-copied). Once the task's bag-

gage has been migrated, the task is halted, transferred

(with any remaining data or state), and immediately

resumed.

Another migration method was implemented in the

Accent[21] operating system and in the Sprite operat-

ing system[6]. When a task is migrated in Accent or

Sprite, it is halted immediately, transferred with min-

imal state, and immediately resumed. Data and other

state are migrated only as the task requires. This pro-

cedure, called lazy-copying, decreases the task execution

downtime, but requires that the original processor main-

tain information for some time after the task has been

migrated.

All of these migration techniques must be imple-

mented with policies which determine, for example,

when load imbalance is great enough to initiate task mi-

gration, or what other events (a user returning to their

personal workstation and �nding it bogged down with

their neighbor's lawn-watering analysis program) may

trigger migration. Additionally, the selection of a new

processor to migrate to is not trivial. While providing

an alternative method of load balancing, the high execu-

tion time costs and di�cult policy problems are reasons

why process migration is not widely used today.

7 Future Trends

While coscheduling and pause times were once only a

technique for shared-memory multiprocessors, the re-

cent development of very fast, optimized networks has

de�nitely extended the applicability of coscheduling and

pause times to distributed systems[18].

Current trends in technology indicate that the gap

between processor speed and memory latency will con-

tinue to widen. This means that cache misses will

be increasingly important to avoid. For this reason,

a�nity based scheduling should become increasingly

important[13], and process migration should become less

important.

On the other hand, if increasingly heterogeneous sys-

tems are built, techniques such as self-adjusting schedul-

ing that consider communication costs in order to load

balance are likely to perform signi�cantly better than

algorithms that do not. Increasingly heterogeneous dis-

tributed systems may arise, due to the proliferation of

global networking, and heterogeneous shared-memory

systems may be more common because of the scaling

limitations of UMA architectures.

8 Conclusion

All of the scheduling techniques addressed in this paper

are primarily concerned with improving execution time

of individual programs on multiprocessor machines. The

job of the scheduler is to assign tasks to processors. Be-

cause of the complexity inherent in determining an opti-

mal schedule, e�ort has been focused on �nding heuristic

approaches. These approaches attempt to address the

major costs in multiprocessor execution. These areas are

processor utilization (balancing loads, and minimization

of time spent dividing work), communication/memory-

access costs, and synchronization e�ectiveness.

To help analyze these di�erent approaches we di-

vided the problem of scheduling into three di�erent

levels, short-term, long-term, and loop. The primary

goal of short-term scheduling is to select when to do

a context-switch between the current task and the next

highest priority task. Long-term scheduling assign tasks

to processors and assigns their priority in an given time

period. Loop scheduling determines how to divide the

work of one program among its various tasks/processors

in order to minimize the overall execution time.3

Pause times are a technique for improving synchro-

nization e�ciency in short term schedulers. Coschedul-

ing is a long-term scheduling technique for improv-

ing synchronization e�ciency. Depending on the ap-

plication and machine architecture, di�erent loop level

scheduling techniques may be achieve best processor uti-

lization. There are both static and dynamic approaches

to both loop and long-term scheduling.

References

[1] Baden, S. personal communication.

[2] Carter, J. B., Bennett, J. K., and

Zw�nep�l, W. Implementation and performance

of Munin. In Thirteenth ACM Symposium on Oper-

ating Systems Principles (Oct. 1991), pp. 152{164.

[3] Casavant, T., and Kuhl, J. G. A taxonomy of

scheduling in general-purpose distibuted computer-

ing systems. IEEE Transactions on Software Engi-

neering 14, 2 (Feb. 1998), 141{154.

[4] Clark, R., O'Quin, J., and Weaver, T. Sym-

metric multiprocessing for the AIX operating sys-

tem. In Digest of Papers, COMPCON '95 (Mar.

1995), pp. 100{115.

3Editors note: if you read nothing else in this paper, read this paragraph. It is the best paragraph in the whole paper. Perhaps it is

not surprising that the authors spent the most time arguing over these 4 sentences.

7



[5] Doof, U. R. A. Do people actually read bibli-

ographies? Journal of Computational Psychology

0, 13 (1903).

[6] Douglis, F., and Ousterhout, J. Transpar-

ent process migration: Design alternatives and the

Sprite implementation. Software - Practice and Ex-

perience 21, 8 (Aug. 1991).

[7] Feitelson, D., and Rudolph, L. Coscheduling

based on runtime identi�cation of activity working

sets. International Journal of Parallel Program-

ming 23, 2 (1995).

[8] Hamidzadeh, B., and Lilja, D. J. Self-adjusting

scheduling: An on-line optimization technique for

locality management and load balancing. In Inter-

national Conference on Parallel Processing (Aug.

1994), vol. II:Software, pp. 39{46.

[9] Hamidzadeh, B., Lilja, D. J., and Atif, Y.

Dynamic scheduling techniques for hetrogeneous

computing systems. Concurrency: Practice and Ex-

perience, Special Issue on Resource Management in

Parallel and Distributed Systems 7, 7 (Oct. 1995),

633{652.

[10] Hummel, S. F., and Schonberg, E. Factoring:

A method for scheduling parallel loops. Communi-

cations of the ACM 36, 8 (Aug. 1992).

[11] Liu, J., and Saletore, V. A. Self-scheduling

on distributed memory machines. In Proceedings

Supercomputing '93 (Nov. 1993), pp. 814{23.

[12] Markatos, E. P., and LeBlanc, T. J. Us-

ing processor a�nity in loop scheduling on shared-

memory multiprocessors. In Proceedings of Super-

computing (1992), pp. 104{113.

[13] Markatos, E. P., and LeBlanc, T. J. Locality-

based scheduling for shared-memory multiproces-

sors. Current and Future Trends in Parallel and

Distributed Computing (1995).

[14] Ousterhout, J. K. Scheduling techniques for

concurrent systems. Proceedings of Distributed

Computing Systems (Oct. 1982), 22{30.

[15] Ousterhout, J. K., Scelza, D. A., and

Sindhu, P. S. Medusa: An experiemnt in dis-

tributed operating system structure. Communica-

tions of the ACM 23, 2 (1980).

[16] Polychronopoulos, C., and Kuck, D. Guided

self-scheduling: A practical scheme for parallel su-

percomputers. IEEE Transactions on Computers

C-36, 12 (Dec. 1987), 1425{1439.

[17] Popek, G. J., and Walker, B. J. The LOCUS

distributed system architecture. Computer Systems

Series (1985).

[18] Sobalvarro, P. G., Pakin, S., Weihl, W. E.,

and Chien, A. A. Dynamic coscheduling on work-

station clusters. In Proceedings of the Workshop

on Job Scheduling Strategies for Parallel Process-

ing (Mar. 1998).

[19] Theimer, M., Lantz, K., and Cheriton, D.

Preemptable remote execution facilities for the V

system. In Proceedings of the 10th Symposium on

Operating System Principles (Dec. 1985), pp. 2{12.

[20] Tzen, T., and Ni, L. Dynamic loop scheduling

on shared-memory multiprocessors. In Proceedings

of International Conference on Parallel Processing

(1991), vol. II, pp. 247{250.

[21] Zayas, E. Attacking the process migration bot-

tleneck. In Proceedings of the 11th ACM Sympo-

sium on Operating System Principles (Nov. 1987),

pp. 13{22.

About the Authors

Brad Hu�aker maintains his stoic

appearance by heading a startup

company whose vision statement

explicitly involves the terms Mi-

crosoft and acquisition.

Sean Peisert is amazingly demo-

cratic, but we don't hold that

against him, because his knowl-

edge of things parallel is nigh-

unbounded.

When not wasting his employers

time and money, Otto Sievert en-

joys hacking LATEX . His interests

also include the wholesale ginger

ale market.

Eric. S. Tune raises inchworms,

talks excessively in his classes,

surfs, and drinks ginger ale. Cur-

rently his interests include pro-

crastination algorithms.

8


